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Abstract— Lava tubes are buried channels that transport
thermally insulated lava. Nowadays, lava tubes on the Moon are
believed to be empty and thus indicated as potential habitats for
humankind. In recent years, several studies investigated possible
lava tube locations, considering the gravity anomaly distribution
and surficial volcanic features. This article proposes a novel and
unsupervised method to map candidate buried empty lava tubes
in radar sounder data (radargrams) and extract their physical
properties. The approach relies on a model that describes the
geometrical and electromagnetic (EM) properties of lava tubes in
radargrams. According to this model, reflections in radargrams
are automatically detected and analyzed with a fuzzy system to
identify those associated with lava tube boundaries and reject
the others. The fuzzy rules consider the EM and geometrical
properties of lava tubes, and thus, their appearance in radar-
grams. The proposed method can address the complex task of
identifying candidate lava tubes on a large number of radargrams
in an automatic, fast, and objective way. The final decision on
candidate lava tubes should be taken in postprocessing by expert
planetologists. The proposed method is tested on both a real and
a simulated data set of radargrams acquired on the Moon by the
Lunar Radar Sounder (LRS). Identified candidate lava tubes are
processed to extract geometrical parameters, such as the depth
and the thickness of the crust (roof).

Index Terms— Fuzzy logic, image processing, lava tubes, radar
sounder, subsurface.

I. INTRODUCTION

ALAVA tube is a natural conduit formed beneath the
surface that contained thermally insulate lava and trans-

ported it over long distances during the active volcanic
period [1]. Initially, the basaltic lava streams down from
a volcanic vent and streams on the surface similar to
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a river. While flowing, the lava develops a continuous thick
crust because of the extreme difference of temperature between
the hot lava and the outer colder environment [2]. While
moving forward, the hard film above the lava continuously
congeals, becoming thicker. In this way, a tunnel forms in the
subsurface that transports the lava with almost no heat loss [3].
When the lava flows away, the tunnel empties, generating an
elongated cavity with a hardened and thick roof. The size and
the shape of the tubes strongly depend on the characteristics
of lava streams [1]. This phenomenon appears in many bodies
of the solar system, including the Earth, Moon, Mars, and
Venus. On the Moon and Mars, the volcanic period ended
about 50 million years ago [4] and 100–150 million years
ago [5], respectively. Hence, lunar and Martian tubes are
inactive and expected to be entirely or almost empty, e.g.,
containing solidified lava or regolith [6]. On the Moon and
Mars, hollow and stable tubes can persist for significantly more
time than on the Earth because of the colder and drier climate,
the weakness of the tectonic activity and weathering rates, and
the lower gravity [7]. Moreover, for the same reasons, Martian
and lunar lava tubes have larger dimensions than those on the
Earth, with widths typically between 10 and 30 m [8]. Hence,
terrestrial tubes can be considered as analogs to understanding
their formation mechanism and geometrical structure. A lava
tunnel network generally consists of the main tube and several
smaller ones. It is reasonable to suppose that such networks
exist on the Moon and Mars, but there is no specific knowledge
on their locations and extension [1]. Also, the characteristics of
a single conduit are obscure, e.g., the inner aspect (collapsed,
fully or partially filled, hollow), the depth, and the rooftop
thickness [9]. However, some studies analyze the possible size
range of stable lava tubes on the Moon. Blair et al. [10] and
Theinat et al. [11] simulatedtunnels of different dimensions
and roof thickness subjected to the lithostatic and the Poisson
stress, and the tectonic strain in the subsurface. The results
show that stability is correlated with the height of the rooftop
and the initial stress state. Lava tubes with a relatively thin
roof of 50 m are stable with a width of up to 3.5 km.
With a roof thickness of up to 200 m, lava tubes are stable
with a maximum width of 5.25 km. Deeper tunnels with a
roof thickness of 500 m do not collapse when the width is
up to 5 km [10], [11]. The roof thickness is of particular
importance for tube stability.
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Lava tubes, and more in general subsurface void spaces on
the Moon and Mars, have gained an increasing interest in the
literature in the past years. First, from a geological point of
view, lava tubes are of critical importance as their properties
(e.g., the type of minerals and rocks and the elongation)
can help in understanding the geological evolution. Second,
lava tubes are the perfect places for building structures for
living, storing food, and electronics [12]–[14]. Third, several
works identified subsurface cavities as the perfect place where
humankind can safely settle sheltered from the threats on the
surface [15], [16]. The roof of the tube acts as a shelter against
surficial threats, e.g., cosmic and solar radiations and Gamma
rays [2], [12], [17], the extreme temperature variation [12],
the regolith small and toxic dust, and the frequent meteoritic
impacts. Finally, as the surface is a hostile environment, buried
cavities may store water and may be a stable physical and
chemical environment that preserves microbial biosignature,
as an analogy to the Earth [18], [19].

Lava tubes can hardly be mapped with direct measurements,
especially on the Moon, Mars, and isolated places on the
Earth. On Earth, lava tubes are mapped and studied on-site,
which is not possible in space. There exist four main strategies
for mapping lava tubes 1) employing optical and synthetic
aperture radar (SAR) images to identify surface volcanic fea-
tures linked to subsurface cavities [2], [20]–[24]; 2) studying
skylights from obliques views in images acquired at different
wavelengths [14], [25]; 3) detecting distribution anomalies
in the gravity data that may correspond to subsurface mass
deficits [26]; and 4) analyzing radar sounder data [1], [9], [27].
The first approach investigates geological volcanic structures
on the surface that are correlated with buried lava tubes,
i.e., rilles [2], [20]–[22] and huge pits [23]. These structures
can be interpreted as locally collapsed lava tubes because
of preexisting fractures in the roof, meteoric impacts, or a
thin roof unable to sustain the tube weight. Note that the
subsurface void should be large enough to contain the crust
material, especially for pits in a chain formation. The sec-
ond approach analyzes the differences between impact crater
holes and skylights at visible and thermal wavelengths with
several angles of incidence [14], [25]. At visible wavelength,
skylights lack any impact crater properties (e.g., raised rims
and ejected patterns). At infrared wavelength, during the day
inside the skylights, the temperature fluctuates less widely than
in the nearby surface and adjacent bowl-shaped pit craters.
At nighttime, the pit floor shows a higher temperature than
in the surrounding pits, which suggests the presence of an
extended subsurface cavity mitigating the fluctuation [14]. The
third strategy analyzes anomalies in the gravity distribution to
identify mass deficits that can be compatible with hollow lava
tubes. Chappaz et al. [26] estimated the subsurface density
and detected buried cavities by exploiting negative anomalies,
i.e., lower density values. The fourth strategy analyzes radar
sounder and ground-penetrating radar (GPR) data as they
provide a direct measure of the subsurface. Investigating GPR
data, Miyamoto et al. [1] and Rowell et al. [9] mapped and
characterized complex networks of lava tubes. Rowell et al. [9]
proposed a method to detect the pattern of lava tubes that
exploits a priori knowledge of the tunnel connections and

geometries, e.g., the tube dimensions and roof thickness.
However, this knowledge is not always available for terrestrial
nor planetary cases. Miyamoto et al. [1] proposed an approach
to detect lava tubes by analyzing the vertical profiles of
radargrams (A-scan). A-scans were compared with a specific
pattern characterized by two high peaks, compatible with the
expected lava tube behavior. The same approach was applied
to radargrams of the Moon aiming at mapping the tunnel
network [27]. However, in both studies, each a-scan is sep-
arately analyzed without checking the peak spatial correlation
or extracting information on the tube dimension. Note that
peaks do not uniquely represent lava tubes but any strong
reflections in the subsurface, such as clutter. Recently, a new
strategy was proposed to detect possible lava tubes [27] for
discriminating between clutter and subsurface reflections [28].
The strategy is based on three criteria: 1) analysis of multi-
ple orbit data (if available); 2) evaluation of the correlation
between radargrams and surface scattering simulations; and
3) analysis of the surface slope echo. However, radar sounder
data store more information that can be used to identify
buried geological structures and understand the processes in
the subsurface. Radar sounders are active sensors that can
probe the subsurface in a nonintrusive way and, thus, without
digging nor coming in contact with the observed body. They
transmit in the nadir direction electromagnetic (EM) waves
that can penetrate the surface and propagate in the subsurface.
The signal has a low frequency in the range of high frequency
(3–30 MHz) or very high frequency (30–300 MHz) and rela-
tively wide bandwidth up to 100 MHz depending on the central
frequency. The radar waves measure the subsurface structures
because of the different dielectric properties. They interact
with the EM signal, generating reflected echoes collected by
the antenna. These echoes are coherently summed together
and contain in radargrams. Analyzing radargram is possible to
extract significant information on the subsurface structures and
processes [29]–[32], not retrievable with the other approaches.

