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A weakly supervised transfer learning approach for
radar sounder data segmentation

Miguel Hoyo Garcı́a, Student Member, IEEE Elena Donini, Member, IEEE,
and Francesca Bovolo, Senior Member, IEEE

Abstract—Airborne Radar Sounders (RSs) are active sensors
that acquire subsurface data for Earth observation. RS data
(radargrams) provide information on buried geology by imaging
subsurface dielectric discontinuities. Recently, several automatic
RS target identification techniques have been proposed, being
convolutional neural network (CNN)-based methods the most
promising. However, they require numerous labeled data that
are hard to retrieve in the subsurface environment targeted
by RS. Further, they are not designed to effectively deal with
problems showing unbalanced classes like RS segmentation. We
introduce newer cryosphere subsurface targets in the inland
and coastal areas that can have a very low probability. To
deal with the higher complexity and variability than previous
works, we propose a transfer learning framework for RS data
to mitigate the need for a large amount of labeled data and
handle extremely unbalanced target classes. Herewith, we pro-
pose two transfer learning-based mechanisms for radargram
segmentation. The first uses a lightweight architecture whose
pre-training is supervised with a large labeled dataset from
other domains. The second mechanism uses a deep architecture
pre-trained in the RS domain, considering the pretest task of
radargram reconstruction. The architectures are modified to
deal with the characteristics of RS data and the radargram
segmentation task. Finally, both methods are fine-tuned with
a few labeled radargrams to learn radargram features useful
for segmentation. We reveal experimental results on radargrams
acquired in Antarctica by MCoRDS-1 and MCoRDS-3. The
results demonstrate the effectiveness of transfer learning for
radargram segmentation.

Index Terms—Radar sounder, remote sensing, cryosphere,
domain adaptation, transfer learning, deep learning.

I. INTRODUCTION

Understanding the dynamics of the ice sheets and shelves
helps in predicting the impact of climate change and the
evolution of the cryosphere [1]. Analyzing the inner structure
of ice sheets and shelves, one can estimate climate change
indicators, for example, related to the ice shelf melting and
the ice-sheet mass balance decrease [1]. The analysis of the
mass balance of ice sheets and shelves requires the direct
measurement of the ice up to the basal interface to extract
crucial information on the subsurface geologic structures and
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processes [2]. These direct measurements can be provided
by radar sounders (RSs). RSs are active sensors that probe
the subsurface by transmitting electromagnetic (EM) waves
at the nadir. The EM waves have a central frequency in
the High Frequency (HF) and Very-High Frequency (VHF)
ranges with a relatively wide band. The interaction of the EM
waves with the dielectric interfaces in the subsurface results
in backscattered echoes captured by the sensor. Radargrams
are generated by coherently adding and concatenating the
echoes in the along-track direction. Most of the available
RS data on Earth have been acquired in the cryosphere.
Radargrams image, for example, continental ice stratigraphy,
basal interface, floating ice and crevasses, as well as noise-
limited areas that include the thermal noise and the echo-free
zone (see Fig. 1).

RSs for Earth observation are mainly mounted on an air-
borne platform and generally probe the subsurface of Green-
land and Antarctica. Motivated by the expected increasing
amount of radar sounders from planned airborne and satellite-
borne missions [3], [4], [5], several authors [6], [7] designed
automatic approaches for radargram analysis based on sta-
tistical methods and machine learning techniques to identify
targets in the cryosphere subsurface. For example, Ilisei et
al. [8] proposed an approach based on handcrafted features
and a Support Vector Machine (SVM) that segments grounded
ice sheet radargrams. This approach employed several input
features (e.g., entropy) that are target-specific and manually
designed. SVM-based methods are also used to detect and
segment specific targets in cryosphere radargrams. Donini
et al. [6] presented a methodology for detecting basal ice.
Similarly, [7] automatically detects subglacial lakes using
handcrafted features modeling the geophysical behavior of the
basal interface with and without subglacial lakes. The main
disadvantage of approaches based on handcrafted features is
that every new target class requires a complete redesign of
the input features, which is highly time-consuming. Moreover,
these approaches focus on detecting inland region targets,
simplifying the problem, and none analyzing more complex
targets, such as floating ice and crevasses in coastal areas. This
limits the potential of automatic cryosphere segmentation and
systematic information extraction on the subsurface geology
at a large scale in space and time [9].

Recently, advanced deep learning (DL) techniques, such as
convolutional neural networks (CCNs), have become promi-
nent in analyzing and segmenting several data types [10]. Deep
CNNs automatically learn semantically meaningful features
from the data during training at the cost of a large amount
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of labeled data. Insufficient labeled training data could lead
to overfitting since the amount of trainable weights in a DL
architecture is usually extremely large [11]. Therefore, the
larger the training dataset is, the more meaningful and general
will be the learned features. If the large labeled dataset is
unavailable, mitigation techniques exist to avoid overfitting
and sub-optimal results [11]. For instance, the W-Net by Xia
et al. [12] proposes a convolutional autoencoder (CAE) trained
with a proxy task (i.e., data reconstruction) that does not
require labeled data. Also, data augmentation [13] can be
employed to mitigate overfitting and improve accuracy with
limited training samples. However, when the training set is
strongly limited, such as in the RS icy data, data augmentation
is sub-optimal as it does not introduce enough data variability
[10]. Alternatives include reducing the trainable weights to
avoid overfitting (e.g., using a lightweight CNN [14]) and
using transfer learning approaches. Transfer learning aims to
reuse solidly pre-trained architectures on a source task TS to
adapt a network to a target task TT [15]. The network is
pre-trained in a domain DS where a large labeled training
set is available [16]. Subsequently, the network is adapted
and fine-tuned with a small amount of labeled data in the
target domain DT , exploiting weak supervision techniques
[17]. Transfer learning techniques, such as domain and task
adaptation, minimize the distance across domains and reuse
features already learned in DS for DT . It is assumed that
DT and DS have different yet related distributions [18].
The literature has demonstrated the effectiveness of transfer
learning in various domains (including remote sensing) and
tasks. For instance, Xie et al. [16] use transfer learning and
weak supervision to predict poverty classification maps with
scarce labeled satellite imagery. Yao et al. [19] proposed
transfer learning to segment high-resolution satellite images
in a weak supervision framework. Although the promising
results, a transfer learning framework has never been defined
for RS data, where the absence of labeled data is one of
the biggest challenges when using DL techniques. DT and
existing DS are significantly different, and RS domain-specific
solutions must be designed to adhere to RS characteristics and
tasks.

When analyzing RS data with DL, it is necessary to
consider several challenges. Although some are common to
other domains, others are unique to RS data analysis: i) the
lack of reliable and large labeled training sets to be robust
against overfitting. The overfitting risk increases when training
a network from scratch (i.e., with random weight initialization)
[10]. ii) The limited available information because of the
one-dimensional channel. iii) Datasets consist of radargrams
acquired in different campaigns by different sensors, where the
same subsurface target can appear with different radiometric
characteristics [20]. iv) The rate signal vs. noise-limited areas
in the data is notably more leveled than other remote sensing
data [8], and v) there is a significant unbalance of the prior
probabilities of the geological target classes that penalize the
characterization of less frequent (yet relevant) classes. Several
approaches have been proposed in the literature to solve some
of the listed challenges. Donini et al. [21] proposed a two-step
training of the network and a massive data augmentation to

deal with the lack of labeled data. However, data augmentation
does not avoid overfitting when there is low variability in the
RS training dataset. Without variability in the training dataset,
the features learned by the CNN have limited generalization
capability to other RS campaigns. The method presented in
[22] employs a very deep CNN that segments radargrams
following a training approach similar to [21]. However, this
method shows limitations in identifying classes with low prior
probabilities and dealing with RS data acquired in different
campaigns. Widely used computer vision techniques (includ-
ing transfer learning) that successfully handle these issues ask
for an understanding of the radar sounder data properties,
e.g., signal and noise distributions. Nevertheless, only one
work has briefly explored transfer learning techniques for radar
sounder data [23] that lacks the generalization to a framework
for the RS domain and does not completely exploit transfer
learning. This results in a sub-optimal solution showing poor
discrimination of the low prior probability classes.

