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Abstract— During the last decades, radar sounders provided
direct measurements (radargrams) of the Earth’s polar caps’
subsurface. Radargrams are of critical importance for a better
understanding of glaciologic structures and processes of the
ice sheet in the framework of climate change. This article
aims to automatically extract information on basal boundary
conditions given their substantial relevance for modeling the
ice-sheet processes, such as the sliding. We introduce a novel
automatic method based on deep learning to detect the basal layer
and basal units in radargrams acquired in the inland of icy areas.
Radargrams are segmented into englacial layers, bedrock, basal
units, and noise-limited regions; the latter includes the echo-free
zone (EFZ), thermal noise, and signal perturbation. The network
is a U-Net with attention gates and the Atrous Spatial Pyramid
Pooling (ASPP) module that automatically extract semantically
meaningful features at different scales. Experimental results on
two datasets acquired in north Greenland and west Antarctica by
the Multichannel Coherent Radar Depth Sounder (MCoRDS3)
indicate a high overall segmentation accuracy. The accuracy of
basal ice and signal perturbation detection is high, and that of the
other classes is comparable with the literature techniques based
on handcrafted features. The results show the effectiveness of
the proposed method in automatically extracting semantically
meaningful features to segment radargrams and map the basal
layer and basal units.

Index Terms— Basal boundary conditions, basal units, convolu-
tional neural network, cryosphere, deep learning, radar sounder
(RS), remote sensing.

I. INTRODUCTION

ICE sheets feed ice shelves that calve and melt into the
sea, representing one of the leading causes of the global

sea-level rise. Ice sheet seaward flow depends on the basal
boundary conditions, related to several thermal and mechanical
factors at the basal interface [1]–[3]. The basal layer, i.e., the
deepest part of the ice column, is critical for understanding
ice sheet processes, including sliding. Therefore, accurate
modeling of the basal conditions requires direct measurements
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of the ice sheet down to the bedrock. Traditionally, information
on the ice sheet is extracted by analyzing either ice core
samples obtained by drilling or radar sounder (RS) data.
Ice core samples have been providing a large amount of
information [4], [5], but extracting them is intrusive and
expensive. To deal with these issues, RSs have been widely
used during the last decades to probe the inside of the ice
sheets in Greenland and Antarctica [6]. RSs are active sensors
that transmit electromagnetic (EM) waves toward nadir with
frequencies usually below 1 GHz and with a wide enough
bandwidth to resolve ice features in the vertical dimension.
The EM waves propagate into the subsurface and interact
with the buried geologic structures. Part of the wave power is
reflected toward the antenna by each dielectric discontinuity.
The coherent sum of these reflections is collected in radar-
grams. A large amount of airborne RS data is available, and
the data volume is expected to grow further in the future with
planned missions [7]–[9]. Recently, the basal layers have been
visually analyzed to identify geologic structures, such as basal
units [10], [11] and Units of Disrupted Radio-stratigraphy
(UDR) [12], [13]. They elongate for several kilometers and
extend up to half of the ice sheet thickness, causing the
ice layering to fold toward the surface. Although visual
inspection has been supporting the characterization of several
targets, it is subjected to several limitations. Visual inspection
is time-demanding and not suitable for analyzing a large
number of radargrams. Moreover, it is subjective and can lead
to inconsistencies and misinterpretations. Hence, automatic
methods are now emerging to address these limitations and
automatically extract information on the subsurface [14]–[17].

In the literature, automatic methods for analyzing the basal
boundary conditions in RS data fall into three categories.
The first uses numerical modeling for ice sheet geologic
processes and locally infers the basal boundary condition
type. Numerical models [18], [19] consider data from differ-
ent sensors (e.g., altimeter and optical images) and analyses
(e.g., subsurface temperature profile) as input, extracting only
the ice sheet thickness and the topography of the basal
interface from RS data. However, other studies [11], [20], [21]
indicate that RS data contain more information, including basal
units and water at the interfaces that can further enhance the
modeling of the basal conditions.

The second strategy automatically analyzes the layer stratig-
raphy of radargrams to identify disruptions in the basal
layer without considering the basal interface. The englacial
stratigraphy (i.e., the layer) is extracted with a line detec-
tion algorithm, and the line slopes are used to model
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the disruption [12], [22], [23]. However, these techniques
focus on analyzing the ice stratigraphy disruption without
mapping the basal layer, e.g., basal ice and basal units.
The third strategy extracts the main geologic targets by
semantically segmenting radargrams. The study in [16] seg-
mented radargrams into three targets: the stratigraphy of
the ice layering, the bedrock, and a combination of the
echo-free zone (EFZ) and thermal noise. Donini et al. [15]
expanded the work in [16] by considering also basal ice.
Both methods extract handcrafted features based on a priori
knowledge on the target class spatial and statistical properties
to perform a pixel-based classification with support vector
machines (SVMs). Handcrafted features strongly depend on
human design and model-specific classes. However, increasing
the number of classes, this approach is subjected to perfor-
mance degradation in tackling the problem complexity. Thus,
there is a need to develop methods capable of extracting
robust features automatically. Recently, deep learning has
provided powerful means for image segmentation in various
applications [24]–[29]. Moreover, deep-learning-based meth-
ods handle the feature extraction automatically and provide
robust results in other applications.

In the semantic deep learning literature, several works
exist performing a supervised pixel-based learning task, given
reliable training samples [24]–[29]. The standard approach is
based on dense or fully convolutional deep neural networks
(FCNNs). Dense networks are made of fully connected layers,
where each neuron in one layer is connected to each neu-
ron in the previous and next ones [24]. FCNNs consist of
1 × 1 convolutions that perform the task of the fully
connected layers in dense networks. In recent years, many
variants of FCNNs have been proposed [25]–[29] mostly
to analyze passive data (e.g., optical data). For instance,
Ronneberger et al. [28] proposed a U-Net architecture with a
contracting path to capture context, and a symmetric expand-
ing path enabling segmentation was proposed. Attention U-Net
is enriched with attention gate (AG) modules that force the
network to focus on relevant regions of the input data in [30].
The model was further improved in [31] by adding the Atrous
Spatial Pyramid Pooling (ASPP) module in the bottleneck
to control the feature resolution. The ASPP module robustly
segments images at multiple scales by enlarging the receptive
field to incorporate a more extensive context while saving on
the number of the network parameters compared to the regular
convolution [29]. Recently, deep learning has been applied to
radargrams obtaining good performance for: 1) detecting the
ice layers [32], [33]; 2) simulating RS images with generative
adversarial network (GAN) [34]; 3) target detection [35];
and 4) segmentation [36]–[38]. The study in [38] applied a
ResNet with an ASPP module to segment radargrams in ice
layers, thermal noise and EFZ, and bedrock with an overall
accuracy (OA) slightly lower than other literature methods
based on the SVM [15], [16]. In addition, the study did
not consider the basal layer and the targets related to basal
boundary conditions.