This article proposes a novel automatic method to detect
reflections from candidate cavities, such as empty and buried
lava tubes, in radar sounder data. The method, which extends
and develops the initial idea in [30], is unsupervised (does
not require a training phase), considers the intrinsic nature of
the lava tubes in the subsurface, and is flexible. It consists
of three main concepts: 1) the EM modeling of the lava
tube signature in the radargrams; 2) extracting reflections in
the radargram; and 3) analyzing the reflections to identify
those related to candidate lava tubes. The EM modeling
describes how lava tubes appear in radargrams by analyzing
the interaction between the propagating EM wave and the
buried cavities, seen as the transition rock-void-rock in the
subsurface. Considering the lava tube model, the method
extracts reflections in radargrams and then analyzes them to
identify those related to buried cavities and reject the others.
The analysis consists of a fuzzy detection system based on
the lava tube EM model that evaluates the reflection properties
and their relation. The proposed method identifies candidate
lava tubes in an automatic, fast, and objective way. Given
the complexity of the task, this is not feasible with visual
analysis on a large number of radargrams. The final decision
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on the identified candidate lava tubes should be made in the
postprocessing by expert planetologists. The effectiveness of
the proposed method is demonstrated with experiments on
two data sets: a data set of simulated radargrams and a data
set of radargrams acquired on the Moon by the Lunar Radar
Sounder (LRS).

This article is organized as follows. Section II presents
the geological and EM models for lava tubes. Section III
focuses on the method proposed to detect lava tubes by
describing the algorithm to extract the reflection from the
radargram and the fuzzy system that analyzes the reflections
to identify lava tubes. Section IV is devoted to describing the
two data sets and the experimental results. Section V discusses
the limitations and the assumption of the proposed method.
Finally, Section VI presents the conclusions and future work.

II. LAVA TUBE MODEL

Lava tubes are tunnel-like structures that drain over time,
generating elongated buried cavities. The void and the rock
have highly different dielectric properties, which make the
interfaces between the two materials detectable by radar
sounders. In radargrams, interfaces appear as strong reflections
with specific characteristics in amplitude and phase. This
section describes the EM and geometrical model of lava
tubes in terms of reflections generated by the surface and the
lava tube boundaries. To investigate the properties of these
reflections, we simulated the amplitude and phase radargrams
with a coherent multilayer simulator [33]. The simulator takes
as input the parameters of the radar EM wave (e.g., the central
frequency, the bandwidth, and the modulation of the carrier
signal). Moreover, the simulator allows choosing the crossing
angle α between the moving direction of the radar platform
and the lava tube longitudinal axis. Finally, the simulator
requires the geometrical and dielectric models of the sur-
face and the subsurface. It considers the surface topography
(e.g., roughness and craters), the geometry of the buried geo-
logic structures, and the dielectric properties of the materials.
Here, we first simulate an ideal scenario where above the
surface is void, and the rocky subsurface contains an empty
lava tube. The simulations consider the geometric model of
planetary lava tubes in [10] and [34]. The lava tube geomet-
rical model considers stable structures with the tunnel sizes
and the roof thicknesses shown in Table I that follows the
analyses in [10] and [34]. The tunnels are approximated as
half-cylinders with a height-to-width ratio of 1:3, i.e., the
tube height is one-third of the tube width, as in [10]. For
the dielectric model, we consider the ideal case with the
void in the tube, which is characterized by a unitary relative
dielectric constant εvoid

r = 1. Note that in real scenarios,
the lava tube inside can be partially filled by regolith or other
materials having a lower dielectric constant than that of the
rock. The basaltic rock around the conduit is approximated
by a relative dielectric constant of εrock

r = 4 and a loss
tangent of δrock = 0.01. Considering the lunar scenario, at the
simulation central frequency fc, the dielectric constant of the
surface εr varies from 4 up to 8 and the upper limit of
the tangent loss δ is in the range of 0.1–0.3 [35]. Hence,

TABLE I

PARAMETERS OF THE GEOMETRICAL MODEL OF THE SIMULATED LAVA
TUBE, CONSIDERING THE STABLE SCENARIO [10], [34]. NOTE

THAT THE TUBE HEIGHT IS ASSUMED TO BE ONE

THIRD OF THE TUBE WIDTH

TABLE II

RADAR PARAMETERS OF THE SIMULATIONS AND THE LRS [38],
AND RESOLUTION PARAMETERS OF THE RADARGRAMS

simulations refer to the worst case scenario in terms of
surface dielectric properties. Recently, a study [36] showed
that in the frequency range of 10–100 MHz, the regolith
absorption and volume scattering are negligible. Thus, the
EM wave is affected only by losses due to the surface
roughness, i.e., the topography. The attenuation depends on the
loss tangent and mainly affects the reflections from the lava
tube rather than from the surface. Considering a loss tangent
and a dielectric constant at the ceiling and floor of the tube
equal to that of the surface, the maximum detectable depth
of lava tubes strongly depends on fc [36]. At frequencies in
the range of 60–100 MHz, it is in the range of some hundred
meters and it increases as fc decreases [36]. For the signal
modulation, the EM wave has a chirp waveform smoothed by
a Hann window [37]. We simulated signals by varying central
frequencies, transmitted power, and height of the radar from
the surface, as shown in Table II. For the crossing angle α,
we simulated the cases in the range of α ∈ (0, π/2). The
two extreme cases are: 1) α = 0, which represents the tube
axis being parallel to the moving direction of the radar, and
2) α = π/2, which models the tube axis being perpendicular
to the moving direction of the radar. Fig. 1(a) and (b) shows
the tube in yellow and the moving direction of the radar in
red for α = 0 and α = π/2, respectively. Regarding the
topography of the surface, we first considered an ideal and
flat surface to focus on the reflections due to the lava tubes.
Then, we simulated a more complex and realistic topography
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Fig. 1. Simulated amplitude and phase radargrams of a lava tube with deep d = 200 m and diameter 2r = 4 km for the cases α = π/2 and α = 0. (a) and
(d) Track of the direction of the radar and the tube axis (both in red) with an angle α = π/2 and α = 0, respectively. (b) and (c) Simulated amplitude and
phase radargrams for the perpendicular case, respectively. (e) and (f) Simulated amplitude and phase radargrams for the parallel case, respectively.

to analyze how the surficial clutter interacts with the pattern
of lava tubes. Considering such a scenario, here, we describe
the EM model of lava tubes from the amplitude and phase
point of view.

A. Lava Tube Amplitude Model

The amplitude radargram shows three strong and linear
reflections that represent the surface, the ceiling, and the floor
of the tube (see Fig. 1). The surface reflection (G) ideally
appears as a bright line as long as the radargram with the
greatest amplitude. This reflection is the first interface that the
radar wave encounters. The tube generates a pattern made of a
couple of reflections that represent the two interfaces between
the void and the basaltic rock. The upper reflection (C) is
generated by the ceiling of the tube, whereas the lower one (F)
is generated by the floor. The amplitudes aC and aF are smaller
than that of the surface but similar to each other. The distance
between the reflections in the range direction is proportional to
the depth of the interfaces. The reflection lengths (lC , lF ) along
the azimuth depend on the size of the tube and the crossing
angle α. Concerning the angle α of intersection between the
tube axis and the flight track of the sounder, there are two limit
cases: α = 0 and α = π/2. When α = 0 [parallel case, see
Fig. 1(d)–(f)], the couple of reflections is ideally as long as the
radargram in azimuth [see Fig. 1(e)]. Note that the reflection
length depends on the acquisition—a radargram may image
part of the lava tube or cover a wider area than that of the
tube. When α = π/2 [perpendicular case, see Fig. 1(a)–(c)],
the reflection lengths (lC , lF ) are similar and shorter than

the radargram in azimuth [see Fig. 1(b)]. Smoothly moving
from the latter to the former case, the reflections preserve
the (almost) linear shape stretching until the parallel case.

B. Lava Tube Phase Model

In the phase domain, the lava tube model has three reflec-
tions with the same length and depth (i.e., range position) as in
the amplitude domain. The main property of the phase model
is the phase inversion [36] of the reflections originating from
the lava tube ceiling when compared to the surface reflection.
This effect on the radar signal is expected from a dielectric
discontinuity where the first medium has a higher permittivity
than the second one. In our case, the first medium is basalt,
whereas the latter is the vacuum, modeling the lava tube’s
inner free space. The lava tube floor is expected to have the
same phase sign as the surface reflection.