This work proposes a novel framework for transfer learning
in the RS domain to perform radargram weakly supervised
segmentation, i.e., with a small amount of labeled data.
We propose two transfer learning techniques based on deep
learning that address the pronounced lack of labeled RS data
to segment radargrams. The proposed techniques identify and
segment radargrams into five classes: free space, inland ice
layering, floating ice and crevasses, bedrock, and noise-limited
regions (thermal noise and echo-free zone). This definition
includes new regions and classes compared to state-of-the-art
approaches that add high complexity to the RS data analysis.
In particular, it considers crevasses and floating ice classes
and the need to differentiate them from inland ice. However,
these classes increase the variability and complexity of the
data because of the inherent noise and artifacts in the RS data
and being unbalanced. To handle these aspects, we design two
methods that work in two operating conditions: i) supervised
pre-training in a domain other than RS and ii) unsupervised
pre-training with RS data.

The first approach extends the initial idea in [22] and pre-
trains a lightweight CNN in a domain other than RS, where
labeled data can be easily retrieved (e.g., multimedia labeled
dataset) to perform a task different from radargram segmenta-
tion, such as image classification (i.e., assign a label for each
image). Then, transfer learning is designed to perform domain
and task adaptation and reuses the pre-trained CNN to handle
RS data and perform radargram segmentation. The second
approach develops the idea in [23]. It employs unsupervised
learning to pre-train a very deep CAE in the RS domain
using complex radargram reconstruction as a proxy task for
radargram segmentation. No labeled radargrams are needed to
pre-train the network weights in the RS domain. Here, transfer
learning is designed to perform task adaptation and reuse the
pre-trained network. Both architectures are fine-tuned using
weak supervision with a small amount of labeled data of the
target domain (i.e., radargrams) with a segmentation task.

We test both methods on MCoRDS-1 and MCoRDS-3
data acquired in Antarctica, imaging ice sheets and shelves.
We evaluate the transfer learning effectiveness by performing
several experiments varying the training set for the pre-training
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and the fine-tuning in terms of size (dramatically reducing
the pre-training and fine-tuning training datasets until using
only about a hundred samples), variability (with or without
data augmentation), and level of correlation between the data
(training with campaigns similar or different than those for
testing).

The paper is organized as follows: Section II formulates
the problem. Section III describes the proposed framework
and methods. The datasets are described in Section IV. The
experimental results are in Section V. Finally, Section VI
concludes the paper and presents future works.

II. PROBLEM FORMULATION

Let us define a radargram R as a 2-dimensional matrix
having nT traces (columns) in the azimuth or along-track
direction, and nS samples (rows) in the range direction:

R = {R(x, y)|x ∈ X = [1, ..., nT ], y ∈ Y = [1, ..., ns]}, (1)

where R is the power of the backscattered echoes stored in the
log scale, and (x, y) are the azimuth and range coordinates,
respectively. The radargram R contains the reflected signal
from the subsurface geology. It is affected by noisy, and clutter
contributions (e.g., thermal noise, echo-free zone, speckle
noise, multiple reflections, and off-nadir reflections) [24].

Cryosphere radargrams image the ice sheets in the con-
tinental areas and the ice shelves floating on the ocean, as
shown in Fig. 1. This work defines a complex segmentation
problem modeling for ice shelves and continental ice. The
problem complexity relies on i) differentiating the two icy
bodies since they present significant variability and complexity
caused by the inherent noise and artifacts in the RS data
and ii) the increasing number of target classes compared to
other literature approaches that only consider inland targets
(ice layers, bedrock, basal ice, noise-limited regions) [8], [21]
and do not consider coastal targets (floating ice and crevasses).
In cryosphere RS data, the first reflection in the range is from
the surface and has the most powerful signal. This interface
delimits the ice pack and the free space above the surface.
Below the surface, the signal behavior varies significantly,
being grounded or floating. On inland ice, the ice stratigraphy
generates bright lines due to variations of the ice dielectric
coefficient [25]. The deepest reflection is caused by the basal
interface that can be rocky or liquid [7]. The basal interface
appears as a peak in the backscattering, reflecting the rest
of the incident signal. Finally, in continental ice radargrams,
the background (i.e., no backscattered signal) or noise-limited
regions extend above the bedrock but below the ice pack (EFZ
[26]) and below the bedrock (thermal noise). Both areas have
statistical properties similar to the thermal noise added by the
receiver. Radargrams of coastal areas image floating ice and
ice crevasses. Crevasses are vertical fractures of the ice shelf
generated by the ice movements and calving [27]. Crevasses
appear in radargrams as bright vertical reflections caused
by the propagation of the EM signal through the fractures
(see Fig. 1). In coastal radargrams, the interface between the
floating ice and the ocean or the crevasses in the absence of
floating ice represent the deepest reflection. Finally, in coastal

radargrams, the noise-limited (background) regions are below
the floating ice from the seawater (see Fig. 1).

Propitiated by the radargram characteristics, CNNs have
several challenges when analyzing RS data. Radargrams cap-
ture in one single channel the backscattering properties of tar-
gets in terms of type, shape, orientation, dielectric, chemical,
and mechanical characteristics of scatterers in the minimum
resolution cell of the sensor. Further, subsurface targets are
mostly thin and elongated, and widely extended in along-
track direction (e.g., layers and bedrock) [21]. One single
radargram size is substantial and significantly longer in the
along-track dimension (up to two orders of magnitude more
than the range dimension) due to the acquisition approach.
Thus, radargrams must be divided into patches to fit a CNN
architecture input. However, the commonly used small square
patches in other remote sensing fields risk not containing
enough context information about the subsurface targets (i.e.,
missing basal information, near-surface information, or both),
resulting in imprecise learned features by the CNN. Further,
contiguous patches have a significantly low statistical intra-
radargram (i.e., same acquisition campaign) variability since
they contain similar information. Patch division becomes a
critical aspect due to the elongated and extended distribution
of radar sounder targets (e.g., bedrock), extending from one
patch to the neighboring one without interruption and thus
without borders when working on a patch-based mechanism.
The outcome should preserve target continuity in the along-
track direction as (dis)continuity has geological relevance.
Accordingly, the design of data-hungry automatic techniques
for analyzing RS data and the use of deep learning patch-based
architectures is a recent research field.

The described radargram target behavior leads to the back-
ground (i.e., no backscattered signal, where the thermal noise
is predominant) being the most frequent feature in the radar-
grams, dramatically limiting the informative areas [8], [28].
Therefore, subsurface targets have a small prior probability
(i.e., one order of magnitude lower than thermal noise or
background prior probability). The amount of information
content is further limited by radargrams being single-channel
data. These characteristics make radar sounder data signifi-
cantly different from the optical ones mainly used to train
deep learning architectures (e.g., RGB pictures from digital
cameras). Fig. 3 illustrates the difference between an RGB
image used in the pre-training step and a radargram used
in fine-tuning. In addition, radar sounder data are strongly
affected by several unwanted signals, including clutter, and
types of noise, such as speckle noise that can be approximated
as multiplicative. Speckle results in salt and pepper pattern
with significant radiometric intensity variability and makes
target borders, contours, and edges hard to distinguish. A CNN
needs a large amount of labeled data to efficiently extract
features from the subsurface targets in a supervised way. RS
labeled data are unavailable due to the difficulties of generating
an accurate labeled RS dataset. Expert photointerpretation
is the only feasible way to generate these labeled RS data
datasets.

The amount of radar sounder data has slowly increased
since the acquisition campaigns are mainly aircraft-mounted
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Fig. 1. Detail of a radargram acquired in Antarctica by MCoRDS-3 imaging the main subsurface targets of the problem of interest.

and thus cover small regions. Every acquisition campaign is
specifically designed for the target area and features. The
strategy of ad hoc campaigns leads to significant variability
in terms of RS sensor architectures and configurations. This
causes the number of radargrams to be relatively small com-
pared to data in other domains and their inter-radargram (i.e.,
different acquisition campaigns) variability to be considerably
high. Furthermore, the acquisition conditions (e.g., weather
conditions, geometry, aircraft speed), radar calibration, or
data post-processing strongly affect the radargram radiometric
properties of different campaigns even when acquired by
the same sensor [20]. For example, the noise and artifacts
differently degrade the signal when differentiating floating
and inland ice, depending on the acquisition campaign (e.g.,
acquisition conditions, radar calibration) or the sensor.

In this context, reusing existing architectures without adap-
tation or training from scratch results in poor performance,
strong overfitting, limited generalization capability, and sub-
stantial underestimation of low prior probability (yet highly
relevant, like bedrock) classes [10]. Moreover, the radiometric
differences between data acquired with the same sensor evi-
dence the necessity of testing the methods with data acquired
in campaigns not used for training to reduce the intra-data
correlation and demonstrate the method’s generalization ef-
fectiveness.