This article proposes a novel automatic method based
on deep learning to segment icy inland radargrams and
locate meaningful geologic targets for better understanding

the ice sheet and the basal boundary condition processes.
Radargrams are segmented into classes, including englacial
layers, bedrock, noise-limited regions already considered in
the literature, as well as a new class: basal ice. The classes
are characterized by a specific spatial distribution in the
range and azimuth directions. Moreover, the dimension and
scale of the targets significantly vary between them. Inland
radargrams are processed with an attention U-Net with the
ASPP module that automatically extracts relevant features for
the semantic segmentation problem. The encoder blocks are
connected to the decoder block at the same level with skip
connections. AGs filter skip connection signals to remove
the irrelevant information. At the bottleneck of the network,
the ASPP module extracts features at multiscale levels to
improve the identification of targets having different sizes.
An argmax operation analyzes the output features to predict
labels. The segmentation map is refined using morphological
filters. The method effectiveness was tested on two datasets
of radargrams by the Multichannel Coherent Radar Depth
Sounder (MCoRDS3) RS in the inland of Greenland and
Antarctica with basal units in the basal layers.

This article is structured in five sections. Section II defines
the segmentation problem. Section III proposes the deep
learning method to segment radargrams and describes the
related architecture. Section IV illustrates the datasets and
the preprocessing. Section V reports the network setup, the
evaluation criteria, and the experimental results to prove the
effectiveness of the proposed method. Finally, Section VI
provides concluding remarks and insights for future works.

II. FORMULATION OF THE PROBLEM

Let us consider radargrams acquired over the central part of
ice sheets and caps. We aim at locating meaningful geologic
targets for the analysis of the ice sheet and basal boundary
conditions, such as the basal unit. Let R be a 2-D radargram
of NT traces and NS samples

R = {PdB(a, r)|a ∈ [1, . . . , NT ], r ∈ [1, . . . , NS ]} (1)

where PdB is the power of the reflections stored in the
radargrams in decibels and (a, r) are the azimuth and range
coordinates, respectively. We aim at segmenting inland icy
radargrams into NC classes representing meaningful geologic
targets related to the basal boundary conditions. The classes
are defined as {ωc, c ∈ [1, . . . , NC = 4]}. Moving down
from the surface along the range dimension (see Fig. 1),
ω1 is englacial layers, ω2 is basal ice, ω3 is bedrock, and
ω4 represents the noise-limited regions (i.e., thermal noise,
EFZ, and signal perturbations, collectively). The EFZ and the
thermal noise represent the regions that reflect waves having
a lower power than the antenna sensitivity.

Basal ice occurs at the base of the ice sheet, and there may
be melt-water at the basal interface, i.e., the interface between
the ice and the media below it (e.g., bedrock or till) [20], [39]
(see Fig. 1). Close to the core of the basal ice, the layers
fold toward the surface, generating large structures with steep
edges, called disrupted layers that can extend up to half of the
layer pack [11], [12]. However, the layer upper part, close
to the surface, is usually not affected by the folding and,
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Fig. 1. Part of a radargram from MCoRDS [6] campaign 20170413 in
Greenland imaging an ice sheet with three basal units. The labels indicate the
geologic targets in the basal layer and the classes for the proposed method.

thus, remains flat. Increasing the steepness of the disrupted
layer, the intensity of the signal perturbation increases and
masks part of the ice strata (see Fig. 1). It is worth noting
that the target dimension largely varies between them. Ice
layers cover a larger area than the other classes. The bedrock is
typically thinner than the ice pack, the thermal noise, EFZ, and
signal perturbation. The basal layer and the signal perturbation
dimensions depend on the deformation of the ice sheet bottom.
Thus, classes are modeled best at different scales.

Basal units are characterized by a strong reflection, having
four main radiometric properties. First, the signal of the folded
layers above the basal units is weaker due to the steep slope
scattering energy away from the radar rather than back toward
it [39]. Second, the basal ice is characterized by diffuse
scattering that is often of greater amplitude than the amplitude
of the echoes surrounding it [20], [21]. Third, the basal layer
shows a loss in the reflection power, given by deformation of
the layers, impurities (e.g., soil or stones), and the higher ice
temperature [21]. Indeed, basal ice has a higher temperature
than the rest of the ice sheet due to geothermal heat flux and
hydrological transport of heat (liquid water from the surface).
Finally, the last radiometric characteristic regards the bedrock
under freeze-on ice that may appear as a specular reflector,
i.e., a smooth and bright reflection. This is because, with the
basal unit, water is generally present at the basal interface
as a thin film or even a lake [10], [11], [20], [21]. The
EM interactions with one target also affect the representation
of the other targets in the radargram. Therefore, this property
should be considered in the data analysis.

III. PROPOSED DEEP-LEARNING-BASED METHOD

This section presents the proposed method for the seg-
mentation of the inland radargrams. The method is based
on a supervised CNN that segments the radargram into four
classes (see Fig. 2). Here, we consider a U-Net enriched with
the ASPP module, and AGs as the architecture previously
showed good performance for semantic segmentation [28],
[30], [31]. The network learns the characteristics of the
classes and automatically extracts relevant features at different
scales for the radargram segmentation. Extracted features are
semantically meaningful given the generalization capability
of the network [40]. The AGs help to focus on the relevant

regions of the radargram by filtering the features input to the
decoder from the skip connections [30]. The AGs suppress
irrelevant low-level features to better focus on the salient signal
features in contrast with the noise-limited regions [41]. The
ASPP module extracts multiscale features to better segment
objects and classes at different scales [29], such as the ice
layers, basal ice, and bedrock that show by a different scale in
radargrams. The multiscale features avoid the loss of informa-
tion in the network compression that generates poor-resolution
segmentation maps, i.e., fuzzy boundaries. In addition, ASPP
helps the processing of inland radargram to detect classes with
different dimensions and scales, such as the thin bedrock and
thick layers. The training of the network consists of two stages.
In the first step, training minimizes the reconstruction loss
between the input and the output to initialize the network
parameters and extract features at multiple scales. In the
second step, the network is tuned in a supervised fashion to
segment radargrams into the classes of interest. Segmentation
labels are obtained by the argmax classification of the features
of the last layer of the network. Then, the map is refined in
the spatial domain using morphological filters.