The above-mentioned amplitude and phase models assume
an ideal scenario with flat topography, i.e., a plane and
roughness-free surface. In this scenario, we identify the reflec-
tion pattern of empty tubes without the presence of clutter.
We further investigate more realistic scenarios with complex
surface topography. To this end, we introduce sharp roughness
and deep craters to verify the impact of the surface clutter on
the reflection pattern of the tubes (see Fig. 2). The simulations
indicate that craters generate clutter reflections with a pattern
similar to that of the lava tubes in amplitude but not in
phase. The lava tube models are not affected by significant
changes, i.e., the three reflections maintain the main properties
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Fig. 2. (a) Surface terrain is characterized by a high rough surface and thick craters. (b) Simulated amplitude and (c) phase radargrams of a lava tube with
deep d = 200 m and diameter 2r = 4 km for the case α = π/2. Reflections generated by the surface, the craters, and the lava tube ceiling and floor are
highlighted in radargrams [see (b) and (c)].

described above. The model preserves the inversion of the
phase at interfaces of materials with considerably different
dielectric constants. The surface reflection G is affected by the
volume scattering due to the roughness and clutter signals. The
rim and the ground of the craters create several clutter signals
above and below the surface. However, the crater reflections
do not have phase inversion and, thus, are distinguishable from
those of the tube boundaries (see Fig. 2). Regarding the pattern
of lava tubes, C and F maintain the properties of the phase
model. In amplitude, the ceiling and the floor reflections show
a loss of about 5 dB, which is confirmed in [27] and [36].
In a more realistic scenario, lava tubes are not perfect cylin-
drical bodies but have a more complex geometrical shape [39].
The profile of lava tubes is typically characterized by a flat
and extended floor and shorter and sharper ceiling. Moreover,
lava tubes are not straight and parallel to the surface, but they
have a sinuous track and may have an inclination toward the
surface. This geometry is reflected in the shape and position of
C and F : 1) C and F are not expected to be perfectly parallel
between them and with the surface and 2) C and F may not
share the same length and may not fully overlap in the azimuth
direction. However, the lava tube pattern is still distinguishable
because of the phase inversion between C and F . Finally,
recent studies show that the tube may be filled with regolith [1]
or other media having dielectric properties similar to that of
the void. Thus, the EM model for the lava tube is still valid
as the large difference in the dielectric properties of the media
produces a phase inversion.

III. PROPOSED APPROACH TO DETECT

CANDIDATE LAVA TUBES

Let us consider a radargram as a 2-D matrix of nT traces
and nS samples

R = {R(x, y)|x ∈ X = [1, . . . , nT ], y ∈ Y = [1, . . . , nS]}
(1)

where R is the coherent sum of the echoes stored in the
radargrams and x and y indicate the range and the azimuth
coordinates, respectively. The radargrams contain the com-
plex signal reflected from the interfaces between different
media in the subsurface such that R(x, y) = RR(x, y) +
j RI (x, y), where RR(x, y) is the real part of the signal
and RI (x, y) the imaginary part. The amplitude A(x, y) and

phase �(x, y) radargrams are defined as follows:
A(x, y) =

�
R2

R(x, y) + R2
I (x, y)

�(x, y) = arctan
RI (x, y)

RR(x, y)
. (2)

Let F = {Fi, i ∈ [1, . . . , NF ]} be the set of features extracted
from the radargram, where Fi indicates the i th feature, i.e., the
coordinates of the pixels of the reflection in the radargram
and the related properties. The proposed approach assigns to
each feature a class in �c = {ωg, ωc, ω f , wn}. ωg indicates
the best candidate to represent the surface, and ωc and ω f

indicate features that can be generated by the candidate tube
boundaries (the ceiling and the floor, respectively). wn labels
features that are related neither to buried cavities nor to the
surface but probably generated by the surface topography and
other volcanic structures, e.g., impact craters, tesserae, and
off-nadir clutter.

A novel automatic technique is proposed with three steps
(see Fig. 3):

1) extraction of the coordinate of the reflections in the
radargram;

2) extraction of the properties of each reflection to define
the feature set;

3) analysis of the features to detect those generated by the
surface and candidate lava tube boundaries, exploiting
the model in Section II.

According to the analysis in Section II, the properties of the
lava tube EM model are the following.

1) There should be at least one candidate surface reflection
having the shallowest depth in the range and the greatest
power return.

2) There should be at least two other deeper reflections,
i.e., the candidates for the boundaries of the lava
tube C and F .

3) The reflection length depends on the tube width and the
crossing angle α between the tube axis and the moving
direction of the radar.

4) Candidate features for the same tube should have as
similar as possible length, independent of the crossing
angle α.

5) There should be alignment between the candidate fea-
tures C and F , i.e., the barycenters of the candidate C
and F should lie on the same line.

6) Phase inversion should occur at ceiling candidate
feature.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 3. Flowchart of the proposed approach to detect candidate lava tubes.

Note that candidate features in the radargrams will have differ-
ent characteristics, including thickness, shape, and orientation
according to the acquisition geometry, the resolution in the
range direction (which also depends on the specific dielectric
properties of the medium), and the physical properties of the
geological structures. Furthermore, real radargrams usually
present other reflections related to undesired signals, such
as clutter from off-nadir and surface topography variations.
Hence, the automatic system to detect lava tube reflections
must be robust to noise and uncertainties in radargrams, given
by the impossibility of precisely modeling the subsurface
structures.

A. Detection of the Reflections

Considering the model presented in Section II, the signature
of both the lava tube boundaries and the surface consists
of reflections with a linear shape. Hence, the first step of
the proposed approach extracts the candidate features with a
line detection algorithm. In the literature, there exist several
methods to detect lines in radargrams, such as [31] and [32].
Here, we used the unsupervised method in [31] that can extract
lines with different properties, e.g., orientation, shape, and
length. Furthermore, the method is robust to both the thermal
and background noise of radargrams. The algorithm [31] auto-
matically detects lines in radargrams by applying a local scale
hidden Markov model (HMM) and the Viterbi algorithm (VA).
The overall approach consists of the following steps: 1) layers
enhancement; 2) segment detection using a combination of
the VA and HM model in small regions of the radargram;
and 3) combination of adjacent segments. (See Fig. 4 for
the schematic representation). The HMM detects the most
probable location of the lines and transforms the pixels in
these regions into a graph. The VA analyzes the graphs to
identify the pixels belonging to the lines. The approach divides
radargrams into small portions processed separately. Then,
a detection strategy links inferred local segments.

The initial step enhances the signal while reducing the
noise in the radargram with an incoherent averaging filter that
magnifies locally flat lines with a size of NAV (reflections that
are flat at least at the scale of the averaging length). Then,
the algorithm adaptively estimates the conditional density
function (CDF) of the noise and the signal. Knowing these
CDFs and fixing the probability of false alarm, the algorithm
computes the probability of detection and the peak threshold.
The peak threshold is applied to each rangeline (a column of
the radargram) to detect the local peaks, potentially associated

Fig. 4. Illustration of the tracking procedure of a single layer edge. The
pixels with the red circle connected by the yellow arrow identifies a retrieved
best path.

with lines. Since reflections are spread in range, i.e., they
are some pixels thick, the algorithm considers only peaks
separated by at least a unit of range resolution (skeleton
thickness) to avoid multiple detections of the same reflection.

The second step applies the HHM and the VA to detect the
lines. HHM transforms the radargram into a graph where the
VA searches for the optimal state sequence. For each azimuth
position, the VA considers as initial seeds the previously
detected peaks. Then, it iteratively identifies the optimal state
sequence in the radargram portion surrounding the seeding
points. The amplitude of the pixels in the best path is thresh-
olded Thline to check whether the path is related to a reflection.
Then, the algorithm connects the line of adjacent radargram
portions in a way that the initial seeds of the next portion are
the last pixels of the best paths of the previous block. The
algorithm stops when it reaches the end of the radargram or
when the thresholding condition is no longer verified. When
a line is detected, the corresponding pixels are removed from
the radargram to avoid multiple detections.

The algorithm extracts a set of lines L = {Lk, k ∈
[1, . . . , NL ]} corresponding to high reflection values in the
radargram. For each line, the algorithm provides the azimuth a
and range r coordinates for each pixel. The algorithm extracts
many segments for each reflection as it is sensitive to the
amplitude variations. Hence, a step of postprocessing com-
bines segments related to the same reflection. Segments shorter
than Lmin are removed as they are expected to represent noise
or unwanted reflections. Segments are grouped by considering
the relative distances in the azimuth and range. Two segments
are grouped if: 1) they overlap in the azimuth or the range
directions of Oa and Or pixels and 2) the amplitude of the edge
connecting the two lines is constant and higher than the thresh-
old Thline. The first condition identifies the candidate segments
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Fig. 5. Examples of the refinement step: several segments Li
k are extracted

for each reflection Ri.

Fig. 6. Simulated radargram imaging the surface reflection G , the tube
ceiling C , and the floor F with the main geometrical parameters for each ith
reflection (length li , average depth ρi , and azimuth barycenter coordinate bi

a).

to combine. The second one combines only the segments that
are likely to represent the same reflection. The output of this
step is a set of reflections R = {Ri, i ∈ [1, . . . , NR]}, where
the i th reflection groups several segments Li

k. (See Fig. 5 for
a schematic representation). For each reflection, a geometrical
region is built by considering as starting and ending point the
coordinates of the most left and most right pixel of each line
group.

B. Characterization of the Reflections

The second step of the proposed approach characterizes the
i th reflection by extracting the length li , the average depth ρi ,
the barycenter coordinates bi , the average amplitude ai , and
the average phase φi (see Fig. 6). These parameters compose
a feature vector Fi = {li , ρi , bi , ai , φi } for each reflection Ri.

1) Length: For each reflection Ri, the length li considers
the extension in the azimuth direction of the reflection with

li = max
�

lk
a

�− min
�

lk
a

�
, k ∈ �1 . . . Ni

L

�
(3)

where lk
a is an array indicating the azimuth coordinates of the

kth line and Ni
L is the number of segments of the i th reflection.

