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Abstract

Exhaustive investigations of the ice sheet subsurface can be carried out by analyzing the information contained in the huge

archives of radargrams acquired by dedicated radar sounder (RS) instruments. The analysis can be done by using properly

designed automatic techniques for a quantitative, objective and reliable extraction of information from radargrams. Unfortunately,

the definition and development of such automatic techniques has been only marginally addressed in the literature. In this paper, we

propose a novel and efficient system for the automatic classification of ice subsurface targets present in radargrams. The core of

the system is represented by the extraction of a set of features for target discrimination. The features are based on both the specific

statistical properties of the RS signal and the spatial distribution of the ice subsurface targets. Such features are then provided

as input to an automatic classifier based on Support Vector Machine (SVM). Experimental results obtained on two real-world

datasets acquired by airborne-mounted RSs in large regions of Antarctica confirm the robustness and effectiveness of the proposed

classification system.

Index Terms

Radar sounding, subsurface analysis, ice subsurface targets, cryosphere, signal processing, remote sensing.

I. INTRODUCTION

O
VER the past decades, the investigation of the ice sheets has been carried out by analyzing the ice subsurface in

radargrams (or echograms) acquired by dedicated radar sounder (RS) instruments (also known as Ground Penetrating

Radars (GPR) for glaciology) [1]. RSs are active instruments that can perform nonintrusive depth measurements of the

subsurface structure of the ice sheets on very wide areas. Such measurements are posbisible due to the use of relatively

low-frequency electromagnetic waves (typically in the MF, HF, VHF frequency spectrum) and the nadir-looking acquisition

geometry that enable the penetration of the wave several kilometers into the ice subsurface [1]. Since emitted, the wave

suffers geometric losses with depth and attenuation caused by the dissipative properties of the subsurface [2]. The dielectric

discontinuities present within the ice subsurface structure form interfaces that reflect the impinging wave. The amount of

power returned to and measured by the radar receiver is recorded in radargrams.

RSs are usually operated on airborne or satellite platforms. RSs mounted on airborne platforms (e.g., MultiCoherent Radar

Depth Sounder (MCoRDS) [3], Polaris [4]) are employed for sounding the Earth ice sheets and glaciers. Orbital RSs have

been used only for the exploration of other planetary bodies, e.g., Moon (Lunar Radar Sounder (LRS) [5]), Mars (Shallow

Radar (SHARAD) [6]). During such missions the ice sheets have been sounded on very wide areas generating a huge amount
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of RS data that have been stored in archives and only partially analyzed. Moreover, the volume and heterogeneity of data is

expected to grow from the increase in both terrestrial and forthcoming space-based missions.

The main approach used to the analysis of radargrams is based on visual interpretation. This approach is very time consuming,

therefore difficult to apply to a large amount of data. Moreover, it is intrinsically subjective, thus leading to photointerpretation

inconsistencies which make impossible a standardization of the output. Furthermore, the traditional manual approach can only

be applied to an individual radargram at a time and makes it difficult a joint processing of different radargrams. This limits the

possibility of analyzing radargrams that are geographically related or to fuse together different types of remotely sensed data

(e.g., radargrams, Synthetic Aperture Radar (SAR) data, Digital Elevation Models (DEMs)). Such joint analysis could provide

further information about the ice subsurface structure (e.g., 3D subsurface models) that is difficult to obtain with a manual

approach. A solution to the limitations of the manual approach is the development of efficient automatic techniques for the

analysis of radargrams. Such techniques can provide fast, quantitative and objective results. Therefore, they can be particularly

important for an accurate investigation of the ice subsurface at large scale. Despite these advantages, the development of such

techniques is still in an early stage, as pointed out in the review of the state of the art presented in Sec. II.

In this paper we present an advanced and effective system for the automatic classification of the whole backscattering

area of the ice subsurface targets. In brief, from a physical point of view, the ice subsurface is composed by layers of ice

and the underlying bedrock [1]. In radargrams, they appear as different patterns that can be recognized by their structure,

continuity, depth location and reflected wave amplitude and phase. Another pattern present in radargrams corresponds to the

measurements of pure noise. Therefore, layers, bedrock and noise are the targets that we aim to automatically classify (a

detailed description of the ice sheet subsurface targets is given in Sec. III). Identifying these ice subsurface targets represents

a first fundamental step for a subsequent more complete understanding of the ice sheets, e.g., the computation of the ice

thickness, the study of archeological changes (see Sec. III for details). However, automatic approaches to the identification of

the ice subsurface targets have not been sufficiently addressed by the scientific community.

The automatic classification system that we present in this paper combines advanced image processing and machine learning

techniques with the knowledge about the physical distribution of the targets and fundamentals on radar wave backscattering.

After an initial elevation correction step applied to the radargrams for removing the effect of fluctuating aircraft altitude,

they are given as input to the system, which is made up of two main components: i) feature extraction, and ii) automatic

classification based on Support Vector Machine (SVM). The feature extraction is the core of the system and also the main

novel contribution of this work. The objective at this stage is to extract from the radargrams effective parameters for target

discrimination (in this paper we call such parameters ”features”, in accordance with the pattern recognition literature; it

is worth to note that a conventional term used in the glaciological and ice radar communities for ”ice subsurface targets”

is ”ice subsurface features”. However, in this paper we use the term ”ice subsurface targets” to avoid possible confusion

caused by the same word ”feature” associated with two different fundamental concepts). We propose a set of features that

are able to model and correlate the backscattering properties of the radar signal with the spatial properties of the subsurface

targets. The extraction of such features is done after a detailed study of the statistical properties of the radar signal and

of the spatial distribution of the ice subsurface targets. The second component of the system uses the extracted features
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to perform the automatic classification of ice subsurface targets by using the SVM classifier. The main advantages of the

system are: i) robustness and/or adaptiveness to the heterogeneity of radargrams as a consequence of both the features used

and the learning approach employed; ii) capability to obtain objective quantitative results (i.e., exactly the same criteria are

used for all radargrams, thus enabling the extraction of targets in a consistent and comparable way on all radargrams); and

iii) computational speed and efficiency due to the possibility of parallelizing the sub-algorithms it is composed of. For these

reasons, the system is suitable for the analysis of the ice subsurface at large scale from radargrams acquired by RS sensors

with different characteristics (e.g., central frequency, bandwidth), as it will be shown in the paper. The system has been

validated on two real-world datasets [3]: i) a dataset made up of 8 radargrams acquired in sequence off ≈ 400 line-km in

Central Antarctica by the airborne-mounted MCoRDS instrument [7], and ii) a dataset made up of 14 radargrams acquired in

parallel- and cross-track configurations over an area of about 1000 km2 in SE Antarctica (Byrd Glacier) by MCoRDS2 [8].

The rest of the paper is organized as follows. Sec. II reviewes the literature related to the automatic analysis of radargrams. A

complete description of the ice sheet subsurface targets is given in Sec. III. Sec. IV and Sec. V present the main components

of the automatic classification system, i.e., the feature extraction techniques and the classification method based on SVM.

Experimental results obtained on the two RS datasets acquired in Antarctica are reported in Sec. VI. Finally, Sec. VII discusses

the capabilities and limitations of the system and proposes future developments of this work.

II. RS DATA PROCESSING AND RELATED WORK IN GLACIOLOGY

A radargram is a 2D matrix with nS rows (samples in the range/depth direction) and nT columns (traces, frames in the

along-track/azimuth direction), which contains the measurements of the RS [1].

The analysis of radargrams is very challenging, as the amplitude A(i, j), ∀i = [1..nS], ∀j = [1..nT ], may contain both useful

information and noise contributions (e.g., thermal noise, speckle, clutter, multiple reflections and sidelobes artifacts) [1].

These noisy contributions may partially or even completely mask the useful signal, thus leading to wrong interpretations of

the information contained in radargrams. Despite the advantages that the automatic techniques could provide (see also Sec.

I), the related literature in the analysis of RS data reports only few works. An attempt to automatically estimate the polar

ice thickness from airborne data is presented in [9]. Here, the authors propose two techniques for the automatic detection of

the ice surface and the bedrock interfaces, i.e., i) edge-based, and ii) active contour. In [10], the technique for tracing the

depth of the Holocene in Greenland is presented. The technique is semi-automated and uses image processing concepts based

on histogram analysis and surface fitting to identify the transition region between the Holocene and Glacial ice. Recently, a

subsurface model-based technique for the detection of ice sheet target interfaces has been presented in [11]. Besides these

works, which deal with the segmentation of the ice sheet subsurface into different regions, there are a few works focused

on understanding the ice stratigraphy, which is useful for ice flow modeling [12] or the isochronous characterization of the

ice [13]. These objectives have motivated many efforts for developing automated methods (e.g., [14], [15], [16]). Other

methods focus on the detection of water at the ice/bedrock interface. In [17], the authors treat the detection of the water as

a binary classification problem which they solve by using a combination of eleven learning algorithms. Other related works
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regard mainly the analysis of the targets visible in radargrams by comparison with ground truth data collected during drilling

campaigns or using other sensors. As an example, in [18] the authors investigate how the structure of the ice subsurface

affects the wave propagation and its impact on the radargram acquisition process. They compare RS data, ice core line-scan

images (which display the stratigraphy of high-scattering zones for light), crystal orientation fabrics and dielectric properties

of subsurface samples collected from an ice core for assessing the type of investigated targets in radargrams. This analysis is

extremely useful, as its scientific output could act as reference knowledge that along with the radargrams allow for further

automatic processing.