A. Deep Network Architecture

The proposed network has an autoencoder shape: 1) the
encoder compresses the input into a lower dimension and
2) the decoder decompresses it to obtain an output with
the exact dimensions as the encoder input. Here, we use a
U-Net architecture [28] that showed outstanding performance
in the segmentation task coupled with efficient use of the
GPU memory [41]. U-Net has skip connections linking the
encoder and the decoder (see Fig. 3). Input radargrams R are
split into nonoverlapping patches (h, w). The patches have
the same size as the radargram depth in the range direction,
i.e., h = NS . This leads to samples that capture the global
context and are fully representative of the class characteristics
(see Section II) in terms of the variability, pattern, and ver-
tical spatial distribution. In the azimuth direction, the patch
size w is proportional to the average dimension of basal
units [42], [43]. After the processing, the output patches are
concatenated to have the same shape as the original radargram.
In the following, the structure of the network is described in
detail.

Let us define the input and output at each point in the
network as H l, j

i , where l ∈ [1, . . . , 4] indicates the encoder
and decoder block number, j can be either e or f with
e indicating blocks of the encoder, and f can be those of the
decoder. H l, j

i is the feature set extracted by the lth encoder
or decoder block and has dimensions (Ml × hl × wl × M0),
where Ml indicates the number of features, wl and hl are the
dimensions of the features, and M0 is the input patch channel
size and is fixed to M0 = 1. The index i indicates the stage
in the block: c stands for the convolutional layer output, b the
batch normalization output, r the ReLU activation function
output, m the max-pooling output, d the deconvolutional layer
output, and u the upsampling output. Finally, HASPP is the
output of the ASPP module and has shape (MASPP × hASPP

× wASPP), where MASPP indicates the number of features,
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Fig. 2. Flowchart of the proposed deep-learning method for the supervised segmentation of radargrams.

Fig. 3. Architecture of the attention U-Net embedded with the ASPP module.

and hASPP and wASPP indicate the height and the width of
the features, respectively. H l

AG is the output of the lth AG
(i.e., the input of the lth decoder block) and has shape of
(Ml+1 × hl+1 × wl+1).

1) Encoder: The encoder is made of NL downsampling
blocks, consisting of two sets each made of a convolution
layer, followed by a batch normalization layer and a rec-
tified linear unit (ReLU). Each convolutional layer l learns
high-level semantic features from the spatial and semantic
information in the data [40]. The first block (l = 1) input
is a single radargram patch Pt , t ∈ [1, . . . , Nt ]. Each block l
outputs a set of Ml features for each input pixel followed by
downsampling by the max-pooling operation.

To extract the features, the convolutional layer applies a
convolution across all features with a kernel of size (kx , ky)
such that the learnable weight set W l for block l has size
Ml × kx × ky × M0. M0 is the channel size of the input and
is fixed to M0 = 1 since the radar images are single-channel
log power detected images. The kernel size (kx, ky) is the
same for all layers. Each channel of the output of the convo-
lutional layer H l,e

c is normalized with a batch normalization
layer according to the mean and standard deviation of each
batch to obtain H l,e

b . An ReLU activation function introduces
nonlinearity to obtain H l,e

r . After the activation, a max-pooling
operation is applied to reduce the features’ dimensions and,
thus, the number of parameters to learn and the computational
cost. The size and stride are both given by (mx ,m y), where
mx is the value in azimuth and m y is the value in range.

The number of output features after max pooling is Ml ×
hl+1 × wl+1.

2) Atrous Spatial Pyramid Pooling: In the bottleneck of
the network, the ASPP module, based on the atrous (also
called dilated) convolution [29], [44], applies parallel atrous
convolution to vary the receptive field of the network filters
(see Fig. 3). This helps the network to integrate the global view
and focus on the radargram details. Atrous convolution is an
operation that contracts or expands the receptive field of the
convolutional filters by varying the dilation rate parameter d .
d corresponds to the input signal sampling stride, and standard
convolution is a particular case with d = 1. The dilated rate d
indicates that the convolutional filter are enlarged by adding
d − 1 zeros between the filter coefficients to change the filter
resolution (see Fig. 4). The kernel dimension is enlarged from
(kx × ky) to (k �

x × k �
y), where

k �
x = kx + (kx − 1)(d − 1)

k �
y = ky + �

ky − 1
�
(d − 1). (2)

The ASPP module applies a set of NASPP = 4 parallel
atrous convolutions with varying dilation rates (see Fig. 4)
and a global average pooling (GAP) (see Fig. 5). Differ-
ent dilation rate filters extract features at different scales
and are concatenated with the GAP map, which includes
the global context information. Each atrous block contains:
1) a dilated convolution layer with dilated rate di , kernel
size (kx, ky), and unitary stride extracting MASPP features;
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Fig. 4. Representation of the dilated convolution filters with different dilation
rate coefficients [d1, . . . , d4] applied to the orange pixel. The ASPP module
applies parallel dilated convolutions to the input map to extract multiscale
features. The different receptive fields of the filters are shown in different
colors.

Fig. 5. Structure of the ASPP module. The output of the encoder H l
m

is processed by parallel dilated convolutions with different dilation rate
coefficients [d1, . . . , d4] and a GAP. All the convolutions are followed by
a batch normalization layer and an ReLU. The output of the branches are
concatenated and processed by a (1 × 1) convolution to obtain the output of
the ASPP module HASPP.

2) a batch normalization layer; and 3) an ReLU activation
function. The (NASPP × MASPP) features from the atrous blocks
and the GAP feature are concatenated together and fed to a
(1 × 1) convolution operation extracting MASPP features.