Therefore, the objective is to segment a radargram R into
N = 5 classes (VT ): free space (νfs), inland ice layering
(νl), floating ice and crevasses (νfl), bedrock (νb), and noise
limited areas that include the thermal noise and EFZ (νn). The
classes VT = {νTa , νTs} can be divided between above surface
free space νTa and subsurface classes νTs = {νT2 , ..., νTN }).
Let DT be the RS target domain, and TT as the radargram
segmentation target task. The source domain DS and the
source task TS will be defined differently for each method.

Fig. 2. Block scheme for the proposed approaches.

III. PROPOSED FRAMEWORK AND METHODS

This section introduces the proposed transfer learning
framework and the two automatic methods for radargram seg-
mentation and a critical comparison between them, exposing
their advantages and disadvantages.

The two proposed methods automatically segment radar-
grams by employing transfer learning techniques, including
domain and task adaptation, that allow reusing a pre-trained
CNN without using labeled RS data. Both approaches are
divided into three steps, as shown in Fig. 2:

1) The network is pre-trained in the source domain (DS)
to perform the source task (TS) to compensate for the
lack of labeled data in the RS domain (DT ) to perform
radargram segmentation (TT ).

2) The network is adapted to perform the target task (TT ).
3) Finally, the network is fine-tuned in DT to extract se-

mantically meaningful features of RS data and segment
radargrams in the target classes VT .

A. Domains definition

DS is formed by a feature space XS and the related
probability distribution P (XS), where XS is the set of labeled
training samples XS = {xS1

, xS2
, ..., xSr} ∈ XS . Thus,

given a source domain DS = {XS , P (XS)}, the source
task TS associated with DS can be defined by the label
space VS and the predictive function fS(·). The label space
VS = {νS1

, νS2
, ..., νSM } consists of the labels of the training
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samples XS . The predictive function fS(·) is hidden attribute
that predicts a label ySi ∈ VS corresponding to a given sample
xSi ∈ XS . Therefore, the source task can be defined as:

TS = {VS , fS(·)}. (2)

From a probabilistic viewpoint, fS(x) can be expressed as
PS(yS |xS). Hence, the source domain data DS can be defined
as:

DS = {(xS1 , yS1), ..., (xSr , ySr )}. (3)

The two proposed approaches will differ in terms of the source
domain DS and the source task TS .

Let us define the target domain DT similarly to DS : DT =
{XT , P (XT )}. DT consists of the feature space XT and the
related probability distribution P (XT ). Analogously, the set of
training samples XT is defined as XT = {xT1

, xT2
, ..., xTr} ∈

XT . In this paper, the target domain DT refers to radargrams,
and each xTi is defined as patches extracted from R. The target
task TS , which is radargram segmentation, can be defined as:

TT = {VT , fT (·)}, (4)

where VT represents the segmentation classes and fT (·) is
the function that segments the radargram in the classes VT .
Thus, fT (·) can be expressed as P (yT |xT ), yT ∈ VT and
YT = {yT1

, yT2
, ..., yTr} ∈ VT , therefore the target domain

data is:
DT = {(xT1

, yT1
), ..., (xTr , yTr )}. (5)

B. Case I: lightweight CNN with DS 6= DT and TS 6= TT ,
and supervised pre-training

Case I uses a lightweight CNN that is pre-trained in a source
domain DS to perform a source task TS , to set the network
weights and improve the performance of the network [11].
In this approach, the source domain DS presents different
characteristics, such as a higher number of channels and
distinct statistical distribution PS , so DS 6= DT (as seen in
Fig. 3 the differences between the pre-training image and
the fine-tuning radargram are significant). We apply transfer
learning for domain and task adaptation following the pre-
training configuration. We introduce transfer learning tech-
niques to reuse the pre-trained CNN weights and adapt the
CNN architecture to analyze radargrams, DS , and perform the
target task TT . We add a convolutional layer at the beginning
of the architecture to perform the domain adaptation from
DS to DT . We discard the last layers of the pre-trained
CNN that identify the most specific features from DS [10],
resulting in a reduced pre-trained CNN. The reduced CNN is
included in a U-fashion architecture as an encoder, while the
decoder consists of several up-convolutional layers. The up-
convolutional layers identify the target classes VT in the target
domain DT to perform the target task TT .

1) Supervised pre-training in DS: In this step, the network
is trained in the source domain DS to perform a source task
TS as can be seen in Fig. 3. Choosing the source domain
DS and the task TS depend on i) the availability of reliable
labeled data in the source domain and ii) the adaptability of
the approach from working in the source domain to the target
domain.

In this approach, the source domain differs from the target
domain DS 6= DT . Therefore the source domain has its
specific characteristics:

DS = {XS , P (XS)} (6)

and the source task differs from the target task TS 6= TT . The
source task is defined as:

TS = {VS , fS(·)}, (7)

where we have a different set of classes VS 6= VT , the source
data domain consists of a set of training samples and their
labels that are different from the target data domain DS 6= DT .

Here, we pre-train the lightweight CNN in the source
domain DS of visual recognition with 3-channel RGB multi-
media images. Deep learning for visual recognition is currently
in a very advanced stage of development. Among the available
approaches, we can choose one optimized with a larger number
of training data. A robust training is critical in this case since
the better and more general the extracted features from DS are,
the more accurate results will be reached in the target domain
DT even if we have few labeled radargrams for transfer
learning [11].

2) CNN adaptation and fine-tuning in DT (see Fig. 3): The
proposed method adapts the pre-trained lightweight CNN to
the radargram characteristics (DT ) into a new architecture with
a U-fashion shape (Fig. 4). Two adaptation aspects should be
considered: adaptation to the radargram characteristics (DT )
and adaptation to the radargram segmentation task (TT ).

Adaptation to the radargram characteristics. This step
handles the source and target domain differences. DT has
i) one channel instead of 3 channel RGB multimedia data
used for pre-training, and ii) different marginal probability
with respect to the multimedia data P (XT ) 6= P (XS), which
means different statistical distribution of the features [20].
Since a radargram is a one-channel image representation,
we assume that a graphic representation of a radargram XT
is a subgroup of an RGB multimedia image XS . To learn
and compensate for the difference between the domains, we
include a 2D convolution layer at the top of the pre-trained
lightweight CNN. This layer performs the domain adaptation
function fda(·) to fit the target domain into the source domain
properties expected in input by the pre-trained CNN. It handles
the radar sounder data-specific characteristics, such as the
statistical distribution and features of the target classes, and
does the 1-to-3 channel conversion as:

DS = {(fda(xT1
), yS1

), ..., (fda(xTq ), ySq )}. (8)

Adaptation to the radargram segmentation. Here, we ap-
ply transfer learning to make the pre-trained lightweight CNN
segment the input radargrams into the VT classes reusing the
pre-trained CNN weights. The network is adapted to extract
relevant features for the target task TT . We discard the pre-
trained CNN layers that extract the most specific features to
the source domain DS and task TS . These are the last layers in
the CNN architecture [29]. The modified architecture has the
reduced pre-trained lightweight CNN as the encoder. Therefore
we have a new reduced task Tred = {Vred, fred(·)}, a new
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Fig. 3. Block scheme for Case I.

Fig. 4. Block scheme of the proposed new architecture for Case I.

label space (Vred), and a new predictive function (fred(·)),
which is Pred(yred|fda(xT )), yred ∈ Vred. We introduce these
changes in (3):

DS = {(fda(xT1
), ySred1 ), ..., (fda(xTq ), ySredq )}. (9)

Due to the pre-trained lightweight CNN architecture, the
new output features are significantly smaller than the input
radargram. Since we aim to segment the input radargrams,
we add five up-convolutional layers acting as a decoder to
increase the size of the output features and learn the specific
features of DT . Additionally, each up-convolutional layer in
the decoder is shortcutted with a matching size layer in the
encoder to facilitate gradient propagation. Fig. 4 shows the
architecture after adaptation, where the contracting path or
encoder consists of the reduced lightweight CNN, and the up-
convolutional layers form the upsampling path or decoder. The
decoder assigns to each pixel of the radargram one of the N
classes in VT , acting as fT (·). The target task becomes:

TT = {VT , fT (fSred(·))}. (10)

Subsequently, the network layers added in this step are fine-
tuned with a small amount of labeled data to set the network
weights to extract semantically meaningful features from the
pixels for the segment contracting path of the final architecture
or encoder, which are not updated in this step. Instead, the
fine-tuning loss updates the new convolutional layer weights.
Only the pre-trained weights in DS remain unchanged to avoid
over-fitting due to the few labeled data of the target domain.