Regarding the analysis of planetary RS data, works like [19] and [20] present techniques for the detection of layers in the

shallow subsurface of the North Pole of Mars. In [21], the authors firstly propose the use of several theoretical models to

characterize the statistical properties of the RS signals. Then, in order to isolate the basal returns from other echoes, they

propose an algorithm based on a region growing technique that combines the results of the statistical analysis with the

knowledge of the geometrical properties of the subsurface targets.

It is worth noting that the above-mentioned techniques only focus on either the detection of linear features in the ice

stratigraphy or the detection of the ice/bedrock interface or the identification of the basal scattering area. Moreover, they

are not designed for addressing the problem of the heterogeneity of radargrams. The existing RS datasets are often made

up of radargrams characterized by different attributes (e.g., resolution) as they are typically acquired during several airborne

campaigns with different sensors or with the same sensor operated at different modes (e.g., bandwidth). In this context, it is

important to develop automatic systems that can accurately identify the above-mentioned targets all together and can be used

in a flexible way on different types of radargrams.

III. PROPOSED SYSTEM: DEFINITION OF THE TARGET CLASSES IN RS DATA AND GENERAL ARCHITECTURE

The classification of target backscattering behavior in RS data requires a very good understanding of the structural properties

of the ice subsurface and radar wave propagation [2]. As briefly introduced in the previous section, studies of the ice sheets (e.g.,

[1], [22]) reveal that the ice column is made up of a sequence of ice layers, characterized by different dielectric properties. They

have been generated over millennia by snow accumulation (on the underlying bedrock) alternated by depositions of impurities

from volcanic explosions [23], and ice flow dynamics [24], therefore have an isochronous character [25]. In radargrams they

appear as spatially coherent surfaces that generate quasilinear patterns. The brightness of such patterns (which is related to

the amplitude of the received wave) decreases with depth due to the attenuation through the subsurface [2]. Another physical

component of the ice sheet subsurface, which is located below the layers, is the bedrock. In radargrams, the bedrock can be

identified as the deepest scattering area. Note that, contrary to the real scenario in which the bedrock interface is expected to

be contiguous, the bedrock scattering area visible in radargrams can be composed of disjunct regions, i.e., on some traces of

the radargram the bedrock returns can be completely absent. The discontinuities are likely to be due to the loss of transmitted

power through the ice column, to the wave total reflection caused by the supraglacial or englacial water [26], or to acquisition

issues (e.g., clutter returns that can completely mask the return from nadir [1]). Therefore, the quality of the bedrock scattering



5

area mainly depends on the type of material, the topography, the conditions at the basal interface and the processing applied

to the radar data. The bedrock completely attenuates the transmitted wave. This implies that at a depth larger than that of the

bedrock the radar receiver measures only noise. This is visible in the bottom part of the radargrams as a homogeneous region

characterized by the absence of relevant reflections. Another noise-like pattern, visible for a few hundred of meters above the

bedrock is called echo-free zone (EFZ). The EFZ has been firstly identified and studied in [27]. Then, papers like [22], [28],

[18] have provided deeper insight and recently some authors have confirmed the presence of the EFZ [29]. According to such

studies, the EFZ is often seen away from the ice domes and ice divides, but in extensive areas of the ice sheets. Note that the

EFZ is not an ice subsurface physical region (like the layers or bedrock), but rather a consequence of the radar acquisition

process. In [18], it is suggested that at the EFZ corresponding depth the disturbances introduced by the ice flow caused an

increase of the layer roughness. Such large scale roughness reduces the coherency of the reflecting surfaces, thus generating

the echo-free zone (EFZ). Besides the layers, bedrock and noise regions, which are typically shown in radargrams (see Fig.

1(a)), near-bed reflectors have been recently identified as freeze-on ice [29]. These reflectors are found primarily along the high

ridges at the valley heads and along the steep valley walls surrounding subglacial mountain peaks. Furthermore, when present,

deep specular and strong reflections are associated with subglacial lakes [30]. Therefore, the freeze-on ice and the liquid water

constitute other two subsurface targets (see Fig. 1(a)), which should be considered in the modeling of the subsurface. However,

since by visual interpretation it is difficult to assess with high accuracy the freeze-on regions (if present) and given that in the

datasets at hand no liquid water returns could be identified, in the following we do not consider such regions as target classes

for automatic classification.

The importance of identifying the ice sheet subsurface targets has been often highlighted in the literature. In particular, the

results obtained from the presented algorithm can be used for instance in studies that can further focus on the interpretation

of the detected layered area only, by applying other techniques for the identification of individual layers. Regarding the EFZ,

in [18] the authors state that identifying the EFZ onset is fundamental since it indicates changing archeology that shall be

accounted for in the modeling of ice sheet dynamics (similar to the identification of the depth of the Holocene in Greenland

[10]). Also, one can analyze the shape of the EFZ for a better understanding of its formation. Finally, the identification of

the whole bedrock backscattering area can be used in geological studies for assesing the type of material the bedrock it is

made of [31] or to understand the reasons for which the bedrock is thicker or thinner or it completely disappears at some

coordinates. Moreover, the detection of the first return of the bedrock (i.e., the basal interface) helps estimating the topography

of the bedrock, computing the thickness of the ice column and inferring information about the basal boundary conditions and

processes (e.g., presence of melted ice at the interface). The last return of the bedrock marks the depth below which the losses

through the subsurface (ice and bedrock) have completely attenuated the transmitted power. Thus, it can be used to derive the

absorption properties of the bedrock.

In this paper we aim to develop a system for the automatic classification of layers, bedrock and noise (which includes also the

EFZ region). An example of backscattering from these classes is given in Fig. 1(b). In order to perform the classification, the

radargrams are initially altitude corrected for removing the effect of the aircraft fluctuations. Then they are given in input to the

classification system, which consists of 2 main components, i.e., i) feature extraction for target description, and ii) automatic
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Fig. 1. (a) Qualitative representation of ice sheet target classes typically visible in radargrams. In the presented work, only the target classes highlighted in
bold, i.e., layers, bedrock, noise, are considered, whereas those highlighted in italics, i.e., water, freeze-on ice, are intentionally omitted. For details see Sec.
III. (b) Example of backscattering from the layers, bedrock and noise target classes.

classification based on SVM. As it will be explained later, the system requires a mimimum amount of human interaction in the

training phase, in which the values of the few system parameters should be tuned to both the characteristics of the data and

the scale of the subsurface targets. However, this not a critical problem, since such parameters are directly related to properties

of the targets and can be easily derived. On the other hand, after the training, the system is completely automatic. Moreover,

it is important to mention the flexibility and learning capabilities of the system, e.g., depending on the radar frequency and

resolution of the radargrams, different target classes with associated patterns can be identified (e.g., high resolution data allows

the identification of crevasses). Therefore, one first needs to set the number of classes, appropriately model the properties of

the classes in the feature extraction phase and then train the classifier to automatically recognize such classes.

IV. PROPOSED SYSTEM: FEATURE EXTRACTION

The possibility to measure similar values of reflected power from different targets (e.g., returns from deep layers and bedrock

can have the same power, see Fig. 1(b)) and the noisy character of the radar images make the extraction of significant features

for automatic classification a very challenging task. Here we address this problem by presenting a set of features that we chose

after a detailed analysis of the amplitude fluctuation of the radar signal and of the spatial distribution of the investigated targets.

For ensuring a logical flow, we structure this section in three parts. First, in Sec. IV-A we present the preliminary analysis

that we performed on the statistical properties of the radar signal. Then, in Sec. IV-B we analyze the spatial distribution of

the subsurface targets. Finally, in Sec. IV-C we describe in detail the procedure for extracting features that model both the

statistical and the spatial properties of the radar signal and of the subsurface targets.

A. Analysis of the statistical properties of the radar signal

Similarly to [21], we first performed a statistical analysis of the distribution of the radar signal. We analyzed the distribution

of the radar signal by empirically fitting several probability density functions (pdf), i.e., Rayleigh (Rpdf ), Nakagami (Npdf ), K

(Kpdf ), Gamma (Gpdf ), to the histogram of samples drawn from regions corresponding to the investigated target classes. The
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abovementioned pdfs are parametric models, i.e., they can be described by using a finite number of parameters θ = (θ1, θ2, ...).