3) Decoder and the Attention Gates: The decoder con-
sists of L expanding blocks having embedded the attention
mechanism from [30] to suppress the activation of irrelevant
radargram regions by filtering the features from the skip
connections. The lth AG takes as input the features H l,e

m
from the skip connections and the features from the next
lowest layer (l + 1) as gating signal gl . The assumption is
that low-level features from the encoder are redundant and
poorly represent the data. Features from the decoder better
represent the data as they are extracted at a higher level in
the network. Hence, decoder features can be used to filter
the features H l,e

m from the skip connections and activate the
most informative regions [30]. To highlight radargram salient
regions, for each pixel, the lth AG module extracts a scalar
attention value α ∈ [0, 1] from H l,e

m considering the gating
signal gl [30]. In multiclass semantic segmentation tasks,
AGs extract multidimensional attention coefficients [45].

Fig. 6. Structure of the AG module [30] to filter the signal from the skip
connection H l,e

m . The gate signal gl highlights the salient spatial regions of
the feature set H l,e

m and determines the attention coefficients αl . The attention
coefficients are then elementwise multiplied with the low-level feature set to
obtain the output of the lth AG module H l

AG.

As shown in Fig. 6, each AG takes as input the set of lower
level feature H l,e

m from the skip connections and the gating
vector gl ∈ RMg , where Mg is the number of features. For
each level l, the gating vector is the features extracted from
the previous layer (l + 1). For the AG with l = NL , the gating
signal consists of the output features of the ASPP module
HASPP (see Fig. 3), i.e., gl = HASPP and Mg = MASPP. For the
other AGs (l ∈ [1, . . . , NL −1]), the gating signal is the output
of the previous layer (l+1), i.e., gl = H l+1, f

r and Mg = Ml+1.
Each AG applies three linear transformations (Wg , WH , and
�) to the gating signal and the lower level features by using
channelwise 1-D convolutions. Wg and WH map the input fea-
tures gl and H l,e

m in a Rint space, while � reduces the feature
number from Mint to 1. The resulting features are summed to
obtain the gating coefficients (additive attention) (see Fig. 6).
The gating coefficients are processed by an ReLU and a chan-
nelwise 1-D convolution that outputs one feature per pixel,
followed by a sigmoid activation function. Finally, the sigmoid
output signal is resampled with the bilinear interpolation by
an upsampling layer that doubles the dimensions to match the
shape of the following decoder block input. This generates a
grid signal conditioned to the data spatial information so that
the attention coefficient αl of the lth AG has a shape (hl × wl).
Finally, the output of the lth AG H l

AG is the elementwise
multiplication [·] between the each of the features in H l,e

m and
the attention coefficients αl , i.e., H l

AG = H l,e
m ·αl . The output of

the lth AG H l
AG is concatenated with the upsampled version

of the gating signal H l+1, f
u . For the first decoder block

(l = NL ), the AG output is concatenated with the upsam-
pled output of the ASPP HASPP. For the other decoders
block (l ∈ [1, . . . , NL − 1]), the AG output is concate-
nated with the upsampled output of the previous network
layer H l+1, f

u .
Decoder blocks l ∈ [1, . . . , L] consist of two sets each made

of a (kx , ky) deconvolutional layer and a batch normalization
layer, followed by an ReLU (see Fig. 3). Each block takes as
input the skip connection signal filtered by the AG and the
output upsampled features from the next lowest block. Each
block l gives, in output, a set of Ml features H l, f

d of shape
(Ml × hl × wl). In the case of the last block, the output
H l, f

d is further processed with a (kx, ky) deconvolutional layer
and a batch normalization layer, followed by an ReLU. This
generates the output of the network Hout that has a shape
(Mout × h × w). The value of Mout depends on the task
of interest, as described in the following.
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B. Pretraining of the Network

All the network weights can be learned by training the
network according to the optimization of a loss function. Using
randomized parameters is less efficient than using a pretraining
phase [46]. Hence, this step aims at initializing the network
parameters by training the network to learn the characteristics
of the radar data. To this end, we aim at training the network to
learn how to reconstruct a given input radargram patch. This is
a regression task as the network should reconstruct the values
of each pixel of the input radargram at the output. Therefore,
the number of features expected in the network output is fixed
to Mout = 1. For training, we use a regression loss. Here,
we use the mean square error (mse), defined in (3), but any
regression loss from the literature can be used

(mse) = 1

NS NT

NT�
a=1

NS�
r=1

�
Rpred(a, r)− R(a, r)

�2
. (3)

The mse estimates the average squared difference between
the predicted values Rpred(a, r) and the actual values R(a, r)
of the log power radargrams. This metric gives an estimation
of the goodness of the reconstruction.

C. Generation of the Segmentation Map

After initializing the network parameters, we train the
network in a supervised manner to segment the radargram
into ω1 englacial layers, ω2 basal ice, ω3 bedrock, ω4 thermal
noise, EFZ, and signal perturbations. The last deconvolutional
layer of the network extracts Mout = Nc features, where Nc is
equal to the number of classes of the segmentation task.
This article considers four classes as we investigate inland
icy radargrams and characterize the basal layer. However, the
network is flexible enough to analyze more classes [40] if a
sufficient labeled dataset for training exists.

1) Loss Function: For the supervised segmentation, we use
the cross-entropy loss function between the radargram and
reference labels. For each pixel (a, r) in the patch, the
cross-entropy loss function is applied to the predicted label
ωc(a, r) and the reference label ωrl(a, r) as follows:

�t(a, r) = −
Nc�

c=1

ωrl(a, r) log[ωc(a, r)] (4)

where Nc is number of classes of the segmentation task. The
loss term Lt for all the pixels of the radargram is computed
as follows:

Lt = 1

NS NT

NT�
a=1

NS�
r=1

�t(a, r). (5)

After processing the radargram R, we obtain a matrix of
Mout deep features Hout(a, r, k), where k ∈ [1, . . . ,Mout].