The reflection length is equal to the distance between the
points with the lowest and the highest azimuth coordinate.
This considers the distance between the two extreme points,
without considering the overlapping of the lines in the azimuth.

2) Depth: The average depth ρi considers the average range
coordinate of each reflection according to

ρi = max
�

lk
r

�+ min
�

lk
r

�
2

, k ∈ �1 . . . Ni
L

�
(4)

where lk
r is the array of the range coordinates of the kth line

of the i th reflection. The average depth of the reflection is
equal to the midpoint between the lowest and the highest range
coordinate. This considers the reflection thickness but not the
overlapping of the lines in the range direction.

3) Barycenter: The barycenter bi is calculated by consider-
ing the centroid of the geometrical region of each reflection.
Hence, the azimuth bi

a coordinate of the centroid is calculated
as follows:

bi
a = max

�
lk
a

�+ min
�

lk
a

�
2

, k ∈ �1 . . . Ni
L

�
(5)

whereas the range coordinate is equal to the average depth of
the feature bi

r = ρi .
4) Amplitude: The average amplitude ai of each reflection is

considered as the average amplitude of the pixels belonging to
the Ni

L lines of the i th reflection. Hence, the average amplitude
is computed as follows:

ai = mean
�

A
�
lk
a, lk

r

��
, k ∈ �1 . . . Ni

L

�
(6)

where A(l i
a, l i

r ) is the amplitude radargram at the azimuth and
range coordinates of the lines in the i th reflection.

5) Phase: The last parameter is the average phase φi

related to the change of media in the propagation path of
the EM wave. The phase radargrams store the phase signal
that depends on: 1) the interactions between the EM wave
and the medium where it propagates and 2) the length of the
path traveled by the EM wave. Here, the aim is to identify the
phase shift due to the interaction between the EM wave and
the subsurface structures and media. The phase shift can be
estimated as the difference in the length of the traveled path
and the total phase value. To this end, for each reflection,
the phase value of each pixel is computed by analyzing the
signal properties in the frequency domain. Let us consider the
i th reflection to define the strategy to extract the average phase
value from the phase radargram. In the amplitude domain,
the range coordinate of the signal peak r i

p is identified for
each column of the geometric region. In the phase domain,
the pth column of the geometrical region is convolved with a
Hann window Whann(y) centered in the peak in the following
equation:

Whann(y) =

⎧⎪⎨
⎪⎩

1

2


1 + cos


2πr i

p

T

��
,
��r i

p

�� ≤ T/2

0,
��r i

p

�� > T/2

(7)

where r i
p is the range coordinate of the peak in the pth column

of the geometrical region of the i th reflection and T is the
length of the considered surrounding window. In the frequency
domain, the Hann window has low aliasing, low sidelobes, and
a narrow main lobe. These properties limit the impact of the
filtering on the phase signal while having an accurate selection
of the frequency and a low level of signal distortions. Then,
the output of the convolution is transformed into the frequency
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domain by applying the Fourier transformation (FT). In the
frequency domain, the signal is complex and the phase can
be estimated by calculating the angle of the signal. Hence,
the average phase value θi for the i th reflection is the average
of the phase computed for each range line. Note that θi is the
phase value having the contributions from the length of the EM
wave propagation path θ

path
i and the interaction of the wave

with the material φi . φi can be estimated with φi = θi − θ
path
i ,

where θ
path
i is defined by setting y = ρi in the following

equation:

θpath(y) = 4π

λ
[ρ(y) + h]�εr (y) (8)

where λ is the wavelength of the signal, h is the elevation
of the radar, and εr (y) is the relative permittivity of the
propagation medium, which depends on the range. Note that
ρi + h is the length of the propagation path of the
EM wave from the radar to the interface in the subsurface.
εr (y) indicates the propagation medium; here, the dielectric
profile considers basaltic rock εrock

r in the subsurface, and
vacuum in the buried cavities and above the surface. Once the
phase contribution given by the propagation path is calculated,
the phase shift from the change of dielectric properties in
the medium can be estimated. Note that the lava tube model
considers the phase inversion between a couple of reflections,
such as the reflection from the cavity boundaries. Once the
candidate features to be the surface and the tube boundaries
are identified, the relative phase between the reflections can
be computed. The phase signal of the candidate to be the
surface, and the tube ceiling and floor are estimated in (9),
as the difference between the phase contribution from the
propagation path of the EM wave and that of the dielectric
properties

�G = 4πh

λ

�
εr (ρG)

�C = 4πh

λ

�
εr (ρG) + 4π(ρC − ρG)

λ

�
εr (ρC) + φC

�F = 4πh

λ

�
εr (ρG) + 4π(ρF − ρG)

λ

�
εr (ρF ) + φF (9)

where ρG , ρC , and ρF are the average depth of the ground
reflection G, ceiling reflection C , and floor reflection F ,
respectively. ρC − ρG is the roof thickness (the propagation
path of the EM wave from the surface to cavity ceiling),
while φC is the phase contribution given by the change of
dielectric properties of the material at the tube ceiling. ρF −ρG

is the propagation path from the surface to the floor of the
cavity (sum of the roof thickness and the tube height), while
φF is the phase contribution given by the change in the
dielectric properties of the material at the tube floor. Finally,
the dielectric properties εr (y) depend on the dielectric profile
and, thus, the depth. Comparing the phase of two reflections,
we can check the phase inversion as the difference between
the phases of the two candidate features

�C − �G = 4π(ρC − ρG)

λ

�
εr (ρC) + φC

�F − �C = 4π(ρF − ρC)

λ

�
εtube

r + φF − φC . (10)

The first part of both equations is related to the phase signal
due to the propagation path, whereas the latter is from the
dielectric properties of the medium. In the first equation
of (10), the wave propagates into the lava tube roof, which
consists of basaltic rock. In the second equation of (10),
the wave propagates in the tube that generally is void and has
a relative permittivity εtube

r = ε0 = 1. The phase contribution
from the materials φC and φF is the unknown of the equation
that can be estimated by inverting (10). Note that according
to the lava tube EM model, |φC | is ideally equal to π since
a phase inversion occurs when moving from the rock to the
void of the tube. Hence, the phase difference depends on the
unknowns (εtube

r , φC , and φF ) and allows us to derive the phase
shift.

C. Fuzzy Detection Approach

This section focuses on the proposed strategy to analyze the
set of features F = {Fi, i ∈ [1, . . . , NF ]} extracted from the
radargram with a fuzzy logic-based system. The system exam-
ines the properties of the features (Fi = {li , ρi , bi , ai , φi }) and
assigns to each of them a label in �c = {ωg, ωc, ω f , wn}. The
fuzzy logic models the uncertainty of the lava tube EM model
in the realistic scenario and accounts for the characteristics
of the data, such as their low resolution. The fuzzy system
consists of two steps: 1) the best candidate feature to be the
surface reflection is identified and removed from the feature
set and 2) the remaining features are analyzed two-by-two to
detect the couples of features that can be candidates to be the
lava tube ceiling and floor. When two features are identified
as possible reflection generated by the lava tube boundaries,
these are removed from F to avoid multiple detections of the
same cavity. The analysis of the features is done with a set
of rules (see Table III) based on the EM model presented in
Section II. Each rule evaluates the features by providing a
membership value in the range of [0, 1]. This value indicates
how much that rule is fulfilled, i.e., a high membership value
indicates that the rule is verified for that feature, whereas a
low value indicates the contrary.

The first step aims at detecting the best candidate feature
to represent the reflection generated by the ground surface
among the candidate features Fi, i ∈ [1 . . . NF ]. Ideally,
the surface reflection has a length comparable to that of the
radargram in azimuth. Furthermore, it has the smallest average
range coordinate since it is the first interface encountered by
the wave. To identify the surface reflection, two fuzzy rules
described below evaluate the candidate features and associate
a grade of membership to all of them. According to the overall
membership value, the best candidate to represent the surface
reflection is detected.

