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Abstract— A satellite mission onboard a radar sounder for
the observation of the earth’s polar regions can greatly support
the monitoring of the cryosphere and climate change analy-
ses. Several studies are in progress proposing the design and
demonstrating the performance of such an earth-orbiting radar
sounder (EORS). However, one critical aspect of the cryospheric
targets that are often ignored and simplified in these studies is
the complex geoelectrical nature of the polar ice. In this article,
we present a performance assessment of the polar ice target
detectability by focusing on their realistic representation. This is
obtained by simulating the orbital radargrams corresponding to
different regions of the polar cryosphere by leveraging the data
available from airborne campaigns in Antarctica and Greenland.
We propose novel performance metrics to analyze the detectabil-
ity of the internal reflecting horizons (IRHs), the basal interface,
and to analyze the nature of the basal interface. This performance
assessment strategy can be applied to guide the design of the
signal-to-noise ratio (SNR) budget at the surface, which can
further support the selection of the main orbital instrument
parameters, such as the transmitted power, the two-way antenna
gain, and the processing gains.

Index Terms— Cryosphere, earth observation, radar design,
radar sounder, remote sensing, simulation, target detection.

NOMENCLATURE

Pr,A(rA, cA)
Pb

r,E (rE , cE ) ARS/simulated EORS received power
(in dB) radargrams.

rA rE ARS/EORS sample index.
cA cE ARS/EORS frame index.
γSS,A(z) γSS,E (z) ARS/EORS subsurface target propaga-

tion factor in dB.
γS,A γS,E ARS/EORS surface reflectivity in dB.
HA HE ARS/EORS platform altitude.
G2

A G2
E ARS/EORS two-way antenna gain

in dB.
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λA λE ARS/EORS wavelength in meters.
Pt,A Pt,E ARS/EORS transmitted signal power

in dB.
Gr,A Gr,A ARS/EORS range processing gain

in dB.
Gaz,A Gaz,E ARS/EORS azimuth processing gain

in dB.
fc,A fc,E ARS/EORS central frequency in Hz.
n+ n− labels assigned by the classifier to the

basal interface samples corresponding
to lakes (+) and nonlakes (−).

c γ kernel parameters of the subglacial
lakes support vector machine (SVM)
classifier.

�ARS �EORS predicted labels of the basal interface
obtained by applying the SVM clas-
sifier to the ARS and EORS data,
respectively.

ξARS ξEORS vectors representing correct prediction
of the nature of the basal interface in
the ARS and EORS data.

k Boltzmann’s constant.
Tcmb galactic noise temperature in K, (sub-

script CMB implies cosmic microwave
background).

ρ(z, cA) target subsurface reflectivity profile
in dB for the frame cA as a function
of depth z.

α(z) target attenuation profile independent of
the frequency.

η Cole–Cole distribution parameter
(frequency-dependence factor).

z depth below surface.
L label corresponding to the geographical

zone (geolabel).
N L

E total number of frames corresponding
to the label L.

cL
E frame index corresponding to the label

L.
b simulation index corresponding to each

hypotheses of the variable design para-
meter.
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Nb total number of hypotheses of the variable
design parameter.

SNRb hypotheses values of the variable design
parameter–SNR budget in dB.

θb(cE) IRH detection performance metric estimated
as the probability of IRH detection for the
EORS frame cE corresponding to the simulation
index b.

θ IRH detection probability threshold.
χ L

b (θ) cumulative fraction of frames with probability
of IRH detection greater than θ for the geolabel
L and simulation index b.

βb(cE ) basal interface detection metric for each frame
cE and simulation index b.

�b(cE ) lake detection metric comparing the accuracy of
the subglacial lake detection for the EORS and
ARS radargrams.

βL
b cumulative basal interface detection metric,

i.e., fraction of frames for which the basal
interface detection metric is equal to 1 for the
geolabel L and simulation index b.

θ L
min minimum required per-frame probability of IRH

detection for the geolabel L.
χ L

min requirement on the cumulative fraction of
frames satisfying the per-frame probability of
IRH detection for the geolabel L.