2) Label Assignment: Analyzing a radargram R with such a
network, semantically similar pixels produce high values in the
same deep features. Hence, for each pixel (a, r), the label ωc

is defined by choosing the output feature with the maximum
value [47]

ωc(a, r) = argmax
k∈[1,...,Mout]

{Hout(a, r, k)}. (6)

The segmentation map M is constructed from the individual
patch outputs and is defined as

M = {M(a, r)|a ∈ [1, . . . , NT ], r ∈ [1, . . . , NS ]} (7)

where the labels for M(a, r) are assigned according to (6).
3) Label Refinement: In semantic segmentation, pixels are

expected to be spatially correlated. Even if this property
is partially ensured by the network convolutional nature,
we refine the segmentation map to obtain M� with mor-
phological attribute operators [48]. To enhance the spatial
consistency of the segmentation map, we applied the mor-
phological opening operator followed by the morphological
closing operator that is both based on a sequence of dilation
and erosion [48]. Opening removes objects and closing fills
holes that are smaller than the structuring element (SE), while
structures that are larger than the SE are not modified [48]. The
SE defines the neighborhood used to process each pixel, i.e.,
the moving window used in the transformations and can have
different shapes, such as circular. The morphological opening
�T consists of two operations that: 1) preserve the connected
region containing the pixel (a, r) and 2) preserve or remove
the connected region based on the evaluation of a criterion T .
The opening attribute γ T (M) can be formulated for each pixel
(a, r) and each level x ∈ [1, . . . , Nc] of the gray image as
in [48]

γ T (M)(a, r) = max

⎧⎨
⎩x : (a, r) ∈



(a,r)∈Tx (M)

�T [Thx ]

⎫⎬
⎭ (8)

where Thx represents the binary image obtained by threshold-
ing the segmentation map M at each level x , with x ranging
on the gray levels of M. Similarly, the morphological attribute
closing φT (M) can be defined as

φT (M)(a, r) = max

⎧⎨
⎩x : (a, r) ∈



(a,r)∈Tx (M)

	T [Thx ]

⎫⎬
⎭. (9)

The morphological profile, i.e., the refined segmentation
map, is calculated by applying sequential filtering, where the
criterion T is evaluated at each iteration.

Given that M is a digital gray level image of Nc levels (one
for each class) defined in the Z2 domain, we can apply an
opening operator to M to obtain the morphological opening
attribute profile 
γ T (M) defined as


γ T (M) = �

γ T : 
γ T = γ T (M)

�
. (10)


γ T (M) is further processed by a closing filter to obtain
the morphological closing attribute profile 
ψT (M), i.e., the
refined segmentation map M�, as

M� = 
ψT

�

γ T (M)

�

= �

ψT : 
ψT = ψT

�

γ T (M)

��
. (11)

IV. DATASET DESCRIPTION

This section describes the datasets used to assess the effec-
tiveness of the proposed method. We consider two datasets
acquired over the polar areas of the Earth by the MCoRDS3
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TABLE I

PARAMETERS OF THE RS INSTRUMENT MCORDS [6] FOR THE
CAMPAIGNS ACQUIRED IN 2017, 2014, AND 2018 AND THE

GEOMETRICAL RESOLUTIONS OF THE RADARGRAMS

RS [6] mounted on an aircraft (see Table I for the radar
parameter details). The first dataset consists of radargrams
acquired in Northern Greenland. The second dataset consists of
radargrams acquired in Antarctica. As reference data, samples
representing the four classes were manually picked from
the radargrams. These regions are selected in a way that
there is no ambiguity regarding the target class. To this end,
we perform the selection based on examples of radargrams
visually inspected and available in the literature [10], [11],
[23], [42], [43].

A. Preprocessing of the Radargrams

The RS data [6] are distributed by the Center for Remote
Sensing of Ice Sheets (CReSIS) for NASA Operation Ice-
Bridge. The radar data are already range compressed, azimuth
focused via synthetic aperture radar (SAR) techniques, and the
clutter is partially compensated to get the resolutions shown in
Table I. To prepare the radar data, we concatenated adjacent
acquired radargrams with attention to removing overlapping
regions. Moreover, we corrected the data for the fluctuations
due to the movements of the platform. While acquiring the
data, an aircraft has three undesired movements, i.e., pitch,
roll, and yaw, which influences and degrades the quality
of the radargram signal. To mitigate the signal degradation,
we normalized the power of the radargram concerning the
surface power for each column. This helps reduce the fading
of the power due to the rolling movement of the aircraft on
the curves. Considering the preprocessing, the vector of the
range coordinate of the surface s(a) was identified as the
maximum power for each azimuth column a. Hence, the power
of the surface Ps(a) of each azimuth trace was defined as
Ps(a) = R(a, s(a)). The region above the surface is the free
space and was removed by masking it as we aim to study
the subsurface. Radar data are affected by speckle, which can
be approximated as multiplicative noise. Hence, by applying
a log-transformation to the power radargram, the noise can
be approximated as an additive, reducing the complexity of
handling the data and enhancing the spatial information.

B. Generation of the Datasets

Adjacent radargrams are concatenated and preprocessed
with the steps described above. Next, each radargram is

TABLE II

LIST OF THE CAMPAIGNS AND THE RADARGRAM IDS USED IN THE
SUPERVISED TRAINING FOR EACH DATASET AND THE NUMBER

OF TRACES NT FOR EACH CAMPAIGN

divided into patches that are normalized by removing the mean
of the dataset and dividing by the standard deviation. For both
the North Greenland and Antarctica data, we generated two
datasets J 1 and J 2. J 1 is used for the pretraining and consists
of the preprocessed patches. J 2 is used for the supervised
training and consists of pairs of preprocessed and manually
labeled patches. Table II lists the IDs of the campaign and
radargrams used in J 2 for both Northern Greenland and west
Antarctica datasets. Both datasets J a, a = [1, 2] are further
divided into training J a

tr and test J a
te patches so that 90% of

the patches are used for the training and the remaining 10%
for the test phase.