Tab. I reports the parameters describing each of these theoretical distributions. The choice of these pdfs is motivated by their

expected capability to model the amplitude fluctuations of the radar signal backscattered by different targets and/or processed

with different algorithms, as it has been proven in works like [32], [21]. As such, the Rayleigh pdf (Rpdf ) typically models

the amplitude oscillation of a zero-mean additive Gaussian noise (AWGN) (e.g., this is the case of thermal noise measured

by the radar in the regions with no backscattering). The Nakagami pdf (Npdf ) generally models amplitude radar data that

have been priorly subjected to multilooking processing (for speckle reduction). The K pdf (Kpdf ) generally guarantees good

performances for fitting data from regions with bunched scatterers (e.g., this is the case of layers and bedrock returns). The

Gamma pdf (Gpdf ) is generally employed in the intensity domain (I), for fitting data whose distribution in the amplitude

domain (A) follows a Nakagami pdf (we remind that I ∝ A2). Moreover, due to its flexibility, the Gamma pdf is likely to

model data whose original distribution has been altered by possible processing. The analytical formulation of these pdfs along

with the procedure for estimating their parameters are reported in Appendix A (for further details refer to [21], [32], [33]).

Among all the investigated distributions, the best fitting model for each class can be chosen as the one that minimizes the

Kullback-Leibler (KL) distance [34] between two distributions H and M , defined according to:

KL(H,M) =
∑

Ai

H(Ai) log
H(Ai)

M(Ai)
, (1)

where H is the real histogram of the amplitude samples and M is one of the investigated theoretical models, i.e., M =

{Rpdf , Npdf ,Kpdf , Gpdf}.

Thus, given a specific RS instrument and the related data, we can select the distribution that best fits the target classes as the

model that empirically minimizes (1).

TABLE I
THEORETICAL MODELS AND THEIR PARAMETERS

Distribution Parameters Parameter name

Rpdf θR = µA2 mean power

Npdf θN = (µA2 , βN ) mean power, shape

Kpdf θK = (µA2 , βK) mean power, shape

Gpdf θG = (αG, βG) scale, shape

B. Analysis of the properties of the subsurface targets

In order to properly design the proposed system, we also performed a qualitative analysis of the ice subsurface representation

in radargrams (see Fig. 1). This allows obtaining an approximate knowledge of the location and spatial distribution of the

target classes, which can be then used in the feature extraction for classification. From this analysis we derived that:

i) The expected order in the range direction of the ice sheet subsurface target classes visible in radargrams is: layers, noise

(EFZ, if present), bedrock and noise. This statement has general validity, as it could be derived from Sec. III.

ii) The ice subsurface targets visible in radargrams are mostly extended in the along-track direction, due to the isochronous

character of the ice stratigraphy and the continuous shape of the bedrock.
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iii) The ice subsurface targets shown in radargrams present significant variation of backscattering along the range direction.

These variations are caused by reflections from the layered structure of the ice column and the basal interface.

Before going further, it is important to notice that the radargrams can be partitioned in two main regions, the subsurface

region Rss that contains all the target classes of interest (i.e., layers, bedrock, noise) and a region Rnoise at the bottom of

the radargrams that contains exclusively noise measurements. In order to speed-up the processing, we will focus the following

analysis on the Rss region.

C. Features that model the statistical properties of the radar signal and the geometrical distribution of the subsurface targets

The analysis on the statistical distribution of the amplitude radar data and the location and spatial distribution of ice subsurface

targets that has been carried out previously enabled the identification of the features for classification described below.

1) Parameters of the best fitting model. Once the best fitting model for the statistical characterization of the radar signal has

been identified [see Appendix A and (1)], we use the values of its parameters θbest as features. In other words, if the

best model is the Kpdf , then θbest = θK = (µA2 , βK), or if the best model is Gpdf , then θbest = θG = (αG, βG), and so

on. In order to cover the whole radargram space, for computing these features we employ a sliding window approach, as

in the following. We use a rectangular window inside which we estimate the values of the desired parameters [by using

the appropriate eq. among (9), (11), (13), (15)]. The window is moved over the Rss region with a step of one pixel both

in the along-track and range directions. In order to filter out some noisy contributions, the final value of these features

at each step of the sliding window is computed by averaging the estimated values on overlapping windows. It is worth

mentioning that, from a statistical and image processing point of view, the size of the rectangular window [Wr ×Wa

(range × along-track)] should be sufficiently small for avoiding filtering the information at the borders of the scattering

classes, while the number of samples inside the rectangular window should be sufficiently large for a good estimation of

the parameters of the distributions. The resolution of the radargram, the spatial distribution and possibly the knowledge

of the scale of the subsurface targets should also be considered when choosing the size of the sliding window. From the

qualitative analysis performed previously regarding the spatial distribution of the subsurface targets, i.e., they are elongated

in the alogn-track direction and present higher backscattering variation in the range direction, we can derive that an initial

constraint on the choice of the sliding window is Wa > Wr. This constraint allows for a more consistent averaging when

applying the sliding window approach, as it ensures a high level of affinity among the samples within the window. Such

observation on the choice of the values for Wr and Wa hold for all the features computed on a sliding window basis.

2) Texture. As pointed out in Sec. III, a qualitative analysis of the radargrams indicates that different target classes present

distinctive patterns. We convert such qualitative information into a quantitative measure, by computing a texture feature.

Among the many texture measures used in radar image processing (e.g., [35]), we consider the entropy Ent, which is

a simple but informative measure. The entropy is a statistical measure of the uncertainty of a random variable, i.e., the

more uncertain a random variable, the higher its entropy value. Accordingly, when computing the entropy of the samples

of the radargram that belong to the layers and bedrock classes, it is expected to obtain a high value. This is due to the

fact that the amplitudes of the backscattered waves in these regions can have very large dynamic range since they also
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depend on the structure and dielectric properties of the investigated targets which can vary significantly within the ice

subsurface. On the other hand, the noise regions are characterized by relatively similar values (resulting in a less textured

portion in the radargram), therefore their entropy is relatively lower. Thus, Ent helps in differentiating the subsurface

targets on the basis of specific patterns that are characterized by the probability of appearance p(Ci) computed in a local

neighborhood Wr ×Wa, according to the sliding window approach described previously, i.e.,

Ent = −
∑

Ci∈Wr×Wa

p(Ci) log2 p(Ci), (2)

where C is a quantized version of the log-amplitude radargram C = Q(10∗log10(A)) and Q(·) is the uniform quantization

operation on Nq levels. Note that the quantization is a common operation used to reduce the very large dynamic range

of the radar data to only Nq distinct values (e.g., [36]).

3) Kullback-Leibler distance between the distribution of the samples of the target classes and of the noise. Using the same

sliding window approach and the output of the statistical analysis, we generate a feature that statistically models the

distance between the measured bakscattering and the background noise. The literature suggests that a potential such

statistical distance measure applicable to RS data is the KL distance [21]. Accordingly, we computed the KL distance

of the radargram KLRss
, by applying (1) to the Rss region. Here, H is the histogram of the amplitude samples within

the sliding window and M is the noise model fitted on the samples of the window. The values of the noise parameters

have been estimated (as explained in Appendix A) on the Rnoise region. Note that the KLRss
is a smoothed version of

the input radargram, in which the most scatterable subsurface target are highlighted. Therefore, KLRss
represents a good

measure to discriminate between the samples belonging to high backscattering areas (i.e., layers and bedrock) and those

of noise.

4) Range position of the subsurface targets. Intuitively, useful information that could help in discriminating the different

types of backscattering classes is the distance Pr of the subsurface targets with respect to the air/ice interface surfa, see

(3). surfa is detected automatically for each trace of the radargram as the position of the maximum return along the

trace. This is a fast and simple approach that has been employed in other works for the analysis of airborne acquisitions

(e.g., [16]).

Pr(i, j) = [i− surfa(j)], ∀i > surfa, ∀j. (3)

5) Relational feature. A less intuitive feature relates the position of the samples in the range direction with their backscattering

strength. For this reason we call it relational feature Rdown. Its objective is mainly to enable the separation between the

returns of the classes with high backscattering, i.e., layers and bedrock. To this aim, a first requirement is to isolate in the

radargram these high backscattering classes. This is achieved by exploiting the property of the statistical KLRss
distance
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Fig. 2. Qualitative example of trace jeg for the KLRss
and KLbin measures (top plot), and corresponding relational feature Rdown (bottom plot).

measure, i.e., the fact that it highlights the most scatterable targets. In particular, we threshold the KLRss
as follows:

KLbin(i, j) =















1 if KLRss
(i, j) ≥ thrKL · µKLRnoise

,

0 otherwise,

∀i, j,

(4)

where KLbin is the resultant thresholded (binary) KLRss
measure, µKLRnoise

is the mean of the samples of the KLRnoise

[KLRnoise
has been generated by applying (1) to Rnoise] and thrKL is a user defined threshold that tunes the degree of

similarity between the samples of the KLRnoise
and those of the KLRss

measures. Note that, since the range of possible

values of the threshold is thrKL > 0, choosing an optimal value for the threshold requires a minimum amount of human

interaction. In order to filter out only the regions of the KLRss
corresponding to the class noise in the amplitude domain, a

low value of the thrKL is preferable. Otherwise, by choosing a too large value, the risk is to filter also high backscattering

contributions. After the thresholding operation, the discrimination between samples belonging to different backscattering

classes is achieved by taking into account their expected order in the range direction (see Sec. IV-B). In particular, Rdown

is generated in a columnwise manner, starting from surfa (with the initial condition sdown[surfa(j), j] = 1, ∀j), and

computing a constrained cumulative sum while moving downwards over the KLbin map. The constraint is to sum 0 instead

of 1 at the positions where KLbin = 1. Qualitatively, by looking downwards in the range direction, each trace of the Rdown

feature has monotonically increasing values, with a behavior depending on the measured backscattering contribution (see

Fig. 2, which represents the vertical profile of a generic trace jeg of the Rdown feature).