1) Completeness: Three reflections generated from the sur-
face and the tube ceiling and floor must be detected in the
radargram to identify a possible candidate. This rule evaluates
the presence of at least three features such that Fi, i ∈
[1 . . . NF ], NF ≥ 3. Fixing the parameter p = NF , p is
evaluated with a crisp membership function μC(p), defined as
μC(p) = [0, 1]. The function analyzes the number of features
Ni and is μC(p) = 1 when three or more reflections are
detected; otherwise, it is μC(p) = 0.
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TABLE III

SUMMARY OF THE FUZZY RULES USED TO CLASSIFY EACH FEATURE AS POSSIBLE SURFACE REFLECTION ωg ,
LAVA TUBE CEILING REFLECTION ωc , LAVA TUBE FLOOR REFLECTION ω f , AND NONE OF THEM ωn

2) Surface Length: This rule aims at detecting the best
candidate to represent the surface reflection by evaluating the
length li of each candidate feature. Ideally, the length of the
surface reflection is the same as the radargram in the azimuth
direction. This can be evaluated with a sigmoid membership
function (11) evaluating the attribute rG . The attribute rG =
li/ lR is defined as the ratio between the length li of each
candidate feature and the radargram length lR . In general,
a sigmoid function is defined as follows:

μ j(r j ) = 1

1 + exp(−a j (r j − c j))
(11)

where μ j = μG and a j = aG, aG > 0 indicates the center of
the function, and c j = cC , cG > 0 is a parameter modeling the
slope curvature. μG(rG) returns a value in the range of [0, 1];
the higher the value of rG , the higher the membership value
and the possibility for that feature to be the candidate for the
surface reflection. A low value of rG indicates that the feature
length is small compared to that of the radargram one. The best
candidate to be the ground surface feature is identified with the
aggregated membership value MG , calculated by combining
the completeness and surface length rules as in the following
equation:

MG = μC μG . (12)

Among the fuzzy aggregation method, the Larsen product
implication [40] is chosen since it is conservative. A small
membership value forces a small final aggregation, regardless
of the other membership values. The candidates are sorted
considering their average depth. The feature with the lowest
range coordinate, having an overall membership value MG

higher than a threshold ThG , is classified as ωg . The value
MG indicates the grade of reliability for that feature to be
the best candidate to represent the surface reflection. Finally,
the feature classified as ωg is removed from F to avoid the
multiple labeling of the same feature.

The second step of the proposed method analyzes the
remaining features F \ {Fi = ωg} to detect possible can-
didates to represent the lava tube ceiling and floor. Ideally,
the tube boundaries generate two reflections having a linear
shape and comparable length. These reflections correspond to

the tube ceiling and floor, where the former is expected to
have a lower range coordinate than the latter. Furthermore,
the amplitude values of the two reflections are comparable
since the void in the cavity only slightly attenuates the signal.
Finally, the reflections are characterized by phase inversion
due to the extreme difference between the dielectric materials
at the interface. Hence, the related features need to match
those in the EM model presented in Section II. The matching
is evaluated by applying five fuzzy rules that analyze all the
pairs of candidates. For each pair, the system provides a grade
of membership that can be used to detect those representing
tube boundaries. Couples of features are defined by choosing
two features Fc and Ff in F = {Fi, i ∈ [1, . . . , NF − 1]}
to be the candidate for the ceiling and the floor reflection,
respectively. To identify the candidates, the features are sorted
according to the increasing value of their average depth.
Then, the candidates Fc and Ff are iteratively selected in
a way that the average depth of Fc is shallower than that
of Ff . At the i th iteration, the candidate are Fc = Fi and
Ff = Fi+1. If the candidates are evaluated by the fuzzy
system to represent a possible lava tube, they are labeled
Fc = ωc and Ff = ω f and both removed from F . If this
is not valid, the candidate feature for the floor is changed
such that Ff = Fi+t, t ∈ [1, . . . , Ni

F − 1], where Ni
F is the

size of the feature set at the i th iteration. When t = Ni
F

and the candidate couples Fc and Ff are evaluated as not
related lava tube boundaries, the candidate ceiling feature is
set to Fc = Fi = ωn and removed from F . Then, at the next
iteration i + 1, the candidate feature for the ceiling is changed
and the above-mentioned procedure repeated. This approach
stops when all the features in F are labeled with one of the
labels in �c = {ωg, ωc, ω f , wn}. Each couple of candidate
feature Fc = {lc, ρc, bc, ac, φc} and Ff = {l f , ρ f , b f , a f , φ f }
is examined with the following rules that are summarized
in Table III.

3) Equivalence of Lengths: This rule checks that the lengths
of the candidate ceiling lc and floor l f features are similar.
Ideally, when considering tubes with a cylindrical shape,
the reflections generated by the boundaries of the tube have
similar lengths. More realistically, reflections have a similar
length rather than the same one. However, this is mitigated



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

by the fuzziness of the approach, and if needed, it can be
considered explicitly in the definition of the rule by adding a
margin on the similarity. This rule can be implemented with a
sigmoid membership function (11) with ai = aL, aL > 0 and
ci = cL , cL > 0 (see 11) that evaluates the attribute rL =
min{lc/ l f , l f / lc}. The function computes the membership
value μL in the range of [0, 1], which indicates the confidence
to have similar lengths. μL is maximum when the candidates
have a similar length. Decreasing the length of one feature
decreases the value of μL .

4) Proportionality: This rule verifies that the candidate
features overlap in the azimuth direction and thus eliminates
a pair of features not sharing enough azimuth coordinates.
Ideally, to represent a lava tube, the reflections should be
completely overlapping in the azimuth direction. More real-
istically, reflections may not fully overlap. However, this is
mitigated by the fuzziness of the approach. Also, for this rule,
it can be included in the definition by including a margin. The
proportionality membership μP is obtained by evaluating the
attribute rP with a sigmoid membership function (11) with
ai = aL , aL > 0 and ci = cL , cL > 0. The attribute is
rP = min{L/ lc, L/ l f }, where L is the number of pixels
with the same azimuth coordinate in the candidate features
The higher the number of overlapping pixels, the higher is
the membership value μP . μP goes to 0 when there are not
overlapping pixels.

5) Alignment of Barycenters: This rule verifies that the
candidate features are parallel. Ideally, approximating lava
tubes as cylinders, the two reflections should be parallel
to the azimuth direction. More realistically, the tube has a
more complex shape, which, in radargrams, translates into
reflections neither perfectly parallel to each other nor perfectly
perpendicular to the range direction. Note that tubes can
show a steepness coefficient higher than zero, i.e., the tube
is inclined. Fixing α = 0, the reflections in the radargram
from the tube ceiling and floor may be neither parallel to
the surface. Possible nonidealities of reflection barycenters
not laying on the same line are mitigated by the fuzziness
of the approach as the membership function gives a value
indicating the goodness of the matching between the candi-
date features and the rule. To evaluate the alignment of the
candidate features, the barycenter coordinates of the candidate
features bi

a and bi
r in the azimuth and range directions, respec-

tively, are considered as defined in Section III-B. According to
the lava tube EM model, the barycenters of the two reflections
lay on the same line, which is perpendicular to the azimuth
direction. The slope mal of the line connecting the barycenter
of the two features is defined as

mal = −bc
r − b f

r

bc
a − b f

a

. (13)

Finally, the slope of the line is compared with that of the
azimuth direction. The attribute ral considers the orientation
of the range direction and the line passing in the barycenters
of the tube reflections. Hence, the attribute is calculated as
the angle between the two lines, i.e., ral = |m − mal|, where
m is the orientation of the range direction. The member-
ship function is a sigmoid membership function (11) with

parameters ai = aal, aal < 0 and ci = cal, cal < 0 since ral is
an angle in the range of [−π/2, π/2]. The value of rall is 1 in
the ideal case when the ceiling and floor features are parallel
between them but perpendicular with the azimuth direction.
ral decreases to zero when the ceiling and floor features are
not parallel between them nor perpendicular to the azimuth
direction m.

6) Amplitude Comparison: This rule compares the ampli-
tude signal of the candidate features among them and with
that of the surface reflections. Ideally, the surface reflection
has the highest amplitude in the radargram, and thus, the tube
candidate features have a lower amplitude. The EM model
indicates that the tube boundary reflections have a comparable
amplitude signal since losses inside the tube are almost null.
The difference in the amplitude signal is mitigated by the
fuzziness of the approach. Attribute rA is defined as rA =
min{ac/a f , a f /ac}, where ac and a f are the mean amplitude of
the candidate ceiling and floor candidate features, respectively.
To compute μA, the attribute is evaluated with a sigmoid
membership function (11) with ai = aA, aA > 0 and ci =
cA, cA > 0. The membership value μA is maximum when the
amplitude of the two reflections is similar, and it tends to zero
when the difference is high.