1) Dataset 1: North Greenland: Fig. 7(a) shows the ground
track of the campaigns used for both datasets J 1 and J 2:
the radargrams selected for J 1 are in red, and those for
J 2 are in blue and green; they belong to the campaigns
20170403_01 and 20170413_01, respectively. Dataset J 1

for Northern Greenland consists of 282 radargrams imaging
grounded ice acquired in several campaigns over Greenland
in 2017. The radargrams are preprocessed to generate concate-
nated radargram with N1

T = 930 600 traces. The radargrams
are divided into patches of size w = 64 and h = 1280
in the range and azimuth directions, respectively. h is set
so that the neural network has a complete view of the
vertical distribution of the classes. Dataset J 1 consists of
14 541 patches, which are divided into the dataset J 1

tr of
13 087 patches for the training phase, and J 1

te of 1454 patches
for the test phase. Dataset J 2 consists of 30 radargrams
acquired in the north of Greenland in 2017 (see Table II).
We consider three campaigns imaging a region where the
basal layer is strongly visible, and there is evidence of basal
units [12], [42]. The radargrams are preprocessed to generate
a concatenated radargram with N2

T = 99 000 traces, which
is divided into patches. Dataset J 2 consists of 1547 patches
before data augmentation. We perform the data augmentation
to increase by three times the number of labeled patches. The
patches in J 2 are divided into the set J 2

tr of 4641 patches and
J 2

te of 465 patches.
2) Dataset 2: West Antarctica: Dataset 2 consists of radar-

grams acquired in 12 campaigns by MCoRDS [6] imaging
grounded ice in the west of Antarctica in 2014 and 2018.
Fig. 7(b) shows the ground track of the campaigns used for
both datasets J 1 and J 2: the radargrams selected for J 1

are in red, and those for J 2 are in blue, green, and black
and belong to the campaigns 20141114_02, 20181020_01,
and 20181104_01, respectively. Dataset J 1 consists of
207 radargrams that are preprocessed to generate concatenated
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Fig. 7. Ground tracks of the campaigns used for (a) dataset 1 and (b) dataset 2. The ground track of the radargrams selected for the pretraining is in red
for both datasets. Radargrams for the supervised training of dataset 1 are from campaign 20170403_01 [in blue in (a)] and campaign 20170413_01 [in green
in (a)] in North Greenland. Radargrams for the supervised training of dataset 2 are from campaign 20141114_02 [in green in (b)], campaign 20181020_01
[in blue in (b)], and campaign 20181104_01 [in black in (b)] in West Antarctica.

radargrams with N1
T = 724 500 traces. The concatenated

radargram is divided into patches of size w = 64 and
h = 1680 in the range and azimuth directions, respectively.
Note that the h-dimension of the patches from the Antarctica
dataset is greater than for the other dataset as, on aver-
age, the Antarctica ice sheet is thicker. Dataset J 1 consists
of 11 320 patches that are divided into the dataset J 1

tr of
10 188 patches for the training phase and J 1

te of 1132 patches
for the test phase. Dataset J 2 consists of 15 radargrams
acquired in West Antarctica in 2018 and 2014 (see Table II).
We consider three campaigns imaging a region where the
basal layer and basal units are strongly visible [10], [23].
The radargrams are preprocessed to generate a concatenated
radargram with a number of traces N2

T = 56 669, which
is divided into patches. Dataset J 2 consists of 885 patches
before data augmentation. We perform the data augmentation
to increase the number of labeled patches by five times. The
patches in J 2 are divided into the set J 2

tr of 3983 patches and
J 2

te of 442 patches.

C. Data Augmentation

To increase the network invariance and robustness when the
number of available training samples is small, data augmen-
tation is essential to generate a larger labeled dataset [28].
Accordingly, here, as the number of labeled samples for the
training is limited (see Table II), we use standard data augmen-
tation techniques (i.e., affine transformations and horizontal
flips) to increase the dimension of the labeled dataset. The
transformations are designed so that the geometrical properties
of the geologic subsurface structures are preserved, and the

augmented data are realistic. Here, we apply random hori-
zontal flips, rotation, and elastic deformations to the original
and labeled patches to generate new pairs. Random horizontal
flip transformation is applied with a probability p f = 0.5.
Random rotation transformation is applied with a probability
pr = 0.8 with the rotation degrees in the range [−θmax,+θmax],
where θmax is the maximum steepness angle of the surface. The
random elastic deformation transformation is applied with a
probability pe = 0.9 to the vertical r (range) and horizontal
a (azimuth) directions. We generate smooth deformations
applying a random displacement field based on coarse grids
of dimensions 8 × 8 and 16 × 16 cells. For each cell and
directions r and a , the displacement vectors are sampled
from a Gaussian distribution with standard deviation σe. σe

is sampled from another Gaussian distribution defined as
σe ∼ N (μ�

e = 8; σ �
e = 0.6). The stress field is applied to

the patches by moving each pixel to a new position and using
spline interpolation of order one [49]. We apply a mirroring
resampling filter for mitigating the low pass effect at the
border pixels. The parameters of the Gaussian distribution
are experimentally chosen so that the deformations in the
augmented patches are realistic. Fig. 8 shows two random
augmentation outputs from the patch in Fig. 8(a).

V. EXPERIMENTAL SETUP AND RESULTS

A. Experimental Setup

1) Network Setup: Table III shows the parameters of the
network. We used four downsampling blocks in the encoder
and four upsampling blocks in the decoder. The convolutional
kernels are of size (kx = 3, ky = 3), and the upsampling
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TABLE III

PARAMETERS OF THE PROPOSED METHOD AND THE NEURAL NETWORK

Fig. 8. Example of the patches generated by data augmentation step:
(a) original patch from radargram 36 of campaign 20170413_01, (b) random
outcome 1 of augmenting patch (a), and (c) random outcome 2 of augmenting
patch (a).

and downsampling are with ml
x = 2,ml

y = 2. The ASPP
consists of NASPP = 4 dilated convolutions with the dilation
rate parameters equal to [d1 = 1, d2 = 6, d3 = 12, d4 = 18].
At each epoch of the training, a small batch of NB patches is
given input to the network to accelerate the training phase. For
this reason and memory constraints, the minibatch size is set
equal to NB = 16 for both datasets. For the optimization,
we used Adam optimization as it shows good results in
the literature [50]. The learning rate is set to �r = 0.0001
after running several experiments varying the values
from 0.1 to 10−6]. To reduce the overfitting and increase
the generalization capability of the network, the training stop
conditions are based on: 1) the maximum number of epochs,
which is set to � = 100 and 2) the training and validation
losses at each epoch. A validation loss higher than the training
loss indicates that the model is overfitting. Hence, the training
is stopped when the validation loss is higher than the
training loss, and the model trained in the previous epoch is
considered for the next steps.