The batch normalization layers typically used in the CNN
for visual recognition are counterproductive. Batch normal-
ization adds extra noise [30] and is less effective with small
batches or does not contain uncorrelated samples [31], which
is the case of radar sounder data. Because of this, instead of

using batch normalization layers, we use instance normaliza-
tion layers, which are not affected by the small batch size or
little variability of DT [32].

Due to the extremely unbalanced appearance of classes in
DT , we introduce weight maps to increase the relevance of the
less frequent classes otherwise under-considered in training.
The less frequent classes tend to be less differentiated, given
their small impact on the overall error. Hence, the weight of
each class wνTi considers the class priors in YT :

wνTi =
Np

NνTiN
, (11)

where NνTi indicates the pixel number of νTi in YT . Finally,
wνTi conditions the fine-tuning loss Lfine−tuning, used to
learn the target task TT . Lfine−tuning is defined considering
the sparse categorical cross-entropy loss:

Lfine−tuning = − 1

Np

Np∑
i=1

N∑
n=1

ByTi ,νTn

· log(fT (xT )iνTn
)wνTn , (12)

where ByTi ,νTn is a binary indicator and is set to ByTi ,νTn = 1
when yTi = νTn . fT (xT )iωn is the predicted probability of the
class νTn being the pixel i.

C. Case II: deep CAE with DS = DT and TS 6= TT , and
unsupervised pre-training

In Case II, the source task TS is radargram reconstruction,
so the deep CAE is pre-trained with unlabeled radargrams,
which belong to the target domain (DS = DT ). Therefore, the
network learns specific radargram features, and the weights
are not randomly initialized. The unsupervised pre-training of
the deep CAE aims to update its weights by applying two loss
functions, i.e., the reconstruction Lr and the above/subsurface
La/s losses. To perform the reconstruction task, a deep CAE
extracts meaningful features for all pixels in the input data. The
deep CAE consists of two U-shape architectures concatenated,
acting as encoder and decoder in the deep CAE. We aim
the encoder to segment radargrams, TT , and the decoder to
reconstruct the original radargram from the segmentation map,
which is the source task TS . As the network is pre-trained
with radargrams, transfer learning in this approach consists
of reusing the pre-trained deep CAE and adapting the pre-
trained network to perform the target task TT , radargram
segmentation. Task adaptation comprises removing the CAE
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Fig. 5. Case I modified architecture.

decoder, only used to perform the source task TS . Similarly,
the deep CAE encoder is already set up for the target task TT .

1) CAE unsupervised pre-training in DT : In the unsu-
pervised pre-training step, the network is pre-trained in the
source domain DS to perform the source task TS . Since
in this approach, the source domain consists of radargrams,
DS = DT , we will only refer to target domain DT (Fig. 6)

The source task TS of this approach is radargram recon-
struction:

TS = {XT , fS(·)}, (13)

where fS(·) is composed by the encoder predictive func-
tion fENC(·) and the decoder predictive function fDEC(·):
fS = fDEC(fENC(·)). With the CAE that has two U-
shape architectures concatenated, we aim that the output of
the encoder fENC(·) predicts the probability of the segmen-
tation labels P (yT |xT ), yT ∈ VT , and the decoder output
fDEC(·) predicts the values for the reconstructed radargram
P (xT |xT ), xT ∈ XT . Since the output is predicted to be as
similar as possible to the input data, ySi ∈ XT and ySi = xTi ,
the unlabeled extended target data domain DTunl , including a
large number of unlabeled radargrams, becomes:

DTunl = {(xT1
, xT1

), ..., (xTp , xTp)}. (14)

This allows the network to be trained with a large target
domain dataset without labels and to learn the radargram-
specific features in the unsupervised pre-training.

We define an additional unsupervised task driven by the
encoder called above/subsurface task Ta/s. This task aims to

improve the radargram features, such as the target distribution,
learned in the unsupervised pre-training step by learning to
differentiate the regions above and below the surface in the
radargram. The encoder output defines this task:

Ta/s = {Va/s, fENC(·)}, (15)

Where the target labeled data are the mathematically generated
above/subsurface mask Ya/s = {ya/s1 , ya/s2 , ..., ya/sp} ∈
Va/s. The mask splits R into two classes νTa and νTs that indi-
cate the area above the surface and the subsurface, respectively.
The rough boundary between νTa and νTs is identified as the
surface S, which is the reflection covering all the radargram in
the azimuth direction with the highest power. Therefore, S is
the row [1, 2, ..., nS ] having the greatest power in each range
line (column) [1, 2, ..., nT ], i.e., S(x) = max

y
{xT (x, y)} [8].

Given S, ya/si is generated without supervision:

ya/si(x, y) =

{
0, if 1 < y < xT (x, y) = S(x)

1, elsewhere
(16)

So we can define the above/subsurface data domain as:

Da/s = {(xT1 , ya/s1), ..., (xTr , ya/sp)}. (17)

The above/subsurface task Ta/s is learned by the encoder min-
imizing the above/subsurface loss La/s. In the unsupervised
pre-training, Ta/s drives the gradient calculation to optimize
the encoder weights. La/s is defined to estimate the difference
between the radargram segmentation map predicted by the
encoder fENC(xTi), and the above/subsurface mask ya/si .
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Fig. 6. Block scheme for Case II approach.

Fig. 7. Case II modified architecture.

Therefore, La/s is defined as the binary cross entropy loss
between fENC(xTi) and fENC(xTi). Let us assume that the
subscript i indicates position (x, y) in the radargram:

La/s = − 1

Np

Np∑
i=1

ya/si · log(fENC(xTi)a/s)

+ (1− ya/si) · log(1− fENC(xTi)a/s), (18)

where fENC(xTi)a/s ∈ Va/s and it is the encoder output
where the prior probabilities of the subsurfaces classes (νTs =
{νT2 , ..., νTN }) predicted by the encoder are joined into a
unique class νTs . The number of pixels in xT is defined as
Np = nSnT .

Subsequently, all the CAE weights are updated to efficiently
reconstruct the input radargram xT , which is the source task
TS , by optimizing a L2 loss called reconstruction loss Lr. Lr
expresses the error between the input radargram xT and the
reconstructed radargram by the autoencoder fS(xT ):

Lr = ||xT − fS(xT )||2. (19)

In Case II, we also use instance normalization layers instead
of batch normalization layers similar to Sec. III-B2.

2) CAE task adaptation and supervised refinement in DT :
In this step, as the CAE is pre-trained in the target domain DT ,
we only have to adapt the network architecture to perform the
radargram segmentation target task TT .
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Since the predictive function in charge of the radargram
reconstruction was fDEC , the decoder is discarded, and the
encoder is employed to perform TT . In this approach, the pre-
trained U-fashion encoder segments the radargram into the N
classes in Ω (as shown in Fig. 3), and we define the target
task as:

TT = {VT , fENC(·)}, (20)

where fENC(·) predicts the segmentation labels for the input
and can be expressed as P (yT |xT ), yT ∈ VT .

Finally, the encoder weights are updated during fine-tuning
using Lfine−tuning (12). The encoder learns specific features
from the target classes VT . In this way, the encoder learns the
target task TT .

D. Critical comparison of the two methods

Both methods require pre-training due to the lack of labeled
radargrams DT . Transfer learning is applied to reuse and adapt
the pre-trained networks to perform radargram segmentation.
Both proposed methods are fine-tuned with a few labeled
radargrams to learn the target task TT , radargram segmen-
tation. The ad-hoc modifications introduced in Cases I and
II make the proposed transfer learning approach specifically
designed to analyze RS data. Hence, a readaptation process is
necessary to use these logics in other domains.

The main differences between the two proposed approaches
are i) the pre-training and ii) the network adaptation. The Case
I lightweight CNN is pre-trained with ImageNet dataset DS

to perform image classification. Case I is less demanding than
Case II pre-training because i) it is unnecessary to create a
pre-training dataset specifically designed for this objective,
which can be time-consuming, and ii) pre-trained CNN ar-
chitectures are widely accessible to the scientific community.
However, the CAE of Case II is pre-trained with unlabeled
radargrams DTunl to perform radargram reconstruction. TS and
TT directly affect the architecture depth: Case II requires a
deeper architecture than Case I to deal with the simultaneous
reconstruction and the segmentation of the radargrams. Given
the absence of labeled datasets in DT , Case II pre-training
is more demanding than Case I. The network adaptation to
perform radargram segmentation is more complex in Case
I since the lightweight CNN is pre-trained in a different
domain, and Case II CAE is pre-trained with radargrams. The
lightweight CNN of Case I is computationally less expensive
than Case II and requires time and computational resources
for pre-training and fine-tuning.