In the presented system, all the above-mentioned features are given as input to the classification algorithm. These features are

the amplitude of the backscattering A, the parameters of the best fitting model θbest, the entropy Ent, the Kullback-Leibler

distance KLRss
, the range position of the subsurface targets Pr and the relational feature Rdown. Therefore, the resulting

feature vector x can be defined as:

x = [A, θbest,KLRss
, Ent, Pr, Rdown]. (5)
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V. PROPOSED SYSTEM: AUTOMATIC CLASSIFICATION WITH SUPPORT VECTOR MACHINE

The feature vector is given as input to a supervised automatic classifier. Based on a set of labeled training samples, the aim

of the automatic classifier is to build a model (characterized by a set of parameters) which can accurately predict the labels for

unknown (test) target samples. There are several automatic classifiers presented in the literature among which we chose the

SVM [37]. The SVM is currently the state of the art in the automatic classification of remotely sensed data [38]. Our choice

is also due to the fact that the SVM has many properties very useful for solving our classification problem. Among these

properties, we mention: i) very good generalization capability (it is able to avoid overfitting the model on the training samples);

ii) capability to solve non-linearly separable problems in the original feature space; and iii) sparseness and uniqueness of the

solution of the learning problem.

The SVM is a binary classifier. However, multiclass problems can also be solved by employing architectures made up of

different binary SVMs (e.g., one against one (OAO), one against all (OAA)) [39], [40]. Here, the basic principle of the binary

SVM is only briefly summarized. For solving non-linearly separable problems in the original feature space, the SVM uses a

mapping function to project the samples into a higher dimensional feature space in which they are separable by hyperplanes.

The mapping is done implicitly by a kernel function (e.g., linear, polynomial, gaussian) and the classification is performed

after optimizing a convex objective function during the training phase of the SVM. The convexity of the objective function

guarantees a unique solution, which is the optimal decision boundary between classes. Such decision boundary is the hyperplane

in the transformed kernel space that maximizes the geometric margin between the training samples of the two classes taking

into account a regularization term. There are several studies that treat both theoretical and practical aspects related to the use

of the SVM (e.g., [38], [41]). As this kind of analysis is out of the scope of this paper, we here provide only the analytical

formulation of the objective function to be optimized in the learning process of the SVM and the corresponding decision

boundary that have been used by the presented system. The dual formulation used for solving the constrained optimization

problem associated with the training of the SVM is given by:















maxα
∑Ns

i=1 αi −
1
2

∑Ns

i=1

∑Ns

i=1 yiyjαiαjK(xi, xj)

subject to:
∑Ns

i=1 yiαi = 0, 0 ≤ αi ≤ C, 1 ≤ i ≤ Ns,

(6)

where Ns is the number of training samples characterized by the pairs (xi, yi). xi is the feature vector (see (5)) and yi is the

label associated to the sample i. αi are the Lagrange multipliers involved in the optimization process and C, also called error

penalization term, represents the cost associated to a wrong classification. C and the parameters of the kernel function K (xi, xj)

constitute the set of SVM model parameters that have to be optimized during the learning process. After the optimization, the

final decision boundary (solution) of the SVM is given by the following equation:

f(x) =
∑

i∈SV

yiαiK(xi, x) + b, (7)

where b is the bias term, which measures the distance of the hyperplane from the origin. Note that the sparseness of the

solution is explained by the fact that only a subset of samples i ∈ SV associated to non-zero Lagrange multipliers, i.e., the
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Fig. 3. Location and flight lines for the acquisition of the MCoRDS and MCoRDS2 radargrams investigated in this paper.

support vectors, are necessary in the definition of the separation hyperplane.

VI. EXPERIMENTAL RESULTS

We applied the presented algorithm to two datasets acquired by the MultiCoherent Radar Depth Sounder instrument

(MCoRDS, owned by the Center of Remote Sensing of Ice Sheets (CReSIS) [3]). The datasets where acquired by the instrument

operated with different bandwidths, i.e., Bw = 9.5 MHz and Bw = 30 MHz, in different regions of Antarctica. In order to

distinguish the data, when operated with Bw = 9.5 MHz, the instrument and the dataset are called MCoRDS, while when

operated with Bw = 30 MHz, they are called MCoRDS2. The approximate positions and the paths followed by the aircrafts

carrying the instruments, MCoRDS and MCoRDS2, are shown in Fig. 3, in green and red, respectively. In the following we

present: i) the description of the two datasets, ii) the results of the statistical analysis of the radar signal, iii) the experimental

setup employed in the training phase of the SVM classifier, iv) the classification results and v) the computational efficiency

obtained by applying the presented technique to the two datasets.

A. Dataset description

The first considered dataset (MCoRDS) was acquired during the sounding campaign conducted in Central Antarctica in

November 2010 [7]. It is made up of 8 radargrams acquired in sequence, i.e., from (-86.00◦N, -15.67◦E) to (-86.02◦N,

29.45◦E), over a distance of ≈ 400 line-km (which corresponds to nT = 27350 traces). The instrument was flown on a jet

aircraft (DC-8) at high altitude (H ≈ 7000 m). The central frequency of the instrument and the bandwidth are fc = 193.5

MHz and Bw = 9.5 MHz, respectively.

The second dataset (MCoRDS2) was acquired at fc = 193.5 MHz with Bw = 30 MHz. The instrument was flown on a TO

aircraft at a relatively low altitude (H ≈ 500 m) in parallel and cross-track configurations over an area of around 1000 km2,

i.e., within (-80.93◦N, 145.72◦E) and (-80.40◦N, 148.10◦E), over the Byrd Glacier in Antarctica, in December 2011 [8]. For

obtaining best quality dynamic range, the MCoRDS2 dataset has been generated by multiplexing in time two types of data:

i) signals collected from the shallow subsurface, acquired by using a waveform playlist (wpl) coupled with low gain channel

(LGC) and a pulse duration Tps = 1µs, and ii) signals collected from the deep subsurface, acquired by using a wpl coupled

with high gain channel (HGC) and pulse duration Tpd = 10µs [42], [43]. However, this combination introduces a certain
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TABLE II
PARAMETERS AND CHARACTERISTICS OF THE INVESTIGATED DATASETS

Parameter MCoRDS MCoRDS2

Location Central Antarctica Byrd Glacier Antarctica

Platform and altitude (H) DC-8 @ H ≈ 7000 m TO @ H ≈ 500 m

Number of radargrams 8 14

Acquisition strategy sequence parallel and cross-track

Distance / Area 400 line-km 1000 km2

Central frequency (fc) 193.9 MHz 193.9 MHz

Bandwidth (Bw) 9.5 MHz 30 MHz

Transmitted power 550 W 1050 W

Acquisition 14 bit ADC @ 111 MHz 14 bit ADC @ 111 MHz

Dynamic range wpl wpl with LGC and HGC

Range resolution in ice (Rr) 13.6 m 4.3 m

Along-track resolution (Ra) 25 m 25 m

Total number of samples (nS) 410 1200

Total number of traces (nT ) 27350 17093

amount of heterogeneity between the radiometric quality of the data acquired in shallow and deep modes, which is difficult to

handle at data processing level. Considering this and the fact that the low gain channel acquires data exclusively from the first

km within the subsurface (i.e., class layers), and given that our purpose is the classification of ice subsurface targets, in our

analysis we investigated data acquired only with the high gain channel, which contains returns belonging to all target classes,

i.e., layers, bedrock, noise.

Regarding the quality of data, several preprocessing techniques have been applied in order to obtain improved resolution. In

particular, pulse compression and windowing algorithms (e.g., 20% Tuckey window in the time domain, with widening factor

kt = 1.53) have been used to improve the range resolution while suppressing the sidelobe level. SAR processing has been

applied to improve the along-track resolution and for clutter removal, and multilooking processing (11 looks in the along-track

direction and 1 look in the range direction) for despeckling. Also, a minimum variance distortionless response (MVDR) [44]

algorithm has been applied to data to suppress clutter contributions coming from the cross-track direction. It is worth noting

that all these processing techniques affect the statistical models to be used for modeling the fluctuation of the investigated

amplitude radar signal (see Sec. IV-A and Appendix A).

The parameters of the acquisition systems and the main characteristics of the data are reported in Tab. II. Fig. 4 shows the

subsurface region Rss of the investigated datasets.