2) Comparison Methods: To assess the effectiveness of each
element of the proposed method, we compare the results with
those of the baseline methods: the U-Net [28], the U-Net with

AGs [30], and the U-Net with AGs and ASPP without data
augmentation. We also compare the results of the proposed
method with the literature methods for the segmentation of
inland icy radargrams based on handcrafted features processed
by the SVM classifier in [15] and [16].

B. Evaluation Criteria

To evaluate the performance of the proposed method,
we considered two sets of metrics: one for the reconstruction
of the radargrams and the other for the supervised segmen-
tation task. For the reconstruction task, we consider the mse
between the input and the output radargrams, as defined in (3).
For the semantic segmentation task, we consider how well
the pixels of each class are classified. In the inference phase,
Ntot pixels are analyzed with the proposed semantic segmen-
tation method. For each pixel, the method predicts a label that
can be compared with the reference data. TPc is defined as
the number of true positive pixels, i.e., the pixels correctly
classified for the cth class and TNc the true negative, i.e., the
number of pixels correctly classified as belonging to one of the
other NC −1 classes. FNc is defined as the false negative, i.e.,
the number of pixels belonging to the class ωc but wrongly
labeled, and the FPc as the false positive, i.e., the number of
pixels not belonging to the class ωc but labeled with ωc. The
sensitivity indicates the probability that a pixel is classified as
the cth class, given that it actually belongs to that class

Sensitivity = TPc

TPc + FNc , c ∈ [1, . . . , NC ]. (12)

The specificity indicates the probability that a pixels is not
labeled as ωc, given that it does not belong to that class

Specificity = TNc

TNc + FPc , c ∈ [1, . . . , NC ]. (13)

Finally, the OA is defined as the number of correctly
classified pixels TP over the number of processed pixels, i.e.,
OA = TP/Ntot.

C. Dataset 1: North Greenland

We first pretrain the network with the dataset J 1 to initialize
the network parameters to extract relevant features for the
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TABLE IV

SEGMENTATION PERFORMANCE OF THE PROPOSED METHOD, DEEP BASELINE METHOD, AND LITERATURE METHODS FOR RADARGRAM
SEGMENTATION APPLIED TO THE GREENLAND DATASET, WHERE ω1 IS ENGLACIAL LAYERS, ω2 IS BASAL ICE, ω3 IS BEDROCK,

ω4 IS THERMAL NOISE, EFZ, AND SIGNAL PERTURBATIONS, AND ωR
4 IS THE REDUCED VERSION OF ω4

THAT CONSIDERS THERMAL NOISE AND THE EFZ AS IN [15] AND [16]

Fig. 9. Example of the features extracted from different convolutional layers
for the patch in (a) with the network pretrained only to reconstruct the input
radargram. The patch in (a) is part of radargram 20170413_01, feature (b) is
extracted from decoder block 3, and (c) from decoder block 4.

radar data. Fig. 9 shows examples of features extracted from
different convolutional layers of the network decoder. Note
that the features have a spatial pattern that is similar to the
original patch [see Fig. 9(a)], even if the values of the features
(represented by the color map) strongly vary. Note that the
top skip connection does not thwart the pretraining of the
rest of the network since the features extracted by the lower
blocks Nl , l ∈ [2, 4] are meaningful [see Fig. 9(b)]. This is
because the top AG filters the features from the top skip
connection (i.e., the features extracted by the first encoder
block) by focusing only on relevant regions. At the end of
pretraining, the reconstruction error is equal to mse = 0.0110.
Then, we train the neural network with the labeled dataset J 2

to extract Nc semantically meaningful features automatically.
The labels are assigned to each pixel (a, r) according to (6)
and refined by applying a morphological disk-shaped SE of
radius 3. For an example, we show radargrams 43–46 of
campaign 20170413_01 of dataset 1 in Fig. 10(a) and the
related segmentation map in Fig. 10(b). Fig. 11 shows a detail
of dataset 1 (part of radargram 20170413_01-44) that contains

two basal units. From qualitative analysis, basal ice and signal
perturbation classes are better and finer segmented with the
proposed method than with that in [15], which is based on
handcrafted features processed by the SVM classifier. The
handcrafted features were manually designed for modeling
the properties of englacial layers, basal ice, bedrock, thermal
noise, and EFZ. Note that the handcrafted features are not
designed for detecting signal perturbation. Table IV shows
the accuracy of the proposed method for dataset 1 calculated
considering as reference the pixels with manually assigned
unambiguous labels (e.g., by leaving out the pixels along
borders between the targets/classes) to avoid including pos-
sible errors in the quantitative evaluation. The accuracy for
the basal ice is 98.11%, while that for the signal perturbation
is 98.63%. The accuracy of the other classes (i.e., bedrock and
ice layers) is comparable or slightly lower than those of the
state-of-the-art methods in [15] and [16] (see Table IV). To
better understand the effectiveness of the proposed method in
extracting semantically meaningful features for the segmen-
tation problem, we further compared the classification results
of the proposed method with those of the method presented
in [15] for segmenting the noise-limited regions. The last row
of Table IV reports the results of the analysis of dataset 1 with
the method in [15], including the new subclass, i.e., signal
perturbation. The method in [15] achieves high accuracy for
the classes considered in feature design. However, as expected,
the accuracy is low for class ω4, including pixels of the
signal perturbation, EFZ, and thermal noise. Furthermore,
the segmentation accuracy ωR

4 , i.e., the reduced version of
ω4 that considers the thermal noise and the EFZ classes as
in [15] and [16], points out that, for the handcrafted feature
method, the accuracy of the nonmodeled class is poor. On the
contrary, unlike other literature methods, the proposed method
can automatically extract semantically meaningful features that
accurately discriminate all the classes without the need for
manual design, which is time demanding and requires specific
expertise. This means that, if we add or remove target classes
in the problem, the method can adaptively and automatically
extract new optimal features without the need for a complex
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Fig. 10. Example of the method applied to part of dataset 1 (radargrams 43–46) of the campaign 20170413_01: (a) input radargram and (b) segmented
radargram. Englacial layers are in yellow; the basal ice is in light blue; the bedrock is in red; and the signal perturbation, EFZ, and thermal noise are in dark
blue.