IV. DATASET DESCRIPTION

This section describes the datasets for assessing the ef-
fectiveness of the proposed methods. We consider two sets
of radargrams acquired in Antarctica by MCoRDS-1 and
MCoRDS-3 [33], respectively, that are distributed by the
Center for Remote Sensing of Ice Sheets (CReSIS). MCoRDS-
1 and MCoRDS-3 were mounted on a DC-8 aircraft, and
their design parameters are presented in Table I. The data
acquired by the two sensors have different properties in terms
of range and azimuth resolution, and maximum penetration.

The MCoRDS-3 range resolution is considerably higher than
that of MCoRDS-1. This makes MCoRDS-3 radargrams more
complex as they contain more details and show a larger size
in the range direction than MCoRDS-1 radargrams. Fig. 8
shows the ground track of the campaigns used to generate
the datasets. Since radargrams are acquired in the Antarctica
coasts, they contain inland classes (free space/air, ice layering,
bedrock, and noise-limited areas) and novel classes in the
coastal area (e.g., floating ice and crevasses). However, the
MCoRDS-1 dataset does not consider the EFZ since it is
smaller than the data resolution. The MCoRDS-3 dataset is
more complex than the MCoRDS-1 one. For MCoRDS-1, the
prior probabilities P (·) are as follow: free space P (νfs) =
0.168, inland ice layering P (νl) = 0.161, floating ice and
crevasses P (νfl) = 0.067, bedrock P (νb) = 0.016, and
noise-limited areas P (νn) = 0.588. For MCoRDS-3, the prior
probabilities P (ν) are as follow: free space P (νfs) = 0.21,
inland ice layering P (νl) = 0.20, floating ice and crevasses
P (νfl) = 0.063, bedrock P (νb) = 0.007, and noise-limited
areas P (νn) = 0.52.

The radargrams are range compressed and focused in the
azimuth with synthetic aperture radar (SAR) processing. More-
over, the fluctuations from the aircraft motion were corrected,
and the power of each radargram was log-scaled to enhance
the spatial properties and approximate as additive the noise.
The radargrams were divided into one-channel patches of
size 1536×64 pixels for MCoRDS-3 data and 512×64 pixels
for MCoRDS-1, respectively. The range dimension is cho-
sen to provide global contextual information to the CNN,
facilitating the learning of the target spatial distribution in
radargrams and maximizing the variability of the classes in
the range direction. The patches are collected in datasets
Dj , j = [MCoRDS-1,MCoRDS-3] and normalized by scaling
them in the range [0, 1]:

Dj =
Dj −min(Dj)

max(Dj)−min(Dj)
. (21)

Finally, datasets Dj , j = [MCoRDS-1,MCoRDS-3] are
both divided into two sub-datasets: the unlabeled target domain
dataset Dj

Tunl
and the labeled target domain dataset Dj

T . All
the patches in Dj

T are manually labeled for the fine-tuning
step. The labels are defined for each pixel in the patches
by visual interpretation considering examples of radargrams
manually analyzed that are available in the literature [21], [6],
[8]. Note that ambiguous radargram pixels (e.g., those in the
grounding area, in orange in Fig 9 and 11) are labeled as
unknown and not considered in Dj

T . In both MCoRDS-1 and
MCoRDS-3 datasets, the cardinality of Dj

Tunl
is considerably

higher than that of Dj
T , i.e., |Dj

Tunl
| >> |Dj

T |. Fig. 8 (a) and
8 (b) show the ground tracks of the campaigns in Dj

Tunl
in

blue and those in Dj
T in red for MCoRDS-1 and MCoRDS-

3 datasets, respectively. For the qualitative results, we show
the segmentation maps on radargrams 025-026 in campaign
20091118 01 for MCoRDS-1 and radargrams 004-009 in
campaign 20181015 01 for MCoRDS-3.

Pre-training datasets. For Case I, we choose as the source
domain dataset (DS) a multimedia dataset easily accessible:
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(a) (b)

Fig. 8. Ground tracks of the MCoRDS-1 (a) and MCoRDS-3 (b) radargrams. The acquisition ground tracks for the radargrams in the unlabeled pre-training
dataset Dj

Tunl
are shown in blue, for the fine-tuning labeled dataset in red Dj

T , and those used in both Dj
Tunl

and Dj
T are in black.

TABLE I
PARAMETERS OF MCORDS-1 AND MCORDS-3 [33] AND RELATED

PROPERTIES OF THE RADARGRAMS.

Parameter MCORDS-1 MCORDS-3

Central frequency (fc) 193.5 MHz 190 MHz
Bandwidth (BW ) 9.5 MHz 50 MHz

Transmitted power (Ptr) 550 W 6000 W
(1000W/channel)

Aircraft altitude (h) 7000 m 1500 m

Range resolution in Ice (Rr) 13.6 m 4.3 m
Along-track resolution (Ra) 25 m 27.5 m

TABLE II
DETAILS OF THE UNLABELED TARGET DOMAIN DATASET Dj

TUNL
.

Parameter DMCoRDS-1
TEXT

DMCoRDS-3
TEXT

Number of campaigns 17 6
Number of radargrams 122 114
Number of traces (nT ) 254912 220672

Patch size (h× w × c) 512×64×1 1536×64×1
Number of patches (P ) 3983 3448

ImageNet [34]. The dataset consists of 14 million RGB images
of size 224 × 224 × 3 divided into 1000 classes. Image
classification is the source task (TS). For Case II, the pre-
training is done with the extended unlabeled target domain
datasets Dj

Tunl
, j = [MCoRDS-1,MCoRDS-3] (details of the

data are in Table II).
Fine-tuning datasets. For each sensor, we define a la-

beled dataset Dj
T , j = [MCoRDS-1,MCoRDS-3] (details in

Table III) for the fine-tuning of both Cases I and II.

V. EXPERIMENTAL RESULTS

This section describes the architecture and experimental
setup, the baseline to compare the proposed method, the
evaluation metrics, and the segmentation results.

TABLE III
FINE-TUNING DATASET DT .

Parameter DMCoRDS-1
T DMCoRDS-3

T

Number of campaigns 17 6
Number of radargrams 39 79
Number of traces (nT ) 122112 100736

Patch size (h× w × c) 512×64×1 1536×64×1
Number of patches (P ) 1908 1574

Number classes (N ) 5 5

A. Architecture setups

1) Case I setup: Here, we use the MobileNet V2 as a
pre-trained lightweight CNN, which performs well in many
segmentation and classification tasks [14] but any other
lightweight CNN can be used. We choose this network as it has
a low number of parameters and is optimal to avoid overfitting.
The MobileNet V2 employs depthwise separable convolutions,
a low computational cost convolution with a small trade-off in
accuracy reduction [35]. In addition, the network takes advan-
tage of inverted residual blocks, a variation of the traditional
residual blocks that insert shortcuts between the bottlenecks
to avoid transmitting non-linear transformations. This feature
could be critical when working with radargrams DT since
nonlinearities could dramatically affect the data by changing
radargram properties. Finally, as Mobilenet V2 is developed in
the computer vision domain, available solutions are pre-trained
with 3-channel RGB images to perform image classification
task [14]. The MobileNet V2 has been pre-trained with Im-
ageNet [34] and the categorical cross-entropy loss, following
[14]. This pre-training aims to extract semantically meaningful
features from the multimedia data that later can be extended
to the radar data.

In the fine-tuning, we used transfer learning to adapt the
network by i) adding one convolutional layer at the beginning
of the architecture to perform domain adaptation, ii) removing
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the last three layers of the CNN architecture, which are two 2D
convolutional layers and one average pool layer, and iii) adding
five up-convolutional layers at the top of the reduced CNN
architecture following the steps described in Sec. III-B2. The
proposed architecture is shown in Fig. 5, while the parameter
setup is described in Table IV. We choose a small learning
rate lr to limit over-fitting due to the few labeled radargrams
used for fine-tuning and the reduced number of layers to train.
In fine-tuning, we only train the up-convolutional layers and
the domain adaptation convolutional layer, the layers added
following Sec. III-B2. The network is fine-tuned for 200
epochs, and we set a batch size of 16 and 4 for the MCoRDS-1
and MCoRDS-3 datasets, respectively.