B. Results of the statistical analysis of the radar signal

In the following, the results of the statistical analysis performed by fitting the Rayleigh, Nakagami, K and Gamma pdfs to

the amplitude radar signal are presented. Fig. 5 shows the regions that have been selected for the analysis from each target

class, from a portion of the (a) MCoRDS and (b) MCoRDS2 datasets. Note that in the figures the values are reported in dB (for

visibility), while the statistical analysis has been performed on the normalized amplitude data. Also, note that we considered

the EFZ class individually (i.e., not merged with the noise class). This class has been intentionally selected separately, since

another objective in these experiments is to verify also from a statistical point of view the hypothesis on the noisy character of

the EFZ (see Sec. III). In order to ensure that the results of the statistical analysis are sufficiently representative, in the fitting

process for both datasets we picked a very large number of samples per class (see Tab. III). The fitting performances, which

have been evaluated in terms of Kullback-Leibler distance, [34], are reported in Tab. IV, in which the best fitting results for
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(a) MCoRDS (b) MCoRDS2

Fig. 4. Datasets investigated: a) MCoRDS [nS = 410 × nT = 27350], b) MCoRDS2 [nS = 1200 × nT = 17093]. Values are in dB. The figures are
stretched (color adjusted) and vertically exagerated in order to highlight the regions of interest of the subsurface. The upper black region corresponds to the
free space above the surface return surfa (for the MCoRDS2 dataset surfa is computed using the radargram acquired by the low-gain channel data). The
white band in the shallow subsurface (first 285 samples ≃ 798 m below surfa) of the MCoRDS2 dataset corresponds to the data acquired by the low-gain
channel, which is not investigated in our analysis.
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Fig. 5. Samples picked manually from each target class on a portion of radargram from (a) the MCoRDS dataset and (b) the MCoRDS2 dataset. In the
figures, each color corresponds to a different target class, i.e., red - layers, green - EFZ, blue - bedrock, yellow - noise.

TABLE III
NUMBER OF PICKED SAMPLES PER CLASS (CORRESPONDING TO THE REGIONS HIGHLIGHTED IN FIG. 5) USED IN THE STATISTICAL ANALYSIS.

Number of picked samples

Target class MCoRDS MCoRDS2

layers 38351 43979

EFZ 12257 16314

bedrock 9321 22710

noise 21381 32754
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TABLE IV
FITTING PERFORMANCES IN TERMS OF KULLBACK-LEIBLER DISTANCE (DIMENSIONLESS) OF THE RAYLEIGH, NAKAGAMI, K AND GAMMA

DISTRIBUTIONS TO THE SAMPLE AMPLITUDE DATA FOR LAYERS, EFZ, BEDROCK AND NOISE CLASSES. THE BEST RESULTS (SMALLEST VALUES ON

EACH COLUMN FOR EACH DATASET) ARE HIGHLIGHTED IN BOLD.

Target class

Dataset Distribution layers EFZ bedrock noise

MCoRDS

Rayleigh 0.7097 0.0809 0.6117 0.0815

Nakagami 0.1395 0.0138 0.3257 0.0127

K 0.0212 0.0974 0.1442 0.0990

Gamma 0.0263 0.0025 0.1494 0.0015

MCoRDS2

Rayleigh 0.0840 0.1835 0.1433 0.2691

Nakagami 0.0844 0.0158 0.1357 0.0084

K 0.0062 0.2095 0.0796 0.2995

Gamma 0.0029 0.0017 0.0578 0.0007

each class (which have been derived as defined in Sec. IV-A) are highlighted in bold. Such results point out that in almost all

the cases, the best fitting model is the Gamma pdf. The exceptions are for the classes layers and bedrock of the MCoRDS

dataset, where the K pdf fits slightly better than the Gamma pdf (difference at the third decimal). However, given the overall

very good performances of the Gamma pdf (see also Fig. 6) and the fast computation time in estimating its parameters (i.e., two

analytical formulas, see (15), instead of the iterative approach employed for the K pdf, see (13)), in the following, the Gamma

pdf is considered as the most suitable fitting model for all classes for both datasets. Note that this is in disagreement with

theoretical grounds in radar signal distribution [32] and with the results obtained from applying a similar approach to other RS

datasets [21]. For instance, in [32] it is analytically proven that in the regions of no backscattering, e.g., noise, the histogram

of samples follows a Rayleigh distribution, which is confirmed on a subset of SHARAD radargrams in [21]. However, it is

important to recall that our results have been obtained by applying the statistical analysis to data that have been preprocessed

(for clutter and sidelobe reduction) and the preprocessing operations changed the data properties with respect to the datasets

investigated in other studies. The qualitative results shown in Fig. 6 indicate that this preprocessing has changed the original

Rayleigh distribution into a distribution that can be better modeled by the Gamma pdf.

It is also worth to analyze the results reported qualitatively in Fig. 7, which shows (a) the summary of the fitted Gamma models

to all target classes, and (b) the fitted Gamma pdfs to the noise and EFZ classes. These results refer to the MCoRDS2 dataset,

but similar results (which are not reported in the paper for space constraints) have been obtained on the MCoRDS dataset. The

plot in Fig. 7(a) indicates the large difference between the distributions of the EFZ/noise and layers/bedrock classes, and the

very large dynamic range characterizing the radar signal. Fig. 7(b) points out the similarity of the two Gamma pdfs modeling

the EFZ and noise samples. This similarity confirms also from a statistical point of view the validity of the hypothesis that in

the EFZ the reflections are burried in thermal noise, therefore very closely matching the noise distribution. For this reason, in

the automatic classification of ice subsurface targets, the EFZ and noise classes are merged within a single no backscattering

target class, from now on called noise.

C. Experimental setup

From the considerations made above on the type of data and the scale of the subsurface features, the values of the system

parameters selected in our experiments are: Wa = 14 and Wr = 7 samples, Nq = 256 levels and thrKL = 10. According

to our previous analysis, the Gamma pdf is the best fitting model for all the classes. We therefore extract as features its
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Fig. 6. Empirical and estimated (with the maximul likelihood technique) distributions for each target class for the (left) MCoRDS and (right) MCoRDS2
datasets.
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Fig. 7. Fitted Gamma distributions for (a) all target classes, (b) the EFZ and noise classes. Results are shown for the MCoRDS2 dataset.

parameters, i.e., θbest = θG = (αG, βG), as explained in Sec. IV-C. These are shown along side the amplitude radargrams

(which are converted in dB for visibility), the KLRss
maps, and Ent in Fig. 8, for a portion of the MCoRDS dataset at left,

and MCoRDS2 dataset at right.

The set of labeled samples for training and testing the SVM was created by defining a reference map of the subsurface. This was

done by manually selecting, according to an accurate visual analysis of the radargrams, the regions corresponding to the various

target classes. A subset of the reference samples along with the corresponding features are given in input to the SVM classifier

for training (we recall that a generic sample x is characterized by seven features, i.e., x = [A,αG, βG,KLRss
, Ent, Pr, Rdown]).

The subset of reference samples is chosen in order to take into account the variability of the subsurface targets in the along-

track direction (e.g., at some locations the bedrock is deeper than in others). We split the dataset (and the reference map) in

N vertical tiles, from which we collect randomly 1% of the samples belonging to each class, to be used in the learning phase.

Then, the samples collected from NCV = 2N/3 tiles are used in a training k − fold cross-validation algorithm for selecting

the SVM model parameters. In our experiments, we used a Gaussian radial basis function (RBF) kernel for the SVM. This

choice is motivated by the fact that the RBF kernel is typically more flexible than the linear kernel and it usually outperforms

the polynomial kernel in convergence time [41]. Therefore, the SVM model parameters are the penalty error term C and the γ

parameter of the RBF kernel. C and γ are tested by performing a grid-search model selection. C is tested between [10−3..106]

with a logarithmic step size, and γ is tested with 10 values in logarithmic scale, with central value γc = 1/(2 ∗ σ2), where

σ is the average distance between each pair of classes. Then, for testing the SVM on unknown samples, we chose the values

CT and γT that provided in average (on the k folds) the highest classification accuracy. The test samples are collected from

the remaining NT = N −NCV tiles. N is chosen depending on the number of traces nT available in the considerend dataset,

i.e., N = 99 for the MCoRDS (with nT = 27350) and N = 66 for the MCoRDS2 dataset (with nT = 17093). This implies

NCV = 66 and NT = 33 tiles for the MCoRDS dataset, NCV = 44 and NT = 22 tiles for the MCoRDS2 dataset, and a

number of traces per tile nTtile ∈ [250..300]. The number of folds is k = 11. Tab. V reports the number of samples per class

used for the cross-validation and included in the test sets for the MCoRDS and MCoRDS2 datasets.
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(a) Radargram (MCoRDS) (b) Radargram (MCoRDS2)

(c) Shape parameter of the Gamma distribution (MCoRDS) (d) Shape parameter of the Gamma distribution (MCoRDS2)

(e) Entropy (MCoRDS) (f) Entropy (MCoRDS2)

(g) KLRss
measure (MCoRDS) (h) KLRss

measure (MCoRDS2)

Fig. 8. Examples of extracted features. The features at the left side of the figure are (a) the radargram, (c) the shape parameter of the Gamma distribution,
(e) the Entropy and (g) the KLRss

measure on a portion of radargram (≈ 30 line-km) of the MCoRDS dataset. The features at the right side are (b) the
radargram, (d) the shape parameter of the Gamma distribution, (f) the Entropy and (h) the KLRss

measure on a portion of radargram (≈ 60 line-km) of the
MCoRDS2 dataset. The radargrams are in dB, stretched and vertically exagerated to improve visibility.
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TABLE V
NUMBER OF REFERENCE SAMPLES PER CLASS USED IN THE CROSS-VALIDATION AND TEST SETS.