βL
min requirement on the basal interface detectability

for the geolabel L.
SNRmin minimum required SNR budget for a given set

of mission requirements and estimated for each
geolabel.

SNRdesign best design parameter that maximizes the perfor-
mance for all geolabels for a given set of mission
requirements.

I. INTRODUCTION

THE earth’s polar ice sheets are crucial components of
the cryosphere that affects global climate change and

sea-level rise. Several cryohydrodynamic processes occurring
at the base of the ice sheets affect the stability and seaward
flow of the ice. Direct measurement and imaging of the
ice sheet down to the base are essential for studying these
processes and modeling the stability of the ice sheets. This
can be appropriately achieved by profiling the ice using
radar sounders (RSs), also referred to as ice-penetrating radar.
Considering the need for RS data for imaging the polar
ice caps, several airborne RS (ARS) campaigns have been
conducted in Antarctica and Greenland [1], [2]. Relevant
scientific returns have been obtained from data acquired by
these campaigns, such as: 1) estimation of the thickness of
the ice sheets; 2) analysis of the internal reflecting horizons
(IRHs); 3) detection of subglacial lakes [3]; 4) analysis of
basal flow regime [4]; and 5) identification of basal refreez-
ing [5]. However, these acquisition campaigns are expensive
and time-consuming, and despite a large number of campaigns,

radar profiles are absent over very large portions of the
polar areas (e.g., 5 00 000 km2 of Antarctica), resulting in
incomplete information on the polar ice characteristics [6].
Moreover, since the data are collected in one-time cam-
paigns with local coverage to study specific phenomena,
repeat-pass acquisitions are also not available. Furthermore,
due to the use of different instruments and airborne plat-
forms, the data quality strongly varies between the different
campaigns.

An earth-orbiting radar sounder (EORS) operating from a
satellite platform can address the limitations posed by the
airborne campaigns by providing homogeneous data qual-
ity with uniform and multitemporal coverage of the earth.
However, at orbiting altitudes, RSs are subjected to many
performance-limiting factors. These mainly include: 1) the
propagation losses due to the large distance to the target;
2) the distortions caused by the ionosphere; 3) the surface
clutter due to a relatively large antenna footprint; 4) the
presence of galactic noise; and 5) frequency band allocation
required for earth observation. Many of these factors can be
mitigated at the system design level or in postprocessing to
ensure the extraction of valuable scientific information, as suc-
cessfully demonstrated by the current heritage of planetary
RSs (SHARAD [7] and MARSIS [8] on Mars, LRS [9] on
the Moon, RIME [10], and REASON [11] scheduled for the
Jovian icy moons).

Leveraging the heritage of terrestrial airborne and planetary
RSs, currently, studies are in progress for the proposal of an
orbital RS, operating in the HF–VHF bands [12]–[15]. These
studies are based on assessing the performance of a given
orbital design in detecting the critical targets and achieving
the scientific goals of the mission. These assessments are
used to guide the selection of the instrument parameters by
determining the appropriate tradeoff between the achievable
performance and the technical and physical limitations [16].
Many of these studies focus on understanding the impact of
the earth’s ionosphere [13], [14], [17], the surface clutter [6],
[15], and the capability to penetrate up to the base of the
ice sheet (assuming homogeneous dielectric properties of the
ice) [12].

However, only a few of these studies (e.g., [6], [15]) assess
the performance considering the structural details of the targets
(such as the IRHs), which are both: 1) a performance-limiting
factor (e.g., in terms of subsurface scattering and attenuation
losses) and 2) a detection objective of the instrument. Given
the need to analyze the detectability of the cryospheric targets,
it is imperative to model and simulate their radar response.
The complex dielectric permittivity profile of the ice depends
on several factors, such as the presence of impurities (e.g.,
dust, ash, rocks, salts, and acids), the crystal orientation fabric,
the thermal profile, and the distribution of melt-zones. The
high variability of these factors over unknown spatial scales
and the lack of geophysical models to translate them to
the corresponding electrical properties make it difficult to
subjectively define the dielectric profile of the ice. This inhibits
their assessment using conventional 3-D electromagnetic RS
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simulators [18]–[20]. Recently, a novel simulation approach
has been proposed, which is based on reprocessing the radar-
grams acquired over geological analogs of the target [21].