2) Case II setup: As deep CAE, we consider the W-
Net [12], an autoencoder consisting of two concatenated U-
Nets [13] but any other W-Net-based architecture can be
used. The W-Net is pre-trained for 20 epochs to perform
the radargram reconstruction task with DTEXT by optimizing
the reconstruction loss Lr and the above/subsurface loss and
La/s as shown in Table IV. Note that the high number of
network trainable weights makes this process computationally
extremely expensive. We apply transfer learning to adapt and
use the pre-trained W-Net to perform radargram segmentation
by discarding the second U-Net that acts as the decoder (see
Sec. III-C2 and Fig. 7). Case II CNN is fine-tuned for 200
epochs with DT by optimizing lfine−tuning to perform the
radargram segmentation task. Table IV shows the fine-tuning
parameter setup. During fine-tuning, we decreased the learning
rate lr to 0.0001 since we only aim to slightly modify the pre-
trained weights to learn the class-specific features. The CNN
for fine-tuning has considerably less trainable weights than the
pre-trained W-Net and more weights than the Case I CNN.

B. Evaluation metrics

To evaluate the performance of the proposed methods, we
consider three metrics that compare the predicted segmentation
map fT (yT i) with the reference map yT i : the sensitivity, the
specificity, and the accuracy. The sensitivity is the probability
that a pixel is correctly classified as the class νi that the
pixel belongs to. It is computed by dividing the number of
true positive classified pixels TPνi by the number of pixels
belonging to class νi: TPνi and FNνi , which are the pixels
not classified as class νi that actually belong to it:

Sensitivity =
TPνi

TPνi + FNνi
. (22)

The specificity indicates the proportion of pixels not classified
as νi that do not belong to νi. The specificity is calculated
by dividing the true negative pixels of νi (TNνi ) by the total
number of pixels not belonging to class νi: TNνi and the false
positive pixels of νi (FPνi ), which are the pixels classified as
class νi that actually do not belong to it:

Specificity =
TNνi

TNνi + FPνi
. (23)

The overall accuracy (OA) that is calculated by dividing the
correctly classified pixels by the network Cνi by the total
number of pixels Np:

OA =
Cνi
Np
· 100%. (24)

C. Experimental setups
To prove the effectiveness of the proposed methods, we

evaluate and compare the performance of the approaches under
different conditions. We set up experiments by changing the
training strategy to assess the impact of transfer learning and
fine-tuning dataset size, the intra-data correlation, and the data
variability. To assess the impact of the size of the training
set, we perform several experiments by varying the fine-tuning
training set size. Both fine-tuning datasets Dj

T are divided into
validation set (20% of Dj

T ), test set (20% of Dj
T ), and training

set Dj
Tr (60% of Dj

T ). In the experiments, we varied the fine-
tuning dataset for training to take about 100%, 84%, 67%,
17%, and 8% of Dj

Tr (60%, 50%, 40%, 10%, 5% of Dj
T , re-

spectively). To evaluate the effect of the data intra-correlation,
we propose two configurations for fine-tuning. Similarly to
[21], in Configuration I, the training and test sets consist of
patches extracted from the same campaigns. In Configuration
II, the patches of the training set are extracted from campaigns
different than the test set to reduce the intra-data correlation.
Configuration II is novel compared to literature and closer
to an operative scenario. Regarding variability, we train the
network with and without data augmentation to estimate its
impact when using a small labeled dataset for fine-tuning.
As data augmentation techniques, we chose transformations
that do not affect the integrity of the data and maintain a
realistic geologic appearance. We apply random horizontal
flips and crops, and we use random elastic deformation [36],
[13], demonstrated to be effective in radar sounder data [21].

Let us define four experiments:
1) Experiment I: considers data augmentation and reduces

the fine-tuning set size (from 8% to 100% of DTr);
2) Experiment II: is the same as Experiment I without data

augmentation;
3) Experiment III: is the same as Experiment I without

transfer learning;
4) Experiment IV: considers data augmentation and reduces

the pre-training set size DTunl from 100% to 0% of DTunl ,
the fine-tuning set size fixed to 100% of DTr.

1) Baseline method: We compare the proposed methods
with two approaches in the literature that segment radar-
grams based on i) the SVM classifier [8] and ii) DL [21].
We also compared the performance of an unadapted (e.g.,
no transfer learning, weighted and above/subsurface losses,
instance normalization, nor the use of vertical patches) state-
of-the-art CNN architecture used for image segmentation, the
DeepLabV3+ [37], to further test the effectiveness of the
techniques proposed in this work.

D. Segmentation results
1) MCoRDS-1 dataset: The proposed method qualitatively

segments the radargrams with good overall accuracy (see
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 9. Segmentation map for MCoRDS-1 for Experiment I using all DTr for fine-tuning: (a) input radargram, (b) reference map, (c) Case I with Configuration
I, (d) Case I with Configuration II, (e) Case II with Configuration I, (f) Case II with Configuration II. The orange area represents the grounding area.
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TABLE IV
CASE I AND II EXPERIMENTAL SETUPS.

Pre-Training Fine-Tuning
Parameter Case II Case I Case II

Network trainable weights 62075526 6505219 31036741
Convolutional kernel size in the range and azimuth (ky , kx) (3,3) (3,3) (3,3)
Training epochs (ε) 20 200 200
Optimizer Adam Adam Adam
Learning rate (lr) 0.001 0.0001 0.0001

Batch size (NB) 16 (MCoRDS-1)
4 (MCoRDS-3)

16 (MCoRDS-1)
4 (MCoRDS-3)

16 (MCoRDS-1)
4 (MCoRDS-3)

Loss (L) Lr and La/s
Weighted sparse categorical

cross-entropy loss (Lfine−tuning)

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Fig. 10. Segmentation maps of MCoRDS-1 for an inland patch (upper line) and a coastal area patch (lower line): (a) input radargram; (b) reference map; for
Case I CNN, Experiment I with Configuration II using (c) 67% and (d) 100% of DTr for fine-tuning, (e) Experiment II with Configuration II with 100%
of DTr , (f) Experiment I with Configuration I with 100% of DTr ; for Case II CNN, Configuration II and Experiment I, using (g) 67% and (h) 100% of
DTr , (i) Configuration II and Experiment II, with 100% of DTr , (j) Configuration I and Experiment I with 100% of DTr .

TABLE V
EXPERIMENT I PERFORMANCE WITH CASE I AND II IN WITH CONFIGURATION I-II AND FINE-TUNED WITH 100% OF DTr COMPARED WITH BASELINE

METHODS (MCORDS-1 DATASET).

Methodology OA Metric νfs νn νb νl νfl Average

Case I
Configuration I 98.84% Sensitivity 0.9904 0.9945 0.9913 0.9694 0.9809 0.9853

Specificity 0.9995 0.9872 0.9980 0.9970 0.9986 0.9961

Case I
Configuration II 97.25% Sensitivity 0.9920 0.9755 0.9837 0.9887 0.8978 0.9675

Specificity 0.9961 0.9902 0.9953 0.9952 0.9873 0.9928

Case II
Configuration I 99.58% Sensitivity 0.9981 0.9941 0.9989 0.9978 0.9978 0.9974

Specificity 0.9998 0.9998 0.9975 0.9997 0.9986 0.9991

Case II
Configuration II 97.25% Sensitivity 0.9940 0.9770 0.9981 0.9880 0.8858 0.9686

Specificity 0.9957 0.9935 0.9960 0.9930 0.9876 0.9931

CNN proposed in [21] 98.37% Sensitivity - 0.9957 0.9817 0.9881 - 0.9882
Specificity - 0.9952 0.9831 0.9899 - 0.9871

SVM and handcrafted
features [7] 99.09% Sensitivity - 0.9947 0.9752 0.9952 - 0.9883

Specificity - 0.9902 0.9978 0.9989 - 0.9956

Fig. 9). The network predicts an extremely accurate segmenta-
tion map with minimal errors in all experiments. However, the
floating and inland ice are better differentiated from the CNN
in Case II (Fig. 9(e) and (f)). The segmentation maps with the
Case I CNN (Fig. 9(c) and (d)) show segmentation errors in
the grounding area. Moreover, in both Cases, Configuration
I performance is comparable with those of Configuration
II, even if there is little correlation between the test and
the training dataset (the training set patches are taken from
campaigns different than the test dataset). These results are
confirmed by Fig. 10, where we show segmentation maps of
Experiments I and II obtained varying the number of fine-
tuning samples and Configuration. Experiments with Case I

CNN (Fig. 9(c)-(f)) are less affected by the number of fine-
tuning samples than those with the Case II CNN (Fig. 9(g)-
(j)). This is expected, as the number of parameters to train in
the Case I network is dramatically lower. For Case II CNN,
experiments with the higher number of fine-tuning samples
(Fig. 9(h) and (j)) show better qualitative results for both the
inland and the floating-ice patch.