7) Phase Inversion: This rule analyzes the phase of the
candidate features. Ideally, a phase inversion occurs at each
interface between materials with considerably different dielec-
tric properties (see Section III-B). Here, two interfaces, i.e., the
tube ceiling and bottom, generate the inversion of the phase
signal. This rule is of critical importance to discriminate
subsurface reflections of the tube boundaries from clutter.
Clutter indicates the undesired reflections from the topography
variations and the off-nadir surface due to the large antenna
footprint. The surface clutter appears in the subsurface of
the radargram when considering the acquisition time. The
power of the clutter signal is higher than that of subsurface
reflections. Since it may mask subsurface reflections, clutter
can cause serious issues. However, the phase inversion is
a property of subsurface echoes and helps in identifying
clutter [36]. Here, the phase inversion is checked between:
1) the surface reflection and the candidate feature for the
ceiling and 2) the candidate features for the tube ceiling and
floor. The difference of the phase signals is calculated for the
two cases according to (10). The phase difference considers
the path traveled by the wave from one reflection to the
other and the contribution from the dielectric interfaces. Here,
the interest is in the contribution from the dielectric interfaces.
Thus, the contribution given by the wave propagation is
computed by considering the average depth of the reflection.
The contribution given by the dielectric interfaces is computed
by inverting (10). Ideally, the phase difference is equal to π ,
but more realistically, the phase difference may be slightly
higher or lower. However, this is mitigated by the fuzziness
of the proposed approach. The attributes for this rule r1

φ and
r2
φ are computed by considering the phase contributions from

the dielectric interfaces as follows:
r1
φ = min{|φc/π |; |π/φc|} (14)

r2
φ = min{|φc/φ f |; |φ f /φc|} (15)
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where φc is the average relative phase of the candidate feature
for the ceiling and φ f is the average relative phase of the
candidate feature for the floor. The attributes are evaluated
with a sigmoid membership function (11) with ai = aφ, aφ >
0 and ci = cφ, cφ > 0 to have the membership values μ1

φ

and μ2
φ . The memberships tend to 1 when the phase inversions

occur for μ1
φ between the surface reflection and the candidate

feature for the tube ceiling while for μ2
φ between the candidate

features for the tube ceiling and floor.
For each couple of candidate features Fc and Ff , the mem-

bership values are aggregated with the Larsen product
implication [40] as follows:

Mcf = μCμLμPμalμAμ1
φμ2

φ. (16)

The value of the overall membership Mcf indicates the reli-
ability for the candidate features Fc and Ff to represent the
boundaries of a lava tube. The higher is Mcf , the higher is
the probability that the candidate features are associated with
lava tubes. The decision strategy consists of thresholding Mcf .
When Mcf is larger than the empirically defined threshold
Thtube, the candidate reflections are associated with a candidate
lava tube, such that Fc = ωc and Ff = ω f . On the contrary,
when Mcf < Thtube, the candidate reflection is not associated
with lava tubes reflection.

The parameters of the fuzzy memberships ai and ci in (11)
indicate the grade of tolerance of the system. The sigmoid
center ci represents the case when the candidate features
satisfy the rule with a membership of 0.5. The slope ai

indicates the flexibility of the system, i.e., the robustness of
the rules to clutter, noise, and irregularity of the geometrical
structures. Hence, ci is fixed by considering the EM model for
lava tubes. The slope ai is empirically selected according to
the data characteristics, e.g., the expected size of the cavities
and the average interface depth in that area. The choice of ci

and ai is related to the degree of fuzziness of the approach and,
thus, to the grade of tolerance of the proposed method to the
possible nonidealities of the candidate reflections. Considering
the experimental results (see Section IV), one can conclude
that the selection and tuning of the parameters are not critical
and do not require complex prior knowledge.

IV. DESCRIPTION OF THE DATA SETS

AND EXPERIMENTAL RESULTS

To assess the effectiveness of the proposed method, we car-
ried out several experiments on two data sets. The first data
set consists of data simulated with the approach proposed
in [33] by: 1) varying the dimensions and depth of the tube
according to [10] and [34] and 2) varying the characteristics
of the terrain. The experiments on the simulated data set aim
at proving the effectiveness and the validity of the proposed
method in a controlled scenario. The second data set consists
of radargrams acquired on the Moon by the LRS [38] onboard
of the SELenological and ENngineering Explorer (SELENE)
spacecraft. The results are validated by considering the state-
of-the-art methods for detecting lava tubes, such as the super-
ficial volcanic structures, the gravity and the thermal data, and
eventual radar sounder measurements.

A. Simulated Data Set
The simulated data set consists of radargrams simulated

with the setup described in Section II with the radar parameters
in Table II. We performed two types of analyses by: 1) varying
the geometry of the tubes and a smooth surface and 2) varying
the surface topography and fixing the tube geometry. The first
analysis aims to validate the proposed method in detecting lava
tubes having different geometries, i.e., tube width and height,
and roof thickness. The second analysis aims at understanding
the impact of the topography of the surface, which generates
clutter that masks the reflections of the subsurface on the
performance of the proposed method.

1) Description of the Data Set: For the first analysis
(geometry analysis), the geometries of the lava tube vary as
in Table I, considering stable lava tube on the Moon according
to [10] and [11]. The height of the tube is varied from 250 m
up to 2 km, considering small, medium, and large lava tubes.
The roof thickness varies accordingly, increasing up to 200 m,
with the dimension of the tube. For all the geometries,
we simulated different angles of intersection between the tube
longitudinal axis and the moving direction of the radar (α):
α = 0 (parallel case) centered and off-centered, α = π/2
(perpendicular case), and α ∈ (0, π/2) (diagonal cases). The
difference between centered and off-centered simulations is in
the axis where the lava tube is in the radargram, i.e., in the
center of the tube or not. In the radargrams, this is reflected
in the distance between the tube ceiling and floor reflections.
The difference in the radargrams between the α = π/2 and
α ∈ (0, π/2) cases is in the length of the tube ceiling and
floor (see Section II). For the analysis of the impact of the
topography surface (terrain analysis), we fixed the tube dimen-
sion to 1000 m and the roof thickness to 75 m. We simulated
three different surface topographies: smooth topography as a
reference, surface with deep and large craters, and surface
with deep and large craters and large roughness. Craters
generate clutter reflections below the surface (see Fig. 2)
which are not affected by the phase inversion. The surface
roughness generates diffuse scattering around the reflection
of the surface and the craters (see Fig. 2). For the terrain
analysis, we performed simulation with α = 0 (parallel case)
and α = π/2 (perpendicular case).

2) Experimental Setup: The first step is the extraction of
the lines in the radargrams with the technique in [31]. The
input parameters are estimated as in [31] and are reported
in Table IV. The value of NAV is set to 20 to guarantee
an average probability of detection larger than 0.95 and a
probability of false alarm of 10−3. The value of Thline is
set to 60 by fixing the probability of false alarm to 10−3

after computing the conditional empirical noise distribution.
The Viterbi length and excursion are experimentally set to
20 and 4, respectively. The Viterbi length indicates the maxi-
mum allowed range of the jump of the layer tracking from one
azimuth position to another. Finally, the skeleton thickness is
set to 10 pixels. It is worth noting that a relevant number of
lines are extracted. Some are irrelevant from the application
viewpoint as they are generated by the topography of the
surface (clutter) or other subsurface structures. The topography
increases the complexity of the problem of automatically
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Fig. 7. Line detected (in black) with the technique in [31] for crossing angle values. (a) α = 0. (b) α = π/2. The case of a simulated radargram with a
tube height of 1000 m and a roof thickness of 75 m and surface topography with a large roughness and thick craters is considered.

TABLE IV

VALUES OF THE PARAMETERS OF THE PROPOSED METHOD

detecting lava tube reflections. The second step of the pro-
posed approach includes line refinement. The overlapping in
azimuth and range is empirically set to Oa = 7 pixels and
Or = 5 pixels, respectively. Considering the azimuth resolu-
tion, the minimum feature length Lmin is fixed to 50 pixels. The
algorithm groups together segments that represent the same
reflection as for the surface. Fig. 7 shows the outcome of
the line detection algorithm for the simulations of a lava tube
having an height of 1000 m and 75-m roof thickness with a
surface characterized by a large roughness and thick craters
with crossing angles α = 0 [see Fig. 7(a)] and α = π/2
[see Fig. 7(b)]. Figs. 8(a) and 9(a) show the outcome of the line
refinement step with the extracted features in different colors.
All the reflections are characterized by computing the length
in pixels, the average depth and the barycenter coordinates
in range and azimuth, and the average amplitude and phase
values. For the phase evaluation, the Hanning window length
T is estimated by considering the thickness of each reflection
in the range direction. The relative dielectric properties of the
rock are set to rock

r = 4 [41], whereas the relative dielectric

properties of the air are set to air
r = 1. The height of the radar

above the surface is set to h = 100 km (see Table II). The
third step analyzes the features with the fuzzy detection system
to identify the best candidates to be the surface reflection
and the lava tube ceiling and floor. For the detection of
the surface reflection, the rule in (12) is evaluated with the
parameters in Table IV. It is worth noting that the threshold
ThG was selected to minimize the missed alarms, considering
the definition of the membership functions and the algebraic
product as aggregation strategy (Larsen implication [40]).
In this experiment, μG = 0.5 and μp = 1 were selected as a
limit case, which results in an aggregate membership function
for the surface of MG = μGμp = 0.5, considering (12).
Hence, ThG = 0.5, as it is the value of MG at the limit case.
The aggregate membership value for the surface reflection was
MG ≥ 0.95. The last step labels the reflection with ωc and
ω f , and wn . The parameters for the fuzzy rules memberships
are in Table IV. μP = μL = μal = μφ = μA = 0.7
were selected as a limit cases, which result in an aggregate
membership function for the tube detection of Mcf = 0.1160,
considering (16). Hence, the lava tube threshold is set to
Thtube = 0.1160.