In this article, we adopt this simulation approach based on
reprocessing the airborne data to predict orbital performance.
The airborne data are a rich source of information of the
targets due to: 1) the availability of large archives of data
from multiple campaigns [1], [2]; 2) the widespread and
full-depth coverage of the Antarctic and Arctic ice sheets; and
3) the similarity with the actual radar signatures of complex
cryospheric targets (principles of operation of the airborne and
the orbital RS are similar). The input airborne data are selected
to represent different regimes on Antarctica and Greenland,
i.e., grounded ice, floating ice, and subglacial lakes. The
performance assessment analyzes the achievability of the main
objectives of an orbital RS mission: 1) detectability of IRHs;
2) detectability of the basal interface; and 3) characterization
of the nature of the basal interface.

Assuming the feasible range of central frequency and
bandwidth provided by the previous studies, the proposed
detailed assessment of detectability of the targets is aimed
at revealing the required signal-to-noise ratio (SNR) budget
at the surface that maximizes the detectability of these three
target categories. The required SNR budget can guide the
selection of main instrument parameters, such as the two-way
antenna gain and the transmitted power. These parameters can
support the optimization of the orbital sensor configuration,
such as in the case of a recently proposed distributed orbital
RS architecture [22].

This article is structured as follows. Section II illustrates the
previous studies on the challenges of the orbital RS design,
i.e., ionospheric distortion, surface and firn scattering, volume
scattering losses, galactic noise, and the structure of the target.
Section III describes the proposed approach to the design
and performance analysis of orbital RSs, focusing on: 1) the
limitation of state-of-the-art studies; 2) the orbital RS simu-
lation approach; 3) the extraction of the ice targets from the
simulated orbital radargrams; and 4) the evaluation of target
detection performances. Section IV focuses on the description
of the datasets used in the study and the experimental results.
Finally, Section V concludes this article and discusses future
works.

II. CHALLENGES OF ORBITAL SOUNDING OF THE EARTH

Airborne RSs have successfully demonstrated that sub-
surface targets of scientific interest in the ice (IRHs, basal
interface, basal flow regimes, and so on) can be detected
and interpreted (e.g., [5], [23]–[25]). However, extending
this capability of sounding the earth’s cryosphere to orbital
platforms requires addressing some challenges related to the
detectability of the targets. The earth’s ionosphere has a peak
electron density at an altitude of 200–400 km that can distort
the received signal during propagation. Orbital altitudes are
typically larger than 500 km, which implies that the signal
transmitted from satellite platforms has to propagate through
the earth’s ionosphere twice before the reception. At orbital
altitudes at relatively low frequencies, the antenna footprint is
larger, and incidence angles are smaller, resulting in a critical

signal-to-clutter ratio (SCR). The large distance between the
RS and the target results in higher propagation losses. Beyond
the earth’s atmosphere, radar sounding is impacted by the
high levels of galactic noise, which is absent in airborne
sounding. These factors contribute also to degrade the range
resolution and the subsurface SNR and must be considered
while designing the orbital RS. Another component that further
complicates the design of the orbital RS is the highly complex
nature of the target.

The design of the existing and scheduled RSs for planetary
bodies is based on a tradeoff analysis between the achievable
performance given a set of design constraints (instrument
and orbit characteristics) and the limitations imposed by the
physical scenario (target and environment) [7], [8], [10], [16].