Tables VI, VII, and V show the quantitative results of
different experiments with MCoRDS-1 dataset. Table V shows
the performance of the baseline methods [8], [21] and the
proposed methods for Experiment I with Configuration I and
II for Case I and II. The proposed methods can accurately
discriminate all the targets with high sensitivity (on average
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TABLE VI
EXPERIMENTS I-III OA FOR CASE I AND II CNNS, VARYING THE FINE-TUNING DATASET SIZE (MCORDS-1 DATASET).

% of DTr # Patches Configuration I Configuration II
Experiment I Experiment I Experiment II Experiment III

Case I

8 % 96 91.87 % 75.04 % 86.43 % 55.69 %
17 % 191 95.75 % 95.74 % 95.61 % 63.52 %
67 % 763 98.13 % 96.26 % 96.16 % 66.13 %
83 % 954 98.56 % 96.52 % 96.43 % 66.27 %

100 % 1145 98.84 % 97.25 % 97.12 % 66.33 %

Case II

8 % 96 91.77 % 80.11 % 74.25 % 71.24 %
17 % 191 95.58 % 95.32 % 94.27 % 88.18 %
67 % 763 97.66 % 96.73 % 94.70 % 93.20 %
83 % 954 98.24 % 96.99 % 95.88 % 94.72 %

100 % 1145 99.58 % 97.25 % 96.75 % 96.01 %

TABLE VII
EXPERIMENT IV OA CASE II CNN (MCORDS-1 DATASET).

% of DTunl Patches Configuration I Configuration II

0 % 0 98.62 % 96.01 %
33 % 1314 98.80 % 96.53 %
66 % 2629 98.91 % 96.71 %
100 % 3983 99.58 % 97.25 %

over 96%) and specificity (on average over 99%). Despite the
different prior probabilities of the classes, the less frequent
classes, such as the bedrock and the floating ice and crevasses,
are well segmented with performance comparable to that of
the other classes. The proposed and the baseline methods have
extremely high overall accuracy (above 97%). However, the
proposed method using the Case II deep CNN with Config-
uration I outperforms all the others with an OA of 99.58%.
Confirming the qualitative results, Table V also shows that
the performance of the proposed method using the CNNs in
Case I and II with Configuration II are comparable with those
with Configuration I (about 1.5% difference). As expected,
the Case II CNN performs better than Case I lightweight
CNN in both Configurations. This is because the Case II
CNN is deeper and can learn semantically more meaningful
features. However, a deeper CNN requires more data to be
trained in a robust way to avoid overfitting. This is visible in
Table VI, where the performance of Case II CNN is strongly
correlated with the number of fine-tuning labeled samples used
for training. With smaller fine-tuning datasets, the lightweight
CNN performs slightly better than the deeper CNN. When we
use the largest fine-tuning dataset (100% of DTr), Case II
CNN obtains better results than Case I CNN in Configuration
I with an overall accuracy of 98.84% and in Configuration
II with an overall accuracy of 97.25%, respectively. When
we dramatically reduce the fine-tuning datasets to about 16%
of DTr, the segmentation accuracy slightly decreased but
remained above 95% for both Configurations. When the fine-
tuning dataset is further decreased to about 8% of DTr,
we identified a cliff of more than 8% in the performance
of Configuration I compared to Configuration II. This is
expected since the data used for training in Configuration I
are from the same campaign used for the inference. Thus, the

network is expected to know extremely well the radiometric
and geometric characteristics of the data in test campaigns.
In Configuration II, the network has a more complex task of
generalizing and translating semantically meaningful features
extracted from a training campaign other than the campaigns
in the test phase.

Looking at the results of Experiment II (no data aug-
mentation) in Table VI, we note that the data augmentation
helps in improving the overall accuracy of about 1% for all
the experiments but that fine-tuning with only about 8% of
the DTr as the pre-training and the fine-tuning dataset size
have a higher impact. The impact of using data augmentation
became noticeable when the fine-tuning dataset is reduced
to 8% of DTr as the difference between the performance
with and without data augmentation is about 10% with Case
II CNN and 15% with Case II CNN, respectively. Finally,
looking at Experiment III (no transfer learning–random weight
initialization), Case II CNN outperforms Case I CNN with
an overall accuracy higher of about 20% on average. This
is because the weights of the network core are not updated
during fine-tuning. However, Case II CNN performance in
Experiment III is lower by about 2% compared to Experiment
I. This highlights the importance of transfer learning as it
makes Case II adapted network adaptation in Sec III-B2 reach
state-of-the-art results. The importance of transfer learning is
confirmed in Table VII, which shows the accuracy using Case
II CNN in Configuration I and II by varying the size of the pre-
training dataset (DTunl ). In Configuration I, the performance
decreases with the number of patches in the pre-training by
about 1% only: when the weights are randomly initialized,
the accuracy is about 98.62%, while using all the data in the
pre-training, the accuracy raises to 99.58%. This is also true
in Configuration II: the accuracy is 96.01% without transfer
learning and 97.25% when transfer learning is used with all
DTunl .

2) MCoRDS-3 dataset: The proposed method qualitatively
segments the radargrams with good overall accuracy and the
more complex MCoRDS-3 dataset (see Fig. 11). Despite
the accurate segmentation map, the floating and inland ice
are better differentiated by the CNN in Case II (Fig. 11(e)
and (f)). However, similarly to the MCoRDS-1 dataset, the
segmentation maps with the Case I CNN (Fig. 11(c) and
(d)) show significant segmentation errors in the grounding
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 11. Segmentation map of the MCoRDS-3 for Experiment I using all DTr for fine-tuning: (a) input radargram, (b) reference map, (c) Case I with
Configuration I, (d) Case I with Configuration II, (e) Case II with Configuration I, (f) Case II with Configuration II.
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Fig. 12. Segmentation maps of MCoRDS-3 for an inland patch (upper line) and a coastal area patch (lower line): (a) input radargram; (b) reference map; for
Case I CNN, Experiment I with Configuration II using (c) 67% and (d) 100% of DTr for fine-tuning, (e) Experiment II with Configuration II with 100%
of DTr , (f) Experiment I with Configuration I with 100% of DTr ; for Case II CNN, Configuration II and Experiment I, using (g) 67% and (h) 100% of
DTr , (i) Configuration II and Experiment II, with 100% of DTr , (j) Configuration I and Experiment I with 100% of DTr .

TABLE VIII
EXPERIMENTS I-III PERFORMANCE WITH CASE I AND II WITH CONFIGURATION I-II FINE-TUNED WITH 100% OF DTr COMPARED WITH BASELINE

METHODS (MCORDS-3 DATASET).

Methodology OA Metric νfs νn νb νl νfl Average

Case I
Configuration I 99.26% Sensitivity 0.9986 0.9885 0.9995 0.9947 0.9989 0.9960

Specificity 0.9998 0.9980 0.9961 0.9982 0.9991 0.9982

Case I
Configuration II 96.43% Sensitivity 0.9947 0.9773 0.9404 0.8412 0.9448 0.9397

Specificity 0.9980 0.9573 0.9969 0.9970 0.9916 0.9882

Case II
Configuration I 99.33% Sensitivity 0.9974 0.9888 0.9990 0.9990 0.9974 0.9963

Specificity 0.9999 0.9994 0.9963 0.9984 0.9985 0.9985

Case II
Configuration II 96.55% Sensitivity 0.9975 0.9609 0.9965 0.8881 0.9783 0.9642

Specificity 0.9999 0.9741 0.9972 0.9971 0.9817 0.9900

CNN proposed in [21] 98.37% Sensitivity - 0.9957 0.9817 0.9881 - 0.9882
Specificity - 0.9952 0.9831 0.9899 - 0.9871

SVM and handcrafted
features [7] 97.9% Sensitivity - 0.9834 0.9530 0.9833 - 0.9733

Specificity - 0.9775 0.9970 0.9911 - 0.9885

TABLE IX
EXPERIMENTS I-III OA FOR CASE I AND II CNNS, VARYING THE FINE-TUNING DATASET SIZE (MCORDS-3 DATASET).