Number of reference samples

MCoRDS MCoRDS2

Target class cross-validation test cross-validation test

layers 37685 18930 44267 22290

bedrock 18398 7980 13200 6600

noise 23596 12003 39309 19808

Total 79679 38913 96776 48698

D. Classification results

In the following, the analysis of the training (k-fold cross-validation) and test results is given. Tab. VI reports the average

error matrix [45] computed after applying the cross-validation algorithm to k = 11 folds on the MCoRDS dataset. The average

accuracy (AA), the corresponding standard deviation (STDEV), the average user accuracy (AUA) and the average producer

accuracy (APA) for each class are also reported. The average accuracy values, i.e., AA, AUA and APA, are computed as the

mean values of the overall accuracy (OA), user accuracy (UA) and producer accuracy (PA), respectively, calculated on each

validation fold. The OA quantifies the overall goodness of the classifier. The UAs represent the percentage of samples correctly

labeled in the classification map for each class. The PAs provide for a given class in the reference map, the percentage of

samples correctly labeled in the classification map. Tab. VII shows the same information for the MCoRDS2 dataset. The

cross-validation algorithm provides CT = 106 and γT = 2.08 for the MCoRDS dataset, and CT = 103 and γT = 8.88 for the

MCoRDS2 dataset. The error matrices on the test sets along with the correspondent UA, PA and OA are reported in Tab. VIII

and in Tab. IX, for MCoRDS and for MCoRDS2 dataset, respectively.

By analyzing the tables, one can see that the low values of the standard deviation (i.e., 0.41 for MCoRDS and 0.73 for

MCoRDS2) confirm the robustness of the presented system to the random choice of the samples used in the k folds of the

cross-validation algorithm. By comparing Tab. VI and Tab. VIII, one can see that, for the MCoRDS dataset, the AUA and

the UA, and the APA and PA, respectively, have similar values. This means that the overall variability of the samples has

been well captured in the training phase and proves that the selected SVM model for testing the system capabilities is not

biased. The same observations hold for the MCoRDS2 dataset (see Tab. VII and Tab. IX). Moreover, we obtained values of

OA> 97% (i.e., 99.09% for MCoRDS and 97.93% for MCoRDS2), which are very satisfactory, especially when considering

the type and scale of the investigated targets, the noisy character of the data, and the fact that after training, the system is

completely automatic. The effectiveness of the system is also proven by the high values of UA and PA, obtained on both

datasets. From the tables one can see that the few errors are mainly due to a wrong classification of some returns at the

interfaces between the classes (e.g., 193 out of 7980 bedrock samples and 70 out of 8930 layers samples are labeled as noise

samples for the MCoRDS dataset, whereas for the MCoRDS2 dataset 219 and 109 noise samples out of 19808 are labeled as

layers and bedrock samples, respectively). Such errors are mainly caused by the sliding window approach. Due to its intrinsic

low pass filtering effect, in the layers and bedrock regions, it tends to slightly overestimate the areas with high backscattering

and to underestimate the areas with low backscattering (where the signal amplitude is close to the measured background noise).

These effects can be seen in the final classification maps in Fig. 9 for the MCoRDS dataset and in Fig. 10 for the MCoRDS2
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dataset. For a better understanding, they are also highlighted in Fig. 11(d). On the other hand, it is important to note that

in the regions characterized by deep and strongly scattering layers followed in range by the absence of bedrock returns (see

an example of such radargram in Fig. 11(a)), the classifier is able to perform an accurate classification (see Fig. 11(b)). In

such cases, the classifier mostly relies on the relational feature, which, by integrating both the knowledge of the radar signal

statistical properties and the position in the range direction of the subsurface targets, is generally able to correctly discriminate

the samples. The importance and effectiveness of the relational feature in our classification problem has been confirmed by the

unsatisfactory results obtained in initial experiments in which the relational feature has been omitted from the set of extracted

features used in the learning phase (i.e., x = [A,αG, βG,KLRss
, Ent, Pr]). In particular, we obtained a lower overall accuracy

and poor quality classification maps. An example of such classification map is shown in Fig. 11(c). By comparing this map

with that obtained by using all the features (i.e., x = [A,αG, βG,KLRss
, Ent, Pr, Rdown], see Fig. 11(b)), one can easily

understand the effectiveness of the proposed relational feature.

TABLE VI
AVERAGE (ON k = 11 FOLDS) ERROR MATRIX OF THE SAMPLES OF THE CROSS-VALIDATION FOLDS (MCORDS DATASET).

Predicted samples

layers bedrock noise Total APA(%)

R
ef

er
en

ce
sa

m
p

le
s layers 3417 0 8 3425 99.75

bedrock 2 1645 25 1672 98.37

noise 7 8 2129 2144 99.27

Total 3426 1653 2162 #S=7241

AUA (%) 99.75 99.54 98.54
AA=99.28%

STDEV=0.41

TABLE VII
AVERAGE (ON k = 11 FOLDS) ERROR MATRIX OF THE SAMPLES OF THE CROSS-VALIDATION FOLDS (MCORDS2 DATASET).

Predicted samples

layers bedrock noise Total APA(%)

R
ef

er
en

ce
sa

m
p

le
s layers 3958 6 61 4025 98.35

bedrock 7 1127 66 1200 94.95

noise 51 20 3502 3573 98.01

Total 4016 1153 3629 #S=8798

AUA (%) 98.55 97.78 96.51
AA=97.60%

STDEV=0.73

TABLE VIII
ERROR MATRIX ON THE TEST SAMPLES (MCORDS DATASET).

Predicted samples

layers bedrock noise Total APA(%)

R
ef

er
en

ce
sa

m
p

le
s layers 18839 21 70 18930 99.51

bedrock 5 7782 193 7980 97.51

noise 17 46 11940 12003 99.48

Total 18861 7849 12203 #S=38913

AUA (%) 99.88 99.15 97.84 OA=99.09%

E. Analysis of the computational load

From a computational point of view, an important characteristic of the presented system is its ability to process in a fast way

large amount of data. This is due to the fact that the algorithms included in the system can be parallelized. Thus, it is possible
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(a) Radargram (MCoRDS) (b) Radargram (MCoRDS)

(c) Classification map (MCoRDS) (d) Classification map (MCoRDS)

Fig. 9. Examples of (a) and (b) radargrams, and (c) and (d) corresponding classification maps generated with the presented algorithm (MCoRDS dataset).
The radargrams are in dB, stretched and vertically exagerated to improve visibility. In the classification maps, each color represents a different target class,
i.e., black - free space, blue - layers, red - bedrock, yellow - noise.

(a) Radargram (MCoRDS2) (b) Radargram (MCoRDS2)

(c) Classification map (MCoRDS2) (d) Classification map (MCoRDS2)

Fig. 10. Examples of (a) and (b) radargrams, and (c) and (d) corresponding classification maps generated with the presented algorithm (MCoRDS2 dataset).
The radargrams are in dB, stretched and vertically exagerated to improve visibility. In the classification maps, each color represents a different target class,
i.e., black - free space, blue - layers, red - bedrock, yellow - noise.
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(a) (b)

(c) (d)

Fig. 11. Example of (a) radargram (MCoRDS dataset) showing a particular subsurface pattern, i.e., deep and strong backscattering layers and
partially missing bedrock area, (b) corresponding classification map obtained by training the SVM with all the features presented in this paper
(x = {A,αG, βG,KLRss

, Ent, Pr, Rdown}), (c) corresponding classification map obtained by training the SVM with a subset of the presented features, i.e.,
which does not contain the relational feature Rdown (i.e., x = {A,αG, βG,KLRss

, Ent, Pr}), (d) portions of radargram and classification map highlighting
the effect of the sliding window approach (note that the low-pass filtering effect results in a slight underestimation and overestimation of the layers and
bedrock classes, respectively, at their interfaces with the noise region). The radargrams are in dB, stretched and vertically exagerated to improve visibility. In
the classification maps, each color represents a different target class, i.e., black - free space, blue - layers, red - bedrock, yellow - noise.

(a) MCoRDS (b) MCoRDS2

Fig. 12. Classification maps corresponding to (a) the MCoRDS dataset [radargrams in dB shown in Fig. 4(a)] and (b) the MCoRDS2 dataset [radargrams in
dB shown in Fig. 4(b)]. In the classification maps, each color represents a different target class, i.e., black - free space, blue - layers, red - bedrock, yellow -
noise.
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TABLE IX
ERROR MATRIX ON THE TEST SAMPLES (MCORDS2 DATASET).