3) Experimental Results: The proposed method detected in
all the radargrams the lava tubes with a high value of overall
membership, i.e., higher than 0.98 in all the cases. It showed
to detect lava tubes with different sizes, roof thickness, and
crossing angle α, showing high robustness to the surface
topography and the clutter in the simulated radargrams. For
the sake of space, we report here only the analysis for two
radargrams simulated with a tube height of 1000 m and a
roof thickness of 75 m and surface topography characterized
by large and deep craters and high roughness. Fig. 8 shows
the processing for α = 0 (parallel case); Fig. 8(a) shows the
features extracted, whereas Fig. 8(a) shows the outcome of the
detection algorithm (in blue the surface reflection and magenta
the detected lava tube ceiling and floor). Fig. 9 shows the
processing for α = π/2 (perpendicular case). Note that the
rule of the phase inversion is of major importance to discrimi-
nate between the clutter in the subsurface (generated by craters
in the simulations) and the reflections from subsurface targets.
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Fig. 8. Processing of the simulated radargram for α = 0 (parallel case). (a) Extracted features in different colors. (b) Reflections recognized by the proposed
approach as the surface in blue and the lava tube boundaries in magenta. The case of a tube having a height of 1000 m and a roof thickness of 75 m and
surface topography with a large roughness and thick craters is considered.

Fig. 9. Processing of the simulated radargram for α = π/2. (a) Extracted features in different colors. (b) Reflections recognized by the proposed approach
as the surface in blue and the lava tube boundaries in magenta. The case of a tube having a height of 1000 m and a roof thickness of 75 m and a surface
topography with large roughness and thick craters is considered.

B. LRS Data Set
The second data set consists of radargrams acquired by

the LRS onboard the SELENE spacecraft [38]. LRS had two
dipoles of 30 m working at a frequency of 5 MHz. The
characteristics allow penetration into the subsurface for some
kilometers with a range resolution of 100 m in the vacuum.
Table II summarizes the parameters of the LRS and the charac-
teristics of the related radargrams. This section is structured as
follows–first, we describe the data set in Section IV-B1, then,
we analyze the radargram preprocessing and the experimental
setup, and finally, we describe the experimental results in
Section IV-B3.

1) Description of the LRS Data Set: The LRS data set
considers radargrams acquired in: 1) the Marius Hills (MH)
region, where lava tubes are expected in the subsurface due to
the strong presence of superficial volcanic features and gravity
evidence, and 2) in the highlands, where buried lava tubes
are not expected, and the surface topography is affected by
a large roughness and many impact craters [8], [42], [43].
In the MH region, the proposed method detects in an automatic
and fast way candidate lava tubes in locations that are in line
with the literature [8], [27], [42], [44], [45]. The reflections
should be then further analyzed with a clutter simulator, but

we believe that this is out of the scope of this article. In the
highlands, where lava tubes are not expected, we analyzed the
rate of the false alarms, considering any reflection identified
by the proposed method as a candidate lava tube as a false
alarm. Hence, the number of false alarms NFA is equal to the
number of couples of reflections classified as candidate lava
tubes.

a) Marius hills: MH (14◦ N, 56◦ W) is in the west-
ern equatorial region of Oceanus Procellarum. The region
is a young pyroclastic deposit with a high concentration
of volcanic features related to buried lava tubes, such as
volcanic domes around 200–500 m high, rilles, pits, and
depression lacking ejected rima. The characteristics of these
geological formations are strongly different from others on the
Moon [8], [42], [43], [46]. Hence, MH was an active volcanic
region in recent years and with a high probability of having
buried lava tubes. This is confirmed by the presence of
C-shaped domes having a lower height and smaller diameter
than others on the Moon. Another confirmation comes from
the block abundance on the surface that makes the surface
rougher than in the surrounding. The blocks have uniform
size and are smaller than others in the surrounding, and
thus, they are strongly different from the others on the Moon



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 10. MH region: lines are the tracks of the radargrams (see the legend for their ID). Candidate lava tube locations identified with the proposed method
are indicated with the red pointers (optical image credits: NASA/GSFC/Arizona State University and NASA/USGS/JAXA/SELENE).

(such as those related to impact craters) [42]. The analy-
sis of the pits in the MH region showed the presence of
possible skylights, locally collapsed lava tube roof [8], [45].
Haruyama et al. [45] focused on the MH hole (see the green
placemark in Fig. 10) that was imaged with oblique views by
the LROC camera under different illuminations. The analysis
of the images showed an extended subsurface void that can
extend laterally in cavernous spaces. Hence, this hole is a can-
didate to be a skylight of a buried lava tube [45]. Furthermore,
GRAIL data of the region show mass anomalies that can be
explained with void volumes [47]. The size of the voids is
comparable to that of empty and stable lava tubes, as defined
in [10]. Finally, Kaku et al. [27] and Haruyama et al. [48] iden-
tified a possible location of lava tubes by analyzing rangelines
of radargrams. Hence, the LRS data set for the MH region con-
sists of six radargrams: LRS_SAR05KM_C_xxN_yyE with
xxN_yyE in {10N_303594E, 10N_303632E, 10N_303067E,
10N_303734E, 10N_303249E, 10N_303801E}. Fig. 10 shows
the radargram tracks in magenta superimposed on an optical
image of the surface acquired by the Lunar Reconnaissance
Orbiter Camera (LROC). The tracks are parallel to each other.
Thus, it is reasonable to assume that a candidate lava tube in
a radargram also appears in the other radargrams at a similar
latitude.

b) Highlands: Highlands cover around 83% of the lunar
surface and are characterized by impact craters. The surface
topography is not flat, and thus, radargrams show a large
number of clutter reflections in the subsurface. Lava tubes
are not expected in these regions [8], [42], [43]. Hence,
the LRS data set for the highlands region consists of hundred
radargrams acquired in the rectangular area with latitude in
the range of [45◦ N, 45◦ S] and longitude in the range
of [90◦ E, 90 ◦ W].

2) Experimental Setup: Radargrams have nT 1000 samples
(rows), of which 500 are removed—200 from the radargram
top as they represent the free space above the surface and
300 from the bottom as the signal-to-clutter ratio is low below
∼3 km of penetration [27]. All radargrams have 8011 traces
(columns). Radargrams of the MH are cut 807 traces to image

the latitude coordinates in the range of 13◦ N to 15◦ N, such
as in [27] to focus on the MH region. All the radargrams are
preprocessed with range compression to enhance the range
resolution and SAR focusing [49] to enhance the azimuth
resolution with a synthetic antenna length of 5 km.

As described in the methodological section (see Section III),
the first step of the proposed approach is the extraction of the
lines in the radargrams with [31]. The input parameters are
estimated as in [31] and are reported in Table IV. For the LRS
data set, the value of NAV is set to 16 to guarantee an average
probability of detection larger than 0.95 and a probability
of false alarm of 10−3 for all the radargrams. The value of
Thline is set to 60 by fixing the probability of false alarm to
10−3 after computing the conditional empirical noise distribu-
tion. The Viterbi length and excursion are set to 20 and 4,
respectively, for both the radargrams of the LRS data set.
Finally, the skeleton thickness is set to 3 pixels. The second
step of the proposed approach includes line refinement. The
overlapping in azimuth and range is empirically set to Oa = 2
pixels and Or = 2 pixels, respectively. Considering the LRS
azimuth resolution, the minimum feature length Lmin is fixed to
10 pixels. Hence, the smallest width of a possible lava tube is
about 600 m, which should have a roof thickness of 50 m to be
stable [10], [11]. In free space, the LRS range resolution
is about 75 m, which is in the range of 100–150 m in
the basaltic rock, which roughly corresponds to 1 pixel.
The algorithm groups together segments that represent the
same reflection, as for the surface. All the reflections are
characterized by computing the length in pixels, the average
depth and the barycenter coordinates in range and azimuth,
and the average amplitude and phase values. For the phase
evaluation, the length of the Hanning window T is estimated
by considering the thickness of each reflection in the range
direction. The relative dielectric properties of the rock are set
to rock

r = 4 [41], whereas the relative dielectric properties
of the air are set to air

r = 1. The height of the radar above
the surface is set to h = 100 km (see Table II). The third
step analyzes the features with the fuzzy detection system to
identify the best candidate to be the surface reflection and the
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TABLE V

OUTPUT VALUES OF THE PROPOSED METHOD FOR THE LRS DATA SET IN THE MH REGION: MEMBERSHIP VALUES FOR PAIRS OF REFLECTIONS
IDENTIFIED CANDIDATE LAVA TUBES, COORDINATES OF THE LOCATIONS, AND TUBE HEIGHT AND ROOF THICKNESS ESTIMATED

IN THE MID OF THE REFLECTIONS. IDS CORRESPOND TO THE LABELS IN Fig. 10

best candidates to be reflections generated by the lava tube
ceiling and floor. For the detection of the surface reflection,
rule in (12) is evaluated with the parameters in Table IV.
It is worth noting that the threshold TG was selected to
minimize the missed alarms, considering the definition of the
membership functions and the algebraic product as aggrega-
tion strategy (Larsen implication [40]). In this experiment,
μG = 0.5 and μp = 1 were selected as limit cases, which
results in an aggregate membership function for the surface
of MG = μGμp = 0.5, considering (12). Hence, ThG = 0.5,
as the value of MG at the limit case. The aggregate mem-
bership value for the surface reflection was MG ≥ 0.71. The
last step labels the reflection with ωc and ω f , and wn. The
parameters for the fuzzy rules memberships are in Table IV.
μP = μL = μal = μφ = μA = 0.7 were selected as limit
cases, which result in an aggregate membership function for
the tube detection of Mcf = 0.1160, considering (16). Hence,
the lava tube threshold is set to Thtube = 0.1160.