% of DTr # Patches Configuration I Configuration II
Experiment I Experiment I Experiment II Experiment III

Case I

8 % 79 93.37 % 85.30 % 84.45 % 51.02 %
17 % 157 97.31 % 93.18 % 93.17 % 53.76 %
67 % 630 99,14 % 95.67 % 95.66 % 56.43 %
83 % 787 99,18 % 96.01 % 95.98 % 59.12 %

100 % 944 99,26 % 96.43 % 96.40 % 60.88 %

Case II

8 % 79 91.44 % 84.47 % 84.37 % 79.38 %
17 % 157 97.09 % 92.92 % 92.78 % 88.91 %
67 % 630 99.12 % 95.72 % 95.51 % 92.31 %
83 % 787 99.17 % 95.91 % 95.78 % 93.72 %

100 % 944 99.32 % 96.55 % 96.50 % 94.32 %

TABLE X
EXPERIMENT IV OA CASE II CNN (MCORDS-3 DATASET).

% of DTunl # Patches Configuration I Configuration II

0 % 0 98.22 % 94.32 %
33 % 1034 98.48 % 95.75 %
66 % 2069 98.67 % 96.29 %
100 % 3448 99.32 % 96.55 %

area. Moreover, in both Cases, Configuration I performance is
comparable with Configuration II. In the segmentation maps

with Configuration II, both Case I and II CNNs predict the
vertical reflections from the crevasses of the ice shelf as part
of the class floating ice a few times (yellow class, left side).
Moreover, the CNNs are less accurate in predicting the deepest
ice layering (green class, right side) with Configuration II.
This is also visible in Fig. 12, where we show segmentation
maps of two patches (Fig. 11(a)) varying the number of fine-
tuning samples. Experiments with lightweight Case I CNN
(Fig. 11(c)-(f)) are less affected by the small number of fine-
tuning samples than those with the deeper Case II CNN
(Fig. 11(g)-(j)). However, for both cases, experiments with
the higher number of fine-tuning samples (Fig. 11(e) and (f)
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for Case I) and (Fig. 11(h) and (j) for Case II) show better
qualitative results for both inland and floating-ice patches.

Moving to the quantitative results, Table VIII shows that
the proposed and the baseline methods have all excellent
performance and high overall accuracy above 96 %. However,
similarly to MCoRDS-1 results, the deep Case II CNN with
Configuration I outperforms all the others. Similarly to the
MCoRDS-1 dataset, all the classes are segmented with high
sensitivity and specificity on average higher than 93% and
98%, respectively. Despite the strongly unbalanced priors also
for MCoRDS-3 dataset, the less frequent classes (bedrock and
floating ice) are discriminated with a sensitivity higher than
94% and a specificity higher than 98%.

With the largest fine-tuning dataset (100% of DTr), Case
II CNN outperforms Case I CNN in Configuration I with an
overall accuracy of 99.33% and in Configuration II with an
overall accuracy of 96.55%, respectively. In all the experi-
ments, the segmentation performance with Configuration II is
comparable with those with Configuration I. The performance
difference between Configuration I and II is more significant
than the MCoRDS-1 dataset. For the MCoRDS-1 dataset, the
performance difference is lower than 1% (see Table VI), while
for the MCoRDS-3 dataset, the difference varies from 5% to
3% (see Table IX). As expected, dramatically decreasing the
fine-tuning datasets to about 17% of DTr, the overall accuracy
decreased but remained above 92% for both Configurations.
Looking at the results of Experiment II (removing the data
augmentation) in Table IX, the impact of data augmentation
is negligible for all the sizes of the fine-tuning dataset. This
contrasts the MCoRDS-1 results (data augmentation increased
the performance by about 5%) because of greater dataset
complexity. Finally, in Experiment III (no transfer learning),
Case II outperforms Case I with an overall accuracy of
average higher of about 30%. However, Case II performance
in Experiment III is lower by about 5% than in Experiment I,
highlighting the importance of transfer learning.

This is also confirmed by Table X, which shows the accu-
racy using Case II CNN in Configuration I and II by varying
the size of the pre-training dataset (DTunl ). In Configuration I,
the performance decreases with the decreasing of the number
of patches used for pre-training by only about 1%. When
the weights are randomly initialized, the accuracy is about
98.22%, while when using all the data in the pre-training, the
accuracy rises to 99.32%. This is also true in Configuration II,
where the accuracy is 94.32% without pre-training and 96.55%
when pre-training with all DTunl . Here, the unadapted CNN,
DeepLabV3+, was tested in the most critical and realistic
scenario, Configuration II, obtaining inferior performance in
terms of segmentation accuracy (i.e., below 60%) and quali-
tative results, showing no continuity between the segmented
patches. These results emphasize that the unadapted CNN
suffered severe overfitting.

3) Computational load analysis: Due to the significant
number of trainable weights of the CNNs, especially the W-
Net and the adapted CNN of Case II, a powerful GPU is
required to execute these experiments. Here we employed an
Nvidia Tesla T4 GPU and an AMD EPYC 7V12 CPU with
64 GB of memory, specifically designed to run large and

complex computational loads. The GPU performs differently
in fine-tuning depending on the dataset (i.e., MCoRDS-1 or
MCoRDS-3) and the CNN (i.e., MobileNet and W-Net). With
the MCoRDS-1 dataset, the machine requires less computa-
tional time than the MCoRDS-3 dataset because of the lower
spatial resolution of MCoRDS-1. For one MCoRDS-1 patch,
Case I CNN takes an average of 11ms, and Case II CNN 31
ms. For one MCoRDS-3 patch, Case I CNN takes an average
of 75ms, and Case II CNN 119 ms. Finally, since a pre-
trained CNN can be easily retrieved, Case I does not need
to be manually pre-trained. However, the Case II W-Net has
to be manually pre-trained with DTunl . This also requires an
extra computational cost of about around 20 hours.

VI. CONCLUSIONS AND FUTURE WORKS

We successfully proposed a novel framework for transfer
learning for weakly supervised RS data segmentation. Within
the framework, we propose two transfer learning approaches
to address the lack of labeled data in the RS domain. The
experimental results show that the proposed approaches can
accurately identify the target classes and distinguish between
classes in the inland and coastal area (novel in the literature)
despite the strongly unbalanced priors.

The results proved the effectiveness of the transfer learning
framework, which allowed the robust pre-train of a lightweight
and a deep CNN to perform radargram segmentation accu-
rately. The lightweight CNN strongly increases the perfor-
mance from about 60% (random initialization) to more than
96% when pre-trained with ImageNet. When pre-training with
radar data, the deep CNN accuracy improves from 94% to
more than 96%. However, Case II is more computationally
expensive in terms of training time and hardware resources.
Moreover, transfer learning effectiveness is evident when fine-
tuning with a reduced amount of labeled samples (a hundred).
The deeper CNN performs better than the lightweight CNN
when fine-tuned with a larger dataset at a higher computa-
tional time cost. However, as the size of fine-tuning dataset
decreases, the lightweight CNN performs better than the
deeper CNN. Therefore, the lightweight CNN pre-trained on
ImageNet is extremely convenient when the computational
resources are constrained or the labeled data availability is
limited. On the other hand, the deeper CNN pre-trained on
radar data is more suitable for more accurate segmentation
maps. Further, data augmentation has a limited impact on
large and medium datasets. However, on small and simple
datasets, like MCoRDS-1, the performance of training with
data augmentation improves by about 5%. For a more complex
dataset, like MCoRDS-3, the accuracy when training with a
minimal dataset with and without data augmentation is similar
(about 80%). Remarkably, the performance using the same
campaigns for training and testing are comparable (a few %
lower) to using different campaigns for training and testing.
This indicates that radargrams can be accurately segmented
with the existing fine-tuned networks without requiring fur-
ther training. Additionally, the inferior results obtained by
the unadapted CNN and without transfer learning prove the
proposed techniques’ effectiveness in analyzing RS data with
DL approaches.
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In future works, we plan to test the proposed framework
and methodologies to detect more subsurface targets, such as
basal ice, and study how to adapt the networks to segment
radargrams independently of their acquisition location (e.g.,
Antarctica, Greenland) or sensor (e.g., MCoRDS-1, MCoRDS-
3). Moreover, we aim to use the proposed approaches to
analyze planetary radar sounder data of icy and arid areas.
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