Predicted samples

layers bedrock noise Total APA(%)

R
ef

er
en

ce
sa

m
p

le
s layers 21918 15 357 22290 98.33

bedrock 17 6290 293 6600 95.30

noise 219 109 19480 19808 98.34

Total 22154 6414 20130 #S=48698

AUA (%) 98.93 98.07 96.77 OA=97.93%

to take advantage of the latest technology (e.g., clusters of large-storage and high-power computers (cpus)) in order to faster

achieve the desired performances. The feature extraction and the training of the classifier can be easily split into several subtasks

to be given to different cpus that can run in parallel. Given that the features are computed with a sliding window approach

(which is characterized by the fact that the computations within the windows are independent), one can use a cluster of cpus

to perform such computations in parallel. In the grid-search selection of the SVM model parameters with the cross-validation

algorithm, both the operations within each cross-validation fold and the computations at each intersection point of the grid are

independent. This enables parallelizing the algorithm also in the training phase of the classifier, which otherwise has a time

complexity in the order of O(N3
s ) [46]. Moreover, the feature extraction and the training of the classifier are operations that

can be computed only once, in offline mode. Once the SVM model has been selected, the only online/real-time operation is the

classification of new samples, which can also be performed by several cpus in parallel. In our experiments, the computational

capabilities of the presented system have been proven by using a cluster of 192 cpus (@2.05 GHz) which performed all the

operations per dataset in ≈ 5 hours. This is a reasonable computation time if we consider the very large amount of data that

has been processed. Moreover, note that the offline computations (feature extraction and SVM training with cross-validation)

require about 98% of this amount of time, while the generation of the classification maps for the whole datasets (after the

training phase) require only few minutes. In general, we expect to require a new training of the classifier only when either the

acquisition mode or the pre-processing phase of the data are changed. Another advantage of the presented system is the fact

that it can be easily tuned for analyzing different RS datasets, since it involves a small number of parameters in the overall

classification algorithm (i.e., Wa, Wr, thrKL).

VII. CONCLUSION

In this paper, a novel system for the automatic classification of ice sheet subsurface targets has been presented. The system

relies on advanced image processing and machine learning techniques to efficiently extract the information contained in

radargrams. The presented system is made up of two main components, i.e, i) feature extraction and ii) automatic classification

based on SVM. The feature extraction for ice sheet subsurface target description is the main component of the system,

which also represents one of the main contributions of this work. The features extracted take into account both the statistical

properties of the measured radar signal and the spatial properties of the subsurface targets. Along with the original amplitude

data, several features have been identified and extracted, i.e., the parameters of the best fitting model, the entropy, the

Kullback-Leibler distance, the range position of the ice subsurface targets and the relational feature. The extracted features

have been given as input to an automatic classifier based on SVM to obtain the final classification maps.
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The main characteristics of the presented system are: i) robustness and/or adaptiveness to the heterogeneity of radargrams as

a consequence of the features used and the learning approach employed; ii) capability to obtain objective and quantitative

results on large amount of data; and iii) capability to process large archives of data due to the computational efficiency

and the possibility of parallelizing the subalgorithms. These have been proven by applying the algorithm to two real-world

datasets acquired by the MCoRDS instrument operated with different parameters (i.e., bandwidth) in different regions of

Antarctica. For both datasets, covering ≈ 400 line-km, the system provided in few hours (≈ 5 hours per dataset) high quality

classification maps with an overall accuracy greater than 97%. This is a very satisfactory result, considering the type and

scale of the investigated targets, the noisy character of the radar data, and the fact that the algorithm is nearly completely

automatic. More precisely, the system requires a minimum amount of user interaction in the training phase of the classifier,

wheareas in the operational phase (classification of new data), it is completely automatic.

The output of the system can be used for estimating the extent of the subsurface targets both in the range and along-track

directions (e.g., ice layered area thickness, bedrock scattering area distribution). Furthermore, when the spatial sampling

allows it (e.g., sufficiently dense grid of tracks followed by the instrument), such output can be used along with appropriate

RS data integration techniques (e.g., based on standard interpolation algorithms) for generating 3D models of the subsurface,

useful for the estimation of the ice subsurface targets in all dimensions. This can also help to detect critical basal boundary

conditions and study changing archeology or geology. Therefore, the automatic classification of the subsurface targets is an

initial essential step for the further development of more elaborate analyses of the ice sheet subsurface.

As future work, we aim to use the output classification maps, in particular at the traces (and neighborhoods) where more

tracks overlap, for defining a reliable postprocessing technique for removing outliers and finally assessing a unique solution

at the corresponding lat-long coordinates in the range direction. Another objective is to check the applicability of the system

to radargrams acquired in Greenland. Also we aim to study the possibility to tune the presented system in order to adapt it to

the detection of subsurface targets visible in radargrams acquired in other icy regions (e.g., glaciers).
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APPENDIX

In this Appendix, the theoretical distributions used in the statistical analysis of the radar signal are briefly described:

− The analytical equation of the Rayleigh pdf is given by:

Rpdf (A) =
2A

µA2

exp

[

−
A2

µA2

]

, (8)
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where the parameter of the distribution µA2 is the mean power of the signal and can be estimated using the Maximum

Likelihood Estimation (MLE) approach as:

µ̃A2 = E
{

A2
}

, (9)

with E {·} denoting the expectation operation.

− The analytical equation of the Nakagami pdf is given by:

Npdf (A) = 2

(

βN
µA2

)βN A2βN−1

Γ(βN )
exp

[

−
βNA

2

µA2

]

, (10)

where Γ(·) denotes the Gamma function. The estimation of the mean power µA2 can be done with the MLE approach as

explained previously for the Rayleigh distribution, while the shape parameter βN can be estimated by using the estimator

presented in [47], i.e.,

β̃N =















































(0.5000876+0.1648852y−0.0544274y2)
2 ,

if 0 < y < 0.5772

8.98919+9.059950y+0.9775373y2

y(17.79728+11.968477y+y2) ,

if 0.5772 < y < 17

(11)

where y = ln
(

µ̃
A2

F

)

and F =
(
∏n

i=1Ai
2
)

1
n , and n is the number of samples considered in the estimation.

− The analytical equation of the K pdf is given by:

Kpdf (A) =
4

Γ(µA2)

(

βK
µA2

)

βK+1

2

AβKBβK−1

[

2A

√

βK
µA2

]

, (12)

where BβK−1 is the modified Bessel function of the second kind of order βK − 1. The parameters of the K pdf can be

estimated with the MLE by maximizing the logarithm of the likelihood function ln(βK , µA2 ; ∀Ai, i ∈ [1..n]) of the K

distribution [34], i.e.,

(β̃K , µ̃A2) = argmax
(βK ,µ

A2)
ln [ln], (13)

where ln(·) is the natural logarithm function.

− The analytical equation of the Gamma pdf is given by:

Gpdf (A) =

(

x

αG

)βG−1

·
e
−

x
αG

αGΓ(βG)
. (14)

The values of the scale α̃G and shape β̃G parameters of the Gamma distribution can be estimated using the MLE as

solutions of the simultaneous equations [33]:















α̂G = Ā
β̂G

,

log(β̂G)− ψ(β̂G) = log [Ā/(
∏n

i=1Ai)
1/n],

(15)

where ψ(·) is the di-gamma function and Ā = E {A}.



26

REFERENCES

[1] V. Bogorodsky, C. Bentley, and P. Gudmandsen, D. H. D. Reidel Publishing Company, Ed., 1984.

[2] K. Matsuoka, J. MacGregor, and F. Pattyn, “Predicting radar attenuation within the Antarctic ice sheet,” Earth and Planetary Science Letters, vol. 359,

pp. 173–183, 2012.

[3] P. Gogineni, “CReSIS Radar Depth Sounder Data,” http://data.cresis.ku.edu/, 2012.

[4] C. Hernandez, V. Krozer, J. Vidkjaer, and J. Dall, “POLARIS: ESA’s airborne ice sounding radar front-end design, performance assessment and first

results,” in Microwave Symposium Digest, 2009. MTT ’09. IEEE MTT-S International, June 2009, pp. 393–396.

[5] T. Ono, A. Kumamoto, Y. Yamaguchi, A. Yamaji, T. Kobayashi, Y. Kasahara, and H. Oya, “Instrumentation and observation target of the Lunar Radar

Sounder (LRS) experiment on-board the SELENE spacecraft,” Earth, Planets, Space, vol. 60, p. 321332, April 2008.

[6] R. Seu, R. J. Phillips, D. Biccari, R. Orosei, M. A., G. Picardi, A. Safaeinili, B. A. Campbell, J. J. Plaut, L. Marinangeli, S. E. Smrekar, and D. C.

Nunes, “SHARAD sounding radar on the Mars Reconnaissance Orbiter,” J. Geophys. Res., vol. 112, May 2007.

[7] CReSIS, https://data.cresis.ku.edu/data/rds/2010 Antarctica DC8/CSARP mvdr/20101104 06/, 2011.