3) Experimental Results: This section describes the
experimental results for radargrams acquired in the MH and
highlands.

a) Marius hills: The method identified 20 candidate lava
tubes in the LRS data set—in Fig. 10, the detected tubes
are in red. Table V lists the fuzzy rule membership values
and the tunnels estimated parameters. Note that the aggregate
membership values are all above 0.65. MG and Mcf can
be considered as a grade of reliability that the couples of
reflections are related to a buried candidate lava tube. For the
sake of space, Fig. 11 shows the steps of the proposed method
for the candidate tube C. Identified candidate lava tubes
correspond with those in [27]. Reflections of the identified
candidate lava tubes should be further analyzed with a clutter

simulator to discriminate subsurface reflections from clutter
(this is outside the scope of this article).

Assuming that the reflections are generated by lava tubes,
we can estimate the roof thickness and the tube dimension.
The roof thickness is estimated by considering the depth of
the ceiling reflection to the surface and rock

r = 4 as the rock
relative dielectric constant [41]. The tube height is estimated
by considering: 1) the difference between the depth of the
tube ceiling and the floor and 2) a void tube void

r = 1. The
tube width cannot be correctly estimated as it depends on
the length of the reflection and the crossing angle between
the moving direction of the radar and the longitudinal axis
of the tube, which is unknown. The estimations in Table V
are computed by considering that: 1) the moving direction of
the radar is perpendicular to the longitudinal axis of the tube
and 2) the ratio between the tube height and width is 1:3 as
in [10]. Hence, the tube width is calculated by multiplying
the tube height by 3 to understand whether it may exist such
a stable tube on the Moon according to [10]. Considering
their height and roof thickness, tunnels identified by the
proposed method can exist and can be stable on the Moon
(i.e., not collapsed) under the Lithostatic and the Poisson stress
states.

b) Highlands: The method identifies NLT = 12 couple
of reflections of candidate lava tubes. The average overall
membership value is equal to 0.3205, which is much lower
than the minimum overall membership value of the candidate
lava tubes detected in the MH region. Since in the highlands
lava tubes are not expected, the number of false alarms is set
equal to NFA = 12. The false alarm rate ξFA is defined as

ξFA = Na
FA

Na
TOT

(17)
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Fig. 11. Analysis of the part of the radargram LRS_SAR05KM_C_10N_303801E between 13.75◦ N and 13.85◦ N. (a) Extracted features. (b) Reflections
indicated by the proposed approach as the surface in blue and the candidate lava tube boundaries in magenta. The placemark of this tube is C in Fig. 10.

where Na
FA indicates the number of rangelines (traces) covered

by the candidate lava tubes (false alarms) and Na
TOT indicates

the the total number of traces being processed. The total
number of traces is equal to Na

TOT = 801 100 since each
radargram has 8011 traces and we analyzed 100 radargrams.
The number of false alarm rangelines Na

FA is defined as the
sum of the length in the azimuth of candidate lava tubes.
For each detected lava tube candidate i , we considered the
length of the longer features, i.e., l i = max{l i

c, l i
f }. Hence,

the number of false alarm rangelines is defined as Na
FA =�

li , i = [1, . . . , NLT]. For the LRS radargrams in the
highlands, Na

FA = 127, and thus, the false alarm rate is
ξFA = 1.5853×10−4. Note that the false alarm rate is estimated
for the LRS radargrams considered in the Highland area, and
it may vary by region and data sets.

V. DISCUSSION

The core assumption of the proposed method is the detection
of the reflections from the tube ceiling and floor and the
surface. This assumption is not always valid as it depends
on the acquisition system and the dimension of the target.
The proposed EM model of lava tubes assumes that the range
resolution of the radargram is high enough to image the
surface and the tube ceiling and floor. Under this assumption,
the proposed method is demonstrated to be effective. However,
stable and empty lava tubes exist on the Moon and Mars with
a thin roof [10], [34] smaller than the range resolution of
the radar sounder. Therefore, in radar sounder data, the lava
tube ceiling may be masked and incorporated in the surface
reflection and, thus, not detectable.

Another assumption of the proposed method is that the
signal-to-noise ratio (SNR) is high enough to detect the
reflections of the tube ceiling and floor. Relevant factors in
the SNR are the attenuation of the subsurface, the depth of the
floor reflection, and the two-way rough surface transmission
loss (depending on the frequency). The SNR also impacts
the error of the phase signal. Considering the properties of
the Maria on the Moon, the study in [36] showed that an
SNR > 10 dB is enough to detect lava tubes and to guarantee
a negligible absolute phase error. Further information about the
SNR analysis can be found in [36], where the SNR estimation

and impact on the absolute error phase are described in detail.
Radargrams with low SNR values show dense and fragmented
reflections, i.e., subsurface targets are imaged with discontin-
uous reflections. The considered line detection algorithm is
suitable to process radargrams with low SNR as the HMM and
the VA are applied with a divide-and-conquer strategy [31].
The line refinement step groups together lines belonging
to the same reflection.

The proposed method analyzes radargram reflections as can-
didates to be the lava tube ceiling or floor. Identified candidate
lava tubes should be then studied in postprocessing by expert
planetologists to detect possible unidentified clutter reflections
and make the final decision. However, it is worth noting that
surface clutter does not generate any phase inversion [36], and
thus, Rule 7 (phase inversion rule) is likely to assume a small
value, bringing to a small overall membership. An example
of a geological structure that generates reflections with a
geometry similar to that of lava tubes is craters (see Fig. 2).
Crater reflections do not generate phase inversion—Rule 7 has
a small membership value, which leads to an overall small
membership value.

VI. CONCLUSION

This article proposed a novel method to detect candidate
buried cavities, such as empty lava tubes, in radar sounder
data. The approach consists of three main steps: 1) EM and
geometric modeling of the lava tube by considering the
propagation of the EM wave in the subsurface; 2) extraction
and characterization of relevant reflections in a radargram; and
3) analysis of the reflections to identify those related to the
surface and lava tube ceiling and floor and associate them with
a grade of reliability.

The method takes advantage of the theoretical modeling of
how cavities and lava tubes appear in radargrams. The model
describes the physical properties of the reflection generated
by the surface and subsurface cavities. From this model,
the surface and lava tube boundaries can be identified by a
pattern of linear reflections with specific alignment, geometri-
cal, and signal properties. The candidate linear reflections are
analyzed with a fuzzy system based on the lava tube model.
The fuzzy rules consider the backscattering mechanisms of
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buried and empty lava tubes imaged by radar sounders and
provide a membership value that indicates the reliability of
each detected tunnel. The proposed approach requires the
tuning of some parameters that depend on the approximated
size of the expected lava tubes in the investigated area and
the radar range and azimuth resolutions. This information is
usually available and easy to include in the processing. After
tuning, the method is automatic and unsupervised.

The effectiveness of the proposed method has been demon-
strated with experiments on two data sets: simulated and
real LRS data sets. The accurate detection of the lava tubes
in the simulated data set demonstrated that the method is
effective and accurate in detecting lava tubes in radargrams
with: 1) different dimension and depth values; 2) different
crossing angles between the tube axis and moving direction
of the spacecraft; and 3) varying surface topography. The
results showed the high robustness of the proposed method to
deviations from the ideal lava tube model due to the definition
of adequate fuzzy rules. For the LRS data set, the proposed
method analyzed radargrams in the Maria region (MH) where
lava tubes are expected and in the highlands area where lava
tubes are not expected. In the MH region, the proposed method
identified in a completely automatic way several candidate
lava tubes that were already documented in the literature. This
resulted in a fast detection that would not be possible in a large
number of radargrams with state-of-the-art methods based on
the visual inspection of surficial volcanic features. Identified
candidate lava tubes should be further analyzed with a clutter
simulator to make a reliable final decision on them. It is worth
noticing that the comparison of the identified reflections with
the clutter simulations requires a dedicated analysis that goes
beyond the scope of this article. In the highlands regions,
we analyzed 100 radargrams characterized by the presence
of a large amount of surface clutter due to the irregularities
of the surface topography. The proposed method resulted in a
false alarm rate of ξFA = 1.5853 × 10−4. Note that the false
alarm rate is an estimate for the data set considered in the
Highlands areas, and it may vary by region and data sets.
The low false alarm rate is mainly due to the phase inversion
rule, in which the membership assumes small values with
clutter (as there is no phase inversion), bringing to a small
overall membership. Hence, the phase inversion rule showed
to increase the robustness of the proposed method against the
clutter.

As future development, we plan to improve the EM model
of lava tube to consider cavities totally or half-filled with other
materials, such as regolith and rock. We also intend to further
analyze the detected candidate lava tube reflections on the MH
and the Moon by comparing them to clutter simulations.
Finally, we plan to model other targets of planetary arid areas,
such as craters and tesserae, and design rules to include them
in the system.
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