For an orbital RS, previous feasibility studies consid-
ered two end-member design concepts: 1) an RS system
in VHF band operating at the central frequency of
45 MHz [12]–[14], [17] and 2) an RS system in P-band oper-
ating at a central frequency of 435 MHz [6], [15]. The choice
of these two bands is justified by the tradeoff between pen-
etration and range resolution, constrained by the ionospheric
cutoff frequency and clutter mitigation. A proper frequency
choice can significantly improve clutter mitigation [6], [15],
[26]–[28]; about 40 dB improvement in firn clutter suppression
can be obtained with the 45-MHz sounder compared to a
P-band one [6]. As for the 45-MHz system, clutter only limits
the detection of IRHs deeper than 3000 m [6]. On the one
hand, the VHF band can reasonably mitigate the effects of
propagation through the earth’s ionosphere while providing
high penetration capability. On the other hand, the P-band
is the lowest possible frequency currently allocated by the
International Telecommunication Union (ITU) for earth obser-
vation. With this view, the allocation of the VHF band for
earth observation is included in the preliminary agenda of
the 2023 World Radio-Communication Conference. In this
context, this section will analyze and discuss some of the
critical design challenges for an orbital RS, reviewing the
previous studies and design concepts.

A. Propagation Through the Ionosphere
The ionosphere interacts with the signal by introducing

distortions in the radargrams that critically affect the phase
and the range resolution. These effects are more pronounced
at low frequencies, and sounding is impossible at frequencies
lower than the plasma frequency of the ionosphere. For the
earth’s ionosphere, Freeman et al. [14] showed that the cutoff
frequency is less than 4 MHz at all latitudes at the solar mini-
mum at 4 AM local time. Even while operating at frequencies
much higher than the cutoff (e.g., 40–50 MHz), the received
signal can still be distorted in terms of loss of signal power,
Faraday rotation of linearly polarized waves, propagation
delays leading to uncertainties in the range and phase of the
signal, phase dispersion, loss of coherence time, and phase and
amplitude variations caused by scintillation (changes in the
electron density). Nevertheless, Freeman et al. [14] show that,
for a signal with a central frequency of 45 MHz and bandwidth
of 10 MHz, most of these effects can be tolerable and
mitigated with an appropriate design and with data correction.
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For example, the Faraday rotation effects can be mitigated by
using a circularly polarized signal instead of linear polariza-
tion, and the irregularities in the ionosphere occur less than
10% of the time. Moreover, statistical analyses of observations
in polar regions show that scintillations causing high power
fading have a very low probability of occurrence around the
solar minimum; their RMS phase error is lower than 30◦ more
than 50% of the times (depending on the solar zenith angle),
which implies a loss of less than 0.2 dB in the gain obtained
by coherent integration.

These qualitative assessments of the ionospheric effects
were quantitatively analyzed considering the 45-MHz central
frequency RS [17]. The authors demonstrated the feasibility of
mitigating these effects with a compensation technique based
on Legendre polynomials. The study considered the range of
expected ionospheric parameters, namely, the total electron
count (TEC) and the magnetic field intensity. The impact of
the ionosphere on the: 1) peak-to-sidelobe ratio; 2) loss of
peak power; and 3) loss of range resolution by the main lobe
widening is estimated. The compensation approach was based
on estimating the TEC values. The authors concluded that the
distortion effects can be effectively compensated depending
on the accuracy of the parameter estimation; at less than 5%
error on the TEC values, the resolution loss factor is nearly 0,
and the power loss is less than 1 dB during most of the solar
cycle.

The analysis of the ionospheric effects and the satisfactory
performance obtained at the 45-MHz central frequency with a
bandwidth of 10 MHz, especially when operating close to the
solar minimum, are the basis of the orbiting arid subsurface
and ice sheet sounder (OASIS) [13] and the SaTellite Radar
sounder for earth sUbsurface Sensing (STRATUS) [12] mis-
sion concepts.

B. Surface and Firn Scattering
The reflections from off-nadir surface structures can poten-

tially mask the nadir subsurface target reflections in radar-
grams. The impact of surface clutter and its increase with
the increase in platform elevation and the radar frequency
was studied by airborne sounding over an ice stream in
Greenland at two altitudes (500 and 4400 m) and operating
at two central frequencies (150 and 450 MHz) [28]. The
study found that surface clutter is the primary scattering
mechanism that can obscure the basal interface and limits
the choice of higher frequencies. To evaluate the impact of
clutter at orbital altitudes and, therefore, the feasibility of a
P-band orbital sounder for the earth, Dall et al. [15] and [29]
acquired data using the POLarimetric Airborne Radar Ice
Sounder (POLARIS) campaign in Antarctica. Electromagnetic
models of the ice targets were extracted from the POLARIS
radargrams and integrated with ancillary information on the
attenuation properties. These models were used to evaluate
the SNR and SCR of the IRHs and the basal interface, using
the radar equation. The authors concluded that surface and
within-ice volume clutter (from the firn layer) are the primary
factors limiting the detectability of the basal interface (in
two-third of the considered scenarios in Antarctica, the bed
was not detectable).