[8] ——, https://data.cresis.ku.edu/data/rds/2011 Antarctica TO/CSARP mvdr/, 2013.

[9] C. Gifford, G. Finyom, M. Jefferson, M. Reid, E. Akers, and A. Agah, “Automated polar ice thickness estimation from radar imagery,” IEEE Transactions

on Image Processing, vol. 19, no. 9, pp. 2456–2469, 2010.

[10] N. Karlsson, D. Dahl-Jensen, P. Gogineni, and J. Paden, “Tracing the depth of the Holocene ice in North Greenland from radio-echo sounding data,”

Annals of Glaciology, vol. 54, no. 64, pp. 44–50, 2013.

[11] A.-M. Ilisei and L. Bruzzone, “A model-based technique for the automatic detection of earth continental ice subsurface targets in radar sounder data,”

IEEE Geoscience and Remote Sensing Letters (GRSL), vol. 11, no. 11, pp. 1911–1915, Nov 2014.

[12] O. Eisen, “Inference of velocity pattern from isochronous layers in firn, using an inverse method,” Journal of Glaciology, vol. 54, no. 187, pp. 613–630,

2008.

[13] E. Waddington, T. Neumann, M. Koutnik, H. Marshall, and D. Morse, “Inference of accumulation-rate patterns from deep layers in glaciers and ice

sheets,” Journal of Glaciology, vol. 53, no. 183, pp. 694–712, 2007.

[14] D. Crandall, G. Fox, and J. Paden, “Layer-finding in radar echograms using probabilistic graphical models,” in 21st International Conference on Pattern

Recognition (ICPR), 2012, pp. 1530–1533.

[15] L. Sime, R. Hindmarsh, and H. Corr, “Instruments and Methods Automated processing to derive dip angles of englacial radar reflectors in ice sheets,”

Journal of Glaciology, vol. 57, no. 202, pp. 260–266(7), 2011.

[16] J. Mitchell, D. Crandall, G. Fox, and J. Paden, “A semi-automatic approach for estimating near surface internal layers from snow radar imagery,” in

International Geoscience and Remote Sensing Symposium (IGARSS), 2013.

[17] C. Gifford and A. Agah, “Subglacial water presence classification from polar radar data,” Engineering Applications of Artificial Intelligence, vol. 25,

no. 4, pp. 853 – 868, 2012.

[18] R. Drews, “Layer disturbances and the radio-echo free zone in ice sheets,” The Cryosphere, vol. 3, no. 2, pp. 195–203, 2009.

[19] G. Freeman, A. Bovik, and J. Holt, “Automated detection of near surface Martian ice layers in orbital radar data,” in IEEE Southwest Symposium on

Image Analysis Interpretation (SSIAI), May 2010, pp. 117–120.

[20] A. Ferro and L. Bruzzone, “Automatic extraction and analysis of ice layering in radar sounder data,” IEEE Transactions on Geoscience and Remote

Sensing (TGRS), vol. 51, no. 3, pp. 1622–1634, 2013.

[21] ——, “Analysis of radar sounder signals for the automatic detection and characterization of subsurface features,” IEEE Transactions on Geoscience and

Remote Sensing (TGRS), vol. 50, no. 11, pp. 4333–4348, November 2012.

[22] S. Fujita, H. Maeno, S. Uratsuka, T. Furukawa, S. Mae, Y. Fujii, and O. Watanabe, “Nature of radio echo layering in the antarctic ice sheet detected by

a two-frequency experiment,” J. Geophys. Res., 104(B6), pp. 13 013–13 024, 1999.

[23] D. Millar, “Radio-echo layering in polar ice sheets and past volcanic activity,” Nature, no. 5822, pp. 441–443, 1981.

[24] E. Rignot, J. Mouginot, and B. Scheuchl, “Ice flow of the antarctic ice sheet,” Science, vol. 333, no. 6048, pp. 1427–1430, 2011.

[25] G. D. Robin, S. Evans, and J. T. Bailey, “Interpretation of radio echo sounding in polar ice sheets,” Philosophical Transactions of the Royal Society of

London. Series A, Mathematical and Physical Sciences, vol. 265, no. 1166, pp. 437–505, 1969.

[26] P. Nienow and B. Hubbard, Surface and Englacial Drainage of Glaciers and Ice Sheets. John Wiley and Sons, 2005, vol. 4, pp. 2575–2586.

[27] G. d. Q. Robin and D. Millar, “Flow of ice sheets in the vicinity of subglacial peaks,” Annals of GLacioLogy, vol. 3, pp. 290–294, 1982.



27

[28] K. Matsuoka, T. Furukawa, S. Fujita, H. Maeno, S. Uratsuka, R. Naruse, and O. Watanabe, “Crystal orientation fabrics within the Antarctic ice sheet

revealed by a multipolarization plane and dual-frequency radar survey,” J. Geophys. Res., vol. 108, no. B10, 2003.

[29] R. Bell, F. Ferraccioli, T. Creyts, D. Braaten, H. Corr, I. Das, D. Damaske, N. Frearson, T. Jordan, K. Rose et al., “Widespread persistent thickening of

the East Antarctic Ice Sheet by freezing from the base,” Science, vol. 331, no. 6024, pp. 1592–1595, 2011.

[30] M. Siegert, “Antarctic subglacial lakes,” Earth-Science Reviews, vol. 50, pp. 29–50, 2000.

[31] D. Daniels, Ground Penetrating Radar, 2nd Edition, ser. Ground Penetrating Radar. Institution of Engineering and Technology, 2004, vol. 1.

[32] C. Oliver and S. Quegan, “Understanding Synthetic Aperture Radar Images,” SciTech Publishing, 2004.

[33] C. Forbes, M. Evans, N. Hastings, and B. Peacock, Multivariate Distributions. John Wiley and Sons, Inc., 2010.

[34] J. Lin, “Divergence measures based on the Shannon entropy,” IEEE Transactions on Information Theory, vol. 37, no. 1, pp. 145 –151, January 1991.

[35] S. Moysey, R. Knight, and H. Jol, “Texture-based classification of ground-penetrating radar images,” Geophysics, vol. 71, no. 6, pp. K111–K118, 2006.

[36] T. Algra, “Compression of raw SAR data using entropy-constrained quantization,” in Geoscience and Remote Sensing Symposium, 2000. Proceedings.

IGARSS 2000. IEEE 2000 International, vol. 6, 2000, pp. 2660–2662.

[37] C. Cortes and V. Vapnik, “Support-vector networks,” in Machine Learning, 1995, pp. 273–297.

[38] G. Camps-Valls and L. Bruzzone, Kernel Methods for Remote Sensing Data Analysis. John Wiley and Sons, Inc, 2009.

[39] L. Bottou, C. Cortes, J. Denker, H. Drucker, I. Guyon, L. Jackel, Y. LeCun, U. Muller, E. Sackinger, P. Simard, and V. Vapnik, “Comparison of classifier

methods: a case study in handwritten digit recognition,” in Conference on Pattern Recognition, 1994. Vol. 2 - Conference B: Computer Vision amp;

Image Processing, Proceedings of the 12th IAPR International, vol. 2, 1994, pp. 77–82.

[40] U.-G. Kressel, “Advances in kernel methods,” B. Scholkopf, C. J. C. Burges, and A. J. Smola, Eds. Cambridge, MA, USA: MIT Press, 1999, ch.

Pairwise Classification and Support Vector Machines, pp. 255–268.

[41] A. Ben-Hur and J. Weston, “A users guide to support vector machines,” Tech. Rep., 2012.

[42] CReSIS, ftp://ftp.cresis.ku.edu/data/rds/rds readme.pdf, 2013.

[43] F. Rodriguez-Morales, S. Gogineni, C. Leuschen, J. Paden, J. Li, C. Lewis, B. Panzer, D. Gomez-Garcia Alvestegui, A. Patel, K. Byers, R. Crowe,

K. Player, R. Hale, E. Arnold, L. Smith, C. Gifford, D. Braaten, and C. Panton, “Advanced multifrequency radar instrumentation for polar research,”

Geoscience and Remote Sensing, IEEE Transactions on, vol. 52, no. 5, pp. 2824–2842, May 2014.

[44] J. Li, J. Paden, C. Leuschen, F. Rodriguez-Morales, R. Hale, E. Arnold, R. Crowe, D. Gomez-Garcia, and P. Gogineni, “High-altitude radar measurements

of ice thickness over the Antarctic and Greenland ice sheets as a part of Operation IceBridge,” IEEE Transactions on Geoscience and Remote Sensing,

vol. 51, no. 2, pp. 742–754, 2013.

[45] R. Congalton, “A review of assessing the accuracy of classifications of remotely sensed data,” Remote sensing of environment, vol. 37, no. 1, pp. 35–46,

1991.

[46] I. Tsang, J. Kwok, P. Cheung, and N. Cristianini, “Core vector machines: Fast SVM training on very large data sets.” Journal of Machine Learning

Research, vol. 6, no. 4, 2005.

[47] J. Greenwood and D. Durand, “Aids for fitting the gamma distribution by maximum likelihood,” Technometrics, 1960.