Fig. 11. Part of radargram 44 of the campaign 20170413_01: (a) input radargram, (b) segmented radargram with [15] considering the signal perturbation
class, and (c) segmented radargram with the proposed method. Englacial layers are in yellow; the basal ice is in light blue; the bedrock is in red; and the
signal perturbation, EFZ, and thermal noise are in dark blue.

Fig. 12. Example of the method applied to part of dataset 2 (radargram 23) of the campaign 20141114_02: (a) input radargram, (b) segmented radargram.
Englacial layers are in yellow; the basal ice is in light blue; the bedrock is in red; and the signal perturbation, EFZ, and thermal noise are in dark blue.

and lengthy process of design, extraction, and selection of
handcrafted features. Table IV presents the accuracy of the
proposed method and the U-Net, as well as the U-Net with
AGs to understand better the effectiveness of the ASPP, the
AGs, and the data augmentation elements. The table shows that
the proposed method outperforms the three baseline methods

for every class. The accuracy of the proposed method without
data augmentation is extremely low, confirming the importance
of data augmentation with small labeled datasets. AGs increase
the U-Net performance for all the classes, even if the accuracy
of the bedrock and basal ice is lower than those of the
layers and the noise-limited regions due to the different prior
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TABLE V

SEGMENTATION PERFORMANCE OF THE PROPOSED METHOD, DEEP BASELINE METHOD, AND LITERATURE METHODS FOR RADARGRAM
SEGMENTATION APPLIED TO THE ANTARCTICA DATASET, WHERE ω1 IS ENGLACIAL LAYERS, ω2 IS BASAL ICE, ω3 IS BEDROCK, ω4

IS THERMAL NOISE, EFZ, AND SIGNAL PERTURBATIONS, AND ωR
4 IS THE REDUCED VERSION OF ω4

AS IT CONSIDER THE THERMAL NOISE AND THE EFZ AS IN [15] AND [16]

probabilities of the classes. The ASPP increases the accuracy
of the bedrock and basal ice, extracting multiscale features and
mitigating the problem of imbalanced classes.

D. Dataset 2: West Antarctica

For the Antarctica dataset, we perform the same steps as
for the Greenland dataset. The pretraining with J 1 gives a
reconstruction error equal to mse = 0.00938. For an example,
we show radargram 23 of campaign 20141114_02 in Fig. 12(a)
and the related segmentation map in Fig. 12(b). Table V
reports the performance of each method for dataset 2. The
accuracy for the basal ice is 98.55%, while that for the signal
perturbation is 98.48%. The accuracy of the other classes
(i.e., bedrock and ice layers) are comparable with the state of
the art in [15] and [16] (see Table V). Also, for this dataset, the
accuracy of the handcrafted features and the SVM classifier
is comparable with the proposed method for the classes for
which the features are designed including the layers (ω1) and
the EFZ and thermal noise (ωR

4 ) (see Table V). As for dataset 1,
class ω3 has a slightly lower accuracy for the proposed method
than for the literature method in [15] as it is the class with
the lowest number of labeled samples. For the classes not
considered in the feature extraction design step (such as the
signal perturbation), the proposed method is performing better:
the accuracy of class ω4 (signal perturbation, thermal noise,
and EFZ) for the proposed method is equal to 98.77%, and that
for the SVM method in [15] is 87.39%. Considering that the
accuracy for the thermal noise and EFZ (class ωR

4 ) is 98.46%
with the SVM method in [15], the handcrafted features may
be limited in their ability to model targets not considered in
the design step. On the contrary, the proposed method can
automatically extract semantically meaningful features in the
learning phase. Table V shows that, also for dataset 2, all
the techniques had the expected improvements. In addition,
the table shows that the accuracy of the proposed method
significantly improves when data augmentation is applied. The
performance also improves with respect to the baseline U-Net
by adding the AGs and the ASPP module: the network can

extract semantically more meaningful features and mitigate the
problem of the strongly unbalanced classes.

VI. CONCLUSION

We proposed a fully automatic method for detecting the
basal layer and the basal units in airborne inland radargrams
that segments radargrams into four classes: 1) englacial layer-
ing; 2) basal ice; 3) bedrock; and 4) noise-limited regions,
including the EFZ, thermal noise, and signal perturbation.
We proposed to use a U-Net with embedded AGs and the
ASPP module to extract relevant features for segmenting
radargrams. The AGs filter irrelevant features to focus the
network on critical areas of the radargrams. The ASPP module
extracts features with different receptive fields, improving the
identification of targets of different dimensions and scales,
such as the basal ice, the ice layers, and the bedrock. The
network weights are initialized with pretraining for better
handling the properties of the radar signal. Next, the attention
U-Net is trained to extract features for labeling. Finally,
morphological filters are refined the predicted labels. The
method is tested on two datasets of radargrams acquired in
Greenland and Antarctica, where the basal layer and basal
units are visible. We applied the method to vertical strides
of the radargram (patches) to capture the global context and
the classes’ vertical spatial distribution. The proposed method
requires the availability of a labeled dataset training set that
was manually generated for this work. The results prove that
the method can assign semantically accurate labels, and each
method element had the expected improvements. The proposed
method demonstrated the ability to identify the defined basal
ice and signal perturbation classes with high accuracy. The
other classes, i.e., the englacial layers, the bedrock, the EFZ,
and the thermal noise, are segmented with a high accuracy
that is comparable to the literature methods without requiring
the feature extraction design procedure. As the technique does
not use handcrafted features, it is adaptable to analyze data
acquired in different scenarios, such as coastal areas that are
characterized by floating ice, marine and meteoric ice, and the
grounding areas.
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In future works, we also plan to test the proposed method on
other icy areas to detect different targets, such as ice shelves
and crevasses in coastal regions, which have highly different
geometric and radiometric properties than those in the inland
areas. We plan to investigate the possibility to adapt the model
trained on the Antarctica dataset to perform segmentation on
the Greenland dataset, and vice versa, by means of domain
adaptation techniques that consider the different geologic
properties (e.g., the thickness of the ice and depth of the
bedrock) of the two domains. Finally, we plan to investigate
other approaches for semisupervised training to improve the
network performance while reducing the number of labeled
samples required for supervised training.
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