In a recent study, the contribution of firn clutter has been
analyzed in detail by first determining the most appropriate
physical model defining the firn layer, followed by simulating
and comparing the SCR and SNR achievable at central fre-
quencies of 45 and 435 MHz, with variable bandwidths [6].
The performance simulations at different frequencies show
that very high fractional bandwidths are needed at UHF
frequencies to maintain the firn clutter at a 25-dB level below
the surface power. They recommend orbital sounding at fre-
quencies below 80 MHz to suppress the impact of near-surface
firn clutter. Moreover, it is found that the SCR of the 45-MHz
radar is significantly better, the basal interface detection is not
affected by clutter, and only the IRHs deeper than 3000 m
may have critically low SCR to be detected [6].

Nevertheless, several techniques can mitigate the issues with
clutter at design and processing levels. Fully focused SAR
processing reduces along-track clutter. Novel RS architectures,
such as the distributed RS, can drastically reduce cross-track
clutter [22]. There are also several clutter discrimination
approaches based on coregistering the radargrams with the
simulated cluttergrams [30]–[32], using single-pass interfer-
ometry [33] or exploiting the polarization signatures [34].
Another interesting approach draws inspiration from the clutter
discrimination capabilities of big brown bats [35] and exploits
the split spectrum and frequency differences for distinguishing
between surface and subsurface reflections.

C. Volume Scattering Losses
Volume scattering was considered to be the main contributor

to firn clutter in POLARIS data and, therefore, a critical
performance-limiting factor in orbital sounding at UHF fre-
quencies [29]. This interpretation was based on the assumption
that firn can be modeled as composed of distributed pores
that result in incoherent backscattering of the signal power.
Culberg and Schroeder [6] analyzed the validity of this
assumption by comparing the electromagnetic models of dry
firn obtained from ice-core data with airborne radar profiles
acquired by MCoRDS (central frequency of 195 MHz) [1]
and Accumulation Radar (central frequency of 725 MHz) [36].
They concluded that the firn is best modeled as composed of
quasi-specular layers with small-scale roughness (thus con-
tributing to firn clutter, as described in Section II-B) rather
than a contributor to volume scattering.

The study presented in [6] further evaluated the backscat-
tered power in the 40–50-MHz band by assuming air-filled
spherical pores with radii ranging from 1 mm to 1 cm, with
realistic porosity derived from ice cores, and found the volume
scattering contribution to be at least 40 dB below the surface
power. The authors also studied the two-way attenuation losses
due to volume scattering assuming density inhomogeneities
and found the losses to be even lower (less than a few dB at
HF frequencies). Therefore, these experiments concluded that,
for the VHF radar, volume scattering is not a major impeding
factor in the detection performance.

D. Ability to Resolve the Target Signal From Noise
The galactic noise temperatures at the VHF band and

the P-band are 6320 and 19.6 K, respectively [37].
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The corresponding noise power levels are −120 and
−135 dBW, respectively, which indicates that, at the VHF
frequencies, the galactic noise levels are 15 dB higher than
at the P-band. Thus, previous studies [6], [12], [15] have
identified that, for an orbital ice-sounding radar operating
at a central frequency of 45 MHz, SNR is a more critical
factor than SCR in the detectability of the targets. Accord-
ingly, the galactic noise levels have been considered while
projecting the penetration performance of OASIS [13] and
STRATUS [12]. At the design level, mitigating these noise lev-
els needs increasing the transmitted power and antenna gain,
and improving the effectiveness of along-track processing by
increasing the integration length and by choosing appropriate
PRF and pulsewidth.

Many of these technical requirements can be fulfilled by
using a distributed architecture based on a flying formation,
as elucidated in [22]. With regards to the effectiveness of the
along-track processing, the impact of RS acquisitions from
orbital altitudes on the SNR was studied in [38]. The authors
modeled a point target located 2 km below the ice surface
and simulated its radar response to a P-band RS flying at two
different altitudes: 1) an airborne altitude of 1 km and 2) an
orbital altitude of 500 km. The study showed that in the case of
orbital sounding, the SNR improvement due to SAR focusing
is not as significant as with the airborne one. Nonetheless,
the improvement in the along-track resolution is achievable
with an orbital RS.

E. Complex Structure of the Target
The polar ice strata have very complex structural and

compositional properties, as revealed by several ice-core data,
observations of outcrops, GPR, and airborne campaigns (e.g.,
[5], [23]). The ice subsurface is characterized by a finely lay-
ered structure representing paleoclimatic records of seasonal
accumulation and deposition of snow, interbedded by various
impurities. The thickness, topography, and composition of
these IRHs are highly variable, thus inhibiting the precise and
uniform modeling of the ice targets across the entire polar ice.

The target geoelectrical models (representing structure,
composition, and dielectric properties) play a crucial role
in predicting radar detection performance. Previous studies
proposing the orbital mission concept were based on evalu-
ating the radar equation, assuming a specular ice surface and
basal interface, and a homogeneous dielectric medium [12],
[13]. Dall et al. [15] show that this assumption is not valid
for terrestrial ice, which is certainly highly heterogeneous in
the top few hundred meters.

Ice-core dielectric and density profiles, as well as airborne
radar profiles, have been used in some studies to derive
realistic physical models of the targets [6], [15], [39] for
understanding their detectability. Other studies went a step
further and used the ice-core data to generate models for
3-D electromagnetic simulations of the radar response of GPR
instruments [40], [41]. While these studies pave the way to
the accurate modeling and simulation of RS response of the
ice targets, the sparse sampling and shallow depth of ice-
cores limits their use in continent-wide estimation of detection
performance. To the best of our knowledge, there is no study

on the detection performance of IRHs with an orbital RS over
large areas of the polar ice caps, especially at 40–50-MHz
frequencies.

Based on the studies summarized in this section, an orbital
RS operating at a central frequency of 45 MHz with a
bandwidth of 10 MHz will be able to minimize the distortions
caused by the ionosphere and surface clutter while maintaining
the range resolution required for discriminating the IRHs.
The studies also indicate that the SNR degradation caused
by galactic noise levels may be a limiting factor for the
40–50-MHz orbital RS and may affect the detectability of the
IRHs and the basal interface, which has not been studied so far.

III. METHODOLOGY

A. Limitations of the Previous Studies

Although several performance-limiting factors, such as
the ionosphere and firn clutter, have been deeply analyzed in
the previous works, there is a lack of studies considering the
targets in detail. Regarding the targets, the existing literature
on orbital RS design has several limitations:

1) Polar ice is strongly nonhomogeneous and has high
spatial variability in the structure up to the centimeter
scale. The resulting variability in the subsurface scatter-
ing losses and dielectric attenuation profiles [42], [43]
translates to significant spatial variability in the radar
penetration capability. Thus, it is necessary to study
the impact of this variability on the retrieval of the
ice-thickness across different regions.

2) Detectability of the IRHs is critical for the science goals
of an orbital mission to model historical records of
processes occurring within the ice. While ice-core data
provides detailed information on the IRHs with a resolu-
tion of a few centimeters, achieving such levels of detail
from an orbiting platform is technically insurmountable.
However, the goal of orbital RS profiling is to image
the prominent IRHs detectable at the feasible bandwidth
with sufficient SNR. The existing orbital studies usually
assume a homogeneous target and ignore the IRHs;

3) To support the scientific goals of an orbital mission,
it is not only required to detect the basal interface (i.e.,
to penetrate the full thickness of the ice) but also to
characterize its geophysical properties. This includes
detecting geological targets within the ice column and
extracting information on the glacier processes, such
as the mapping of the water distribution at the basal
interface (e.g., basal flow regime and subglacial lakes).
This is of critical importance for predicting the stability
of the ice sheets and the rate of seaward flow of the ice.
Such analyses require detailed geoelectrical modeling
of the targets, rather than considering a homogeneous
structure.

This article aims to address these limitations by proposing
an approach to the assessment of the detection performance
of an orbital RS considering a realistic representation of the
polar ice targets. The target modeling is handled in a non-
subjective and automatic way by leveraging the airborne data
and using them as inputs to an airborne-to-satellite radargram
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Fig. 1. Hierarchical performance analysis of the targets based on progres-
sively increasing measurement requirements and achievability of the science
goals of subsurface sounding of the polar ice.

simulation technique. This allows us to account for the IRHs
and the spatial variability in the dielectric properties. The sim-
ulation of the orbital radargrams also enables an assessment
of the automatic interpretability of the detected targets and,
thus, demonstrates the scientific feasibility of the mission.

B. Science Goals of Orbital Sounding: A Hierarchical
Approach to the Performance Analysis

From the perspective of the scientific objectives of sub-
surface sounding of the polar ice and the nature of the
related targets, a hierarchical relationship between the radar
performance and the target detectability can be observed (see
Fig. 1). At a preliminary level of performance, an impor-
tant scientific requirement of polar ice sounding is that the
prominent near-surface IRHs should be mapped. This requires
penetration through the top part of the ice and with sufficient
power so that signal received from the IRHs is above the noise
and the off-nadir clutter levels. The detectability of the IRHs
is significant for inferring the paleoclimatic models and the
ice mass balance.

In the next higher level of performance, the orbital RS
should be able to delineate the basal interface, represent-
ing the interface between ice–bedrock (for grounded ice) or
ice–water (subglacial lakes, i.e., grounded ice having a large
pool of melt-water at the base, or floating ice). This requires
a penetration capability higher than the full ice thickness,
overcoming the scattering and power attenuation losses caused
by the ice. The detected basal interface can be used to estimate
the thickness of ice sheets and ice shelves, and generate
the 3-D topography of the bedrock (which can also support
other relevant scientific studies, such as detection of buried
craters [44], [45]).

Finally, for extracting scientifically valuable information
from the data acquired by the mission, it is not only nec-
essary to detect the prominent dielectric interfaces but also to
accurately interpret the geophysical properties characterized
by these interfaces (e.g., composition, structure, and dielectric
properties). Such studies have been widely applied to the
airborne radargrams, such as to the automatic detection of
subglacial lakes [24] and mapping of basal units [25]. In this
context, if the requirement on the penetration through the
full ice thickness is satisfied, a higher level of performance

Fig. 2. Flowchart of the proposed methodology.

requires the interpretation of the basal conditions (e.g., pres-
ence or absence of subglacial lakes, subglacial channel-flow,
and accreted ice). This is possible only if the SNR of the
signal received from the base is sufficiently high, and there
are adequate range and along-track resolutions. Identifying the
nature of the basal interface (such as ice–freshwater, ice–sea
water, and ice–bedrock) can support the inference of the
grounding line position, basal boundary conditions, and the
ice-flow regime.

C. Proposed Approach
Fig. 2 shows the schematic of the proposed methodol-

ogy. The notation and symbols used to describe the method
are listed in Nomenclature. In particular, the subscripts A
and E are used to represent the airborne and orbital cases,
respectively. The first step involves the preparation of the
simulation inputs, that is: 1) a database of airborne radargrams
(downloaded and preprocessed); 2) the corresponding airborne
instrument parameters; 3) definition of the design orbital
parameters; and 4) the corresponding levels of cosmic noise
power.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

THAKUR et al.: APPROACH TO THE ASSESSMENT OF DETECTABILITY OF SUBSURFACE TARGETS IN POLAR ICE 7

Since the structural and geophysical properties of the ice
targets vary with their location, we have selected the input
ARS radargrams widely distributed in different geographi-
cal conditions. To separately analyze the radar performance
in each of the geographical settings, we have defined five
principal geographical zones based on the known differences
in the dielectric and radar characteristics of the basal inter-
faces [24], [43], [46] and properties of the IRHs. These
zones include grounded ice (interior of the ice sheets having
an ice–bedrock interface), floating ice (coastal ice shelves
and floating ice-tongues having ice–seawater interface), and
subglacial lakes (ice–freshwater interface). These are further
segregated by their location in Antarctica and Greenland due
to the different thicknesses and ages of the ice in the two
continents. The zones are designated by a geographical label L
(henceforth referred to as geolabel), which are defined at each
geographical coordinate (latitude, longitude) of the radar track.
The geolabels are Greenland grounded ice (GGI), Greenland
floating ice (GFI), Antarctica grounded ice (AGI), Antarctica
floating ice (AFI), and Antarctica subglacial (ASG) lakes.

A useful approach to the design of RSs is based on
evaluating the required SNR at the surface (referred here
as SNR budget and represented by the notation SNR) that
depends mainly on the instrument parameters and the orbit
configuration. From the budget, the losses due to the target and
the environment (subsurface reflectivity, attenuation rate, scat-
tering losses, ionospheric distortions, and coherence losses)
are excluded to determine the SNR margin available at the
expected depth of the subsurface interface. This is justified
on the basis of previous studies (see Section II-C). The SNR
margin should be positive and higher than the sensitivity of
the RS to detect the subsurface interface. To represent the
range of possible values of the budget, we have considered
Nb different hypotheses of the SNR parameter, referred by the
simulation index b = 1, 2, . . . , Nb . The corresponding values
of the budget parameter are denoted by the simulation index
as the subscript, i.e., SNRb.

Next, starting from each of the airborne radargrams
Pr,A(rA, cA), the orbital radargrams Pb

r,E (rE , cE ) are simulated
for Nb different values of SNRb. The radargrams are 2-D
matrices in which the rows (r ) represent time samples of
the received signal, and the columns (c) represent the frames
acquired, while the RS moves in the along-track direction,
and the values (Pr ) in the matrix represent the received signal
(which is a complex number, but, in this case, we convert it
into the received power expressed in dB).

Each of the Nb simulated radargrams is analyzed for assess-
ing the orbital performance at two levels representing the
primary and the secondary objectives of an orbital mission
(see Section III-B). For the primary performance assessment,
the IRHs and the basal interface are extracted from the sim-
ulated radargrams with the help of the ground truth available
in the input airborne data. For the secondary performance
assessment, we define and evaluate a metric that quantifies
the interpretability of the detectable basal interface. This is
achieved by applying an automatic subglacial lakes’ detection
algorithm [24] to the airborne and simulated radargrams, and
comparing the accuracy of basal interface classification.

D. Assumptions

In this article, we consider a VHF band orbital RS, with
a central frequency of 45 MHz and a bandwidth of 10 MHz.
The selected airborne RS operates at UHF frequencies with a
central frequency of 195 MHz and a bandwidth of 30 MHz
(see Table I). Note that the use of a UHF airborne RS (which
depends on data availability) is detrimental to the estimation of
performances of the considered orbital RS, as we can simulate
the degradation of performance due to the minor bandwidth,
but we cannot recover the advantages in terms of clutter and
volume scattering at a lower frequency (see Appendices A
and B for more details).

The proposed approach is based on the following
assumptions.

1) Frequency Dependence of Polar Ice Dielectric Prop-
erties: For polar ice, the dielectric properties are affected
by structural imperfections, the presence of impurities, and
freezing/melting processes [47]. However, the real part of
the permittivity has negligible variability with frequency,
as reported in previous studies [47]–[49]. Using Debye equa-
tions, the real part is found to vary by less than 10−4% between
the airborne and orbital frequencies. In contrast, the ice-sheet
conductivity values are reported to have a spatially variable
frequency dependence in Antarctica and Greenland [42], [49],
which can be characterized by the Cole–Cole distribution
parameter (see Section III-E and Appendix A). For simplicity,
we assume a spatially homogeneous value of this parameter
across Greenland and Antarctica. Depending on the availability
of experimental data at different locations, the appropriate
value of the Cole–Cole distribution parameter can be easily
incorporated into