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An Approach Based on Deep Learning for Tree
Species Classification in LiDAR data acquired in

Mixed Forest
Daniele Marinelli, Claudia Paris, Member, IEEE, and Lorenzo Bruzzone, Fellow, IEEE

Abstract—This letter proposes a novel method based on Deep
Learning (DL) to forest species classification in airborne Light
Detection and Ranging (LiDAR) data. Differently from the state-
of-the-art approaches, the proposed method: (1) does not assume
any prior knowledge either on the forest to be classified or on the
sensor used to acquire the LiDAR data, and (2) can be applied
to heterogeneous forest characterized by mixed species. First,
the 3D point cloud of each individual tree is decomposed into
8 angular sectors to generate a multi-slices representation of
the vertical structure of the tree. This representation models
the foliage, the stem and the branches of the tree crown as
well as depicts the internal and external crown properties.
Then, a Multi-View CNN (MVCNN) DL automatically extracts
features used to discriminate the different tree species. This
network is pre-trained on the massive ImageNet database, thus
guaranteeing fast convergence with a relatively small number of
ground reference data. Experiments were carried out on high
density airborne LiDAR data collected over a multi-layer multi-
age forest characterized by four conifers and three broadleaf
species. The proposed method outperformed the state-of-the-art
approaches increasing the Overall Accuracy (OA) up to 16% and
18.9% compared to a DL and a shallow tree species classification
methods, respectively. When applied to coniferous or broadlaef
forests, the proposed method showed an increase of OA 10.1%
and 15.9% (for conifers), and 9.5% and 21.6% (for broadleafs)
compared to the DL and shallow methods, respectively.

Index Terms—Tree species, Deep Learning (DL), Mixed Forest,
Light Detection and Ranging (LiDAR), Remote Sensing (RS).

I. INTRODUCTION

REMOTE sensing data have been extensively employed to
support forest species classification due to the possibility

of objectively monitoring wide-area forests. In particular, a
large effort has been devoted to develop methods for the
classification of tree species on Light Detection and Ranging
(LiDAR) data [1]. By taking advantage from the capability
of the laser scanner to measure both the inner structure and
the 3D shape of the tree crowns, it is possible to accurately
distinguish different forest species [2], [3]. In [2], Li et al.
extract several LiDAR features to describe the horizontal and
vertical structures of foliage and branch distribution (e.g.,
tree envelop, foliage clustering scale, and gap distribution).
Their method has been defined to distinguish four tree species
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characterized by similar crown structure, i.e., trembling aspen,
sugar maple, jack pine, and white pine, when high density
LiDAR data having at least 50 pts/m2 are available. Similarly,
in [3], Harikumar et al. model both internal and external
geometric properties of the tree to distinguish four conifer
species (i.e., Norway Spruce, European Larch, Swiss Pine,
and Silver Fir). By defining an algorithm tailored to the conifer
crown structure, their method is able to outperform other state-
of-the-art approaches. Indeed, accurate classification results
can be achieved with methods based on hand-crafted feature
extraction by leveraging on prior knowledge of both the forest
properties (i.e, species and structure) and sensor characteris-
tics. However, when dealing with mixed heterogeneous forest
classification problems, there is the need to use approaches that
automatically derives optimal features to model the different
crown structures.

Recently, few Deep Learning (DL) approaches have been
applied to the tree species classification task considering
high-density mobile or terrestrial LiDAR data. In [4], Zou
et al. applied a Deep Belief Network (DBN) to a LiDAR
point cloud acquired by terrestrial laser scanning systems for
distinguishing four types of trees. First, the 3D point cloud
of an individual tree is projected onto 2D images using a
voxel-based rasterization step. Then, the images are classified
according to the DBN model trained from scratch. The authors
exploit a DBN model due to its capability of achieving better
convergence with small-scale training set compared to other
DL models, which typically require a huge number of training
samples. Similarly Guan et al. [5], represent the different
profiles of the tree LiDAR point clouds as waveforms ingested
by a deep Boltzmann machines. The method was successfully
tested on urban tree species acquired using mobile LiDAR
data. In [6], a deep Convolutional Neural Network (CNN)
is used to classify individual tree crowns into conifers and
deciduous trees. Two discrete representations using leaf-off
and leaf-on LiDAR data are used to generate Digital Surface
Model (DSM) and 2D side view profiles. In [7], the authors
focus on the classification of birch and larch by defining the
LayerNet deep model made up of a novel layered feature
encoding network and the standard PointNet decoding network
[8]. The point cloud used in the paper are acquired by a
Unmanned Aerial Vehicle (UAV) scanner, which accurately
represents the tree stem and the branches needed by the
approach to distinguish the two forest species.

Although DL models are promising for individual tree
species classification using LiDAR data, most of the methods
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focus on mobile or terrestrial LiDAR point clouds, while air-
borne LiDAR data are typically classified with shallow models
[1]. This is probably due to similarities of terrestrial data to
the ones used in computer vision that allows for methods
developed for such field to be applied on terrestrial LiDAR
point clouds, thus increasing the use of these data. However,
to perform large scale forest mapping, experiments should be
carried out on airborne LiDAR data. The few methods tested
on airborne data mainly focus on simple classification task
by discriminating broadleaf trees from conifers or focusing
on two species, i.e., on binary classification tasks. From the
operational view point, it is not feasible to assume the classifi-
cation of few forest species when a large-scale environmental
analysis has to be carried out. To solve this problem, this letter
proposes a novel approach to tree species classification based
on DL and airborne LiDAR data defined for heterogeneous
forest areas characterized by mixed species. In particular, the
proposed approach takes advantage from the Multi-View CNN
(MVCNN) DL model widely used in the computer vision
community for 3D shape recognition [9] to automatically
extract semantic abstract features capable of discriminating
different tree species. This peculiar DL architecture combines
information provided by multiple views of a 3D shape into a
single and compact shape descriptor thus working in the image
domain. The main contribution of this work is to propose a
method that: (a) automatically detects the effective features to
distinguished different tree species; (b) it can take advantage,
working in the image domain, of a network pre-trained on the
massive ImageNet database to rapidly boost the performance
using a relatively small training set; and (c) can be applied
to heterogeneous mixed forest without the need of manually
tuning any model parameter.

II. PROPOSED TREE SPECIES CLASSIFICATION APPROACH

The proposed tree species classification approach assumes
that: (a) the tree crowns are delineated in the 3D point cloud
space, (b) each segmented tree point cloud has a central
stem, and (c) the 3D structure of the trees (i.e., branch and
foliage) is sufficient to discriminate the different tree species.
Regarding the first assumption, a reliable segmentation step is
necessary for a proper training and exploitation of the model.
Indeed, errors such as undersegmentation (typical especially
in dense forests) may lead to an incorrect representation of
the crown structure and thus an ineffective training. Note
that this is a problem common to all single tree methods.
The method is based on two main steps: (i) the multi-slice
decomposition of the tree crowns, and (ii) the DL based tree
species classification. In the following, details are given.

A. Multi-Slice Decomposition of the Tree Crowns

Let Pk = {pi}Ni=1 be the set of LiDAR points associated to
the kth segmented tree and let tk be the corresponding tree-top,
where pi and tk are 3-elements row vectors defined by the x,
y, z coordinates, i.e., pi = (xi, yi, zi) and tk = (xt

k, y
t
k, z

t
k). In

order to fully take advantage from the capability of the LiDAR
data to accurately represent the structure of the trees, Pk is

(a) (b) (c)

Fig. 1: Example of multi-slice generation applied to a conifer:
(a) original point cloud, (b) sector analysis with the points
selected for one slice highlighted in orange, (c) resulting slice.

first decomposed into N angular sectors to generate a multi-
slices representation of the vertical structure of the tree. Figure
1 shows a qualitative example of multi-slice representation
of a conifer, where the sectors are defined by the vertical
panels. Such decomposition allows us to accurately depict the
internal and external crown properties, by properly modelling
the foliage, the stem and the branches of the tree crown.

Let Θj be the angular sector defined between θj = 2πj/N
and θj+1 = 2π(j + 1)/N , where j ∈ [0, N -1]. The set of
LiDAR points belonging to the angular sector PΘj

k , which are
represented in orange in Figure 1b, can be defined as:

P
Θj

k =
{

pi ∈ Pk

∣∣ arctan(xi − xt
k

yi − ytk

)
∈ [θj , θj+1)

}
, (1)

The 3D vertical profile of the angular sector can be repre-
sented by a 2D view, by considering the coordinates zi of the
LiDAR points pi ∈ P

Θj

k and their distances from the stem.
Let us assume that the tree-top correctly represent the location
of the tree stem. The absolute distance of LiDAR points from
the stem can be computed as follows:

ρi =
√
(xi − xt

k)
2 + (yi − ytk)

2 (2)

To this end, we first apply a circular projection to the points
pi ∈ P

Θj

k onto the ρz plane centered in the tree-top coordi-
nates (xt

k, y
t
k) to map the points from the 3D space R3 onto

the 2D space R2. Let S
Θj

k (ρ) be the vertical profile of Θj .
After the mapping, the LiDAR tree crown Pk is represented
by N 2D views, i.e., [SΘ1

k (ρ), SΘ2

k (ρ), · · · , SΘN

k (ρ)], each one
representing one slice. It is worth noting that the production
of the 2D views of the images should: (1) avoid loss of
information in the description of the 3D structure, and (2)
generate 2D profiles consistent to each other. The latter aspect
is critical since the image properties (e.g., size) must not
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have an impact on the classification. To this end, the LiDAR
points are all rendered as black dots with equal size to drive
the MVCNN to focus on the crown structure and enhance
the generalization capability of the model. Figure 2 shows a
qualitative example of multi-slice decomposition of two tree
crowns by comparing conifer (silver fir) and broadleaf (aspen)
forest species. The figure clearly depicts how the proposed
representation effectively captures both the crown shape and
internal structure of the trees, by emphasizing the different
geometrical properties of the considered tree species.

B. DL-based Tree Species Classification

DL models proved to be very effective for extracting ab-
stract semantic features to support complex classification task.
In particular, CNN models trained on large dataset of natural
images such as ImageNet or GoogLeNet are able to accurately
define in a fast and automatic way image descriptors useful for
several vision tasks (e.g., object detection, scene recognition,
texture detection) [10]. In this context, the possibility of taking
advantage from a pre-trained architecture is extremely inter-
esting to address forest species classification of LiDAR data.
Indeed, the small training sets typically available for forestry
applications are not sufficient to successfully train a DL model
from scratch. For this reason, the proposed approach takes
fully advantage of the capability of the MVCNN model pre-
trained on the large database of annotated images ImageNet
[9] to accurately address the considered classification task with
a relatively small set of ground reference data.

The MVCNN model is able to synthesize the information
from multiple views into a single compact 3D shape descriptor,
which can be used to perform the classification task. In greater
detail, each slice S

Θj

k (ρ) is passed through a dedicated CNNΘ
j ,

which is able to automatically extract an informative set of
abstract semantic features. In particular, the CNN model is
a VGG-11 architecture composed by 8 convolutional layers
followed by 3 fully connected layers [11]. It is worth noting
that no manual parameter tuning is performed per slice, since
all the feature extractors [CNNΘ

1 ,CNNΘ
2 ,· · · ,CNNΘ

N ] share the
same parameters. Let us define as fΘj

k the set of features
extracted for the jth view S

Θj

k (ρ) of the kth segmented
tree. The set of N features [fΘ1

k (ρ), fΘ2

k (ρ), · · · , fΘN

k (ρ)] is
aggregated into a unique 3D image descriptor Fk through
a view-pooling layer considering an element-wise maximum
operation across the views. The final descriptor Fk is then
used for classification. Also in this case the considered DL
architecture takes advantage from the capability of a CNN
to properly handle this task. To carry out this step, the
network is fine-tuned on the considered training set using
stochastic gradient descent with back-propagation. Note that
the considered network does not require to have the same
number of points per segmented crown. This condition allows
us to: (1) fully take advantage from the capability of the laser
scanner to describe the inner structure of the trees, and (2) not
impose any constrain on the LiDAR data acquisition. Another
advantage of the proposed approach is that it does not require
to have a very large number of labeled samples to train the DL
model from scratch [4]. Indeed, at operational level this may

lead to over-fitting and curse of dimensionality problems due
to the lack of reference data. In particular, the use of a network
pre-trained on millions of annotated images allows for a fast
boost of the performance with a small training set. Indeed,
the size of annotated 3D models is rather limited compared to
image datasets, e.g., ModelNet contains about 150K shapes.
Finally, the use of the proposed MVCNN allows for accurate
classification results with low computational burden.

III. DATASET AND EXPERIMENT DESCRIPTION

The proposed method has been tested in a study area of
800 ha located in the southern Italian Alps in the Trento
province (central coordinates 46◦ 17’ 57”, 46◦ 17’ 57”). This
area is characterized by mixed tree species composition with
both conifers and deciduous trees. The most common conifers
are Silver Fir (AB), Norway Spruce (AR), Larch (LA) and
Swiss Pine (PC), while the most common broadleaf trees are
Silver birch (BE), Common Alder (ON) and Aspen (PT). We
manually delineated the tree crowns by photo-interpretation of
the canopy height model and the point cloud for those trees
surveyed in the field, i.e., associated to a tree species. This
resulted in a dataset composed by 1216 trees associated to 7
different forest types. Table I shows the class distribution of the
considered datasets and the main dendrometric measurements
statistics for each class. The statistics show that the we selected
a significant diverse set of trees in order to test the propose
approach on challenging multi-age multi-layer forest area.

The number of slices N (i.e., 2D views) was set to 8 taking
into account the pulse density and the desired result in terms of
representation of the crown structure in each slice. To identify
the best training parameters, we performed multiple run with
different combinations of weight decay (wd) and learning
rate (lr) testing the following ranges: wd ∈ [0.001, 0.1] and
lr ∈

[
5e−5, 5e−3

]
. Finally, we set wd and lr equal to 0.01

and 5e−5, respectively. To this end, the training set (Table
I) has been used with a cross-validation strategy, while the
independent test set has been used only to asses the model
performances. The proposed method has been compared with
both a Shallow Method (SM) [12] based on the selection
of hand-crafted features and the 3D DL model PointNet++
[8], which is widely used for point cloud classification. The
considered SM is the one that provided the best results in [12],
which presents an extensive analysis of tree species classifi-
cation using different combination of hand-crafted features.
Since we considered a mixed forest, the features related to
the crown base height were neglected as it showed noisy and
unstable behaviour across the different species. Since no pre-
trained PointNet++ models are publicly available, in order
to have a fair comparison we also report the classification
results obtained by the MVCNN when it is trained from
scratch. In greater details, we tested 4 different configurations:
i) classification of all the 7 tree species (i.e., mixed forest);
ii) classification of only the conifers classes (AB, AR, LA,
PC); iii) classification of only broadleaf classes (BE, ON, PT);
iv) binary classification (broadleaf trees/conifers). The results
have been evaluated in terms of Producer Accuracy (PA), User
Accuracy (UA), F-score (F1) and OA.
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(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o) (p)

Fig. 2: Qualitative example of multi-slice decomposition of two tree crowns: (a-h) conifer (Silver Fir), (i-p) broadleaf (Aspen).
One can notice that the profiles acquired over different angular sector allow us to capture irregular structure of the tree crowns.

TABLE I: Class distribution and dendrometric measurements
of the dataset.

Class
# Trees Top Height [m] Crown Area [m2]

TOT Train Test Min Max Mean Min Max Mean

AB 158 117 41 9.7 40.4 26.9 11.4 160.0 58.6
AR 402 300 102 7.2 46.2 27.2 3.9 146.4 48.9
BE 108 82 26 5.2 19.4 13.1 3.9 125.2 30.6
LA 335 251 84 10.3 44. 28.4 10.1 178.5 69.6
ON 65 49 16 4.8 17.2 10.8 5.7 107.2 31.3
PC 67 47 20 7.7 21.2 13.6 4.5 66.1 28.1
PT 81 60 21 7.8 31.4 18.8 9.4 169.3 50.4

Total 1216 906 310
* AB = Silver Fir; AR = Norway Spruce; BE = Silver birch; LA = Larch;

ON = Common Alder; PC = Swiss Pine; PT = Aspen

IV. EXPERIMENTAL RESULTS

Table II shows the quantitative results obtained by the
proposed and the baselines methods when applied to the mixed
forest. As expected, both the DL approaches outperformed the
baseline shallow method due to the possibility of extracting
more robust features. The proposed approach obtained the best
overall and single classes accuracy proving the effectiveness
of the multi-slice representation. Also without pre-training, it
achieved higher OA and mean F1 with respect to Pointet++,
thus proving the effectiveness of the proposed approach.
However, as expected the pre-trained MVCNN increases the
OA of 8.71% with respect to the non pre-trained model. From
the results obtained, it turned out that in the considered dataset,

the most challenging classes are the broadleaf trees (BE, ON,
PT) due to the fact that: (i) they are the less represented classes
(i.e., few training samples), and (ii) their crown structures have
a much higher variability with respect to conifers. However,
the proposed method (pre-trained) achieved good results for
all the three classes with the lowest F1 score of 64.52% for the
ON class compared to 54.9% and 40.00% obtained with the
SM and Pointnet++, respectively. Similar results are achieved
also for the BE and PT classes, where the best F1 of 68.97%
and 72.22% is achieved by the proposed method, compared
to 50% and 51.61% obtained with the SM and 57.69% and
46.67% obtained with the Pointnet++, respectively. This is true
also for all the conifers classes (AB, AR, LA, PC), where the
proposed method achieved the highest F1 scores compared to
the baselines. Focusing on the proposed method, the lowest F1
is related to the ON class, i.e., 64.52%. This is due to the fact
that this is the class having the highest variability in terms of
crown structure. Indeed, by visually analyzing the tree point
clouds associated to different trees, one can notice that they
present very different shapes. Moreover, this minor class is the
one having the smallest number of samples in the training set.

Table III shows the numerical results for the remaining
three configurations. The proposed method (both without pre-
training and pre-trained) achieved the best result with respect
to the two reference methods. As expected, it achieves signifi-
cantly better results with respect to the mixed forest case (see
Table II), which represents the most challenging classification
task. Indeed, similar OA and F1 score are achieved when
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TABLE II: Producer Accuracy (PA), User Accuracy (UA), F-score (F1) and Overall Accuracy (OA) obtained on the considered
mixed forest (i.e., four conifers and three broadleaf tree species) for the: 1) baseline SM [12], (2) baseline deep method [8],
(3) proposed method with the MVCNN trained from scratch, and (4) proposed method with the pre-trained MVCNN.

Class
SM [12] Pointnet++ [8] Proposed (No Pre-Training) Proposed (Pre-trained)

PA UA F1 PA UA F1 PA UA F1 PA UA F1

AB 19.05 29.63 23.19 51.35 46.34 48.72 78.95 36.59 50 82.76 58.54 68.57
AR 83.81 69.84 76.19 70.87 88.24 78.6 77.31 90.2 83.26 85.71 94.12 89.72
BE 57.14 44.44 50 57.69 57.69 57.69 46.51 76.92 57.97 62.5 76.92 68.97
LA 61.8 76.39 68.32 74.39 72.62 73.49 90.28 77.38 83.33 86.36 90.48 88.37
ON 73.68 43.75 54.9 42.86 37.5 40 63.64 43.75 51.85 66.67 62.5 64.52
PC 100 86.96 93.03 66.67 50 57.14 73.08 95 82.61 100 95 97.44
PT 36.36 88.89 51.61 77.78 33.33 46.67 65 61.9 63.41 86.67 61.9 72.22

Mean 61.69 62.84 59.61 63.09 55.1 57.47 70.68 68.82 67.49 81.52 77.07 78.54

OA 64.31 67.10 74.52 83.23

TABLE III: Mean F-score (F1) and Overall Accuracy (OA)
obtained by the 4 methods when applied to a coniferous
forest, a broadleaf forest and when considering the binary
classification.

Experiment
SM [12]

Pointnet++

[8]

Proposed

(No Pre-training)

Proposed

(Pre-trained)

Mean F1 OA Mean F1 OA Mean F1 OA Mean F1 OA

Conifers 67.62 70.70 71.98 76.52 78.31 82.59 85.72 86.64

Broadleafs 60.66 60.87 72.86 73.02 70.73 71.43 82.02 82.54

Binary 89.90 92.92 87.88 92.58 91.48 94.52 93.32 95.81

considering homogeneous forest made up of only conifers (F1
of 82.02% and OA of 82.54%) or only broadleaf trees (F1 of
85.72% and OA of 86.64%). The binary classification achieved
high OA and F1, thus confirming that the proposed method
can distinguish the two macro forest classes.

V. CONCLUSION

This letter has presented a method based on DL to the
classification of tree species in mixed forest with airborne
LiDAR data. The method captures the tree crown structure
information by slicing the tree point clouds into multiple
angular sectors and producing a 2D views of the vertical
profile of each sector. The set of multi-slice images is given
as input to a MVCNN DL model, which extracts robust
semantic features that results in good accuracy in mixed
forests. The experimental results obtained confirms that the
proposed method can effectively model the crown information
of different tree species due to the multi-slice approach that
captures the crown structure in different portion of the trees.
Moreover, the multi-view CNN can learn such representation
for a set of diverse tree species using a training set of relatively
small dimension. A consistent improvement with respect to
both the shallow and deep baseline methods is achieved by
the proposed method, both with and without pre-training the
network. Indeed, the approach obtained good results on both
conifers and broadleaf classes. In particular, the method is able
to handle the latter, which is a challenging test case due to the
highly irregular and varying structure of the tree crowns.

As future development, we plan to expand the dataset both
in terms of number of trees and species to improve the

training process. Indeed, since the results presented in this
work have been achieved with a relatively small training set
(less that a 1000 samples), it is reasonable to expect room
for improvement, in terms of classification accuracy, with an
improved and larger training set. Moreover, we plan to evaluate
the proposed approach on other tree types and forests located
in different geographical area. Finally, according to the results
of Table III, we aim to explore the possibility of defining a
hierarchical approach that first performs a binary classification
and then separately classify the tree species of the conifers and
broadleaf trees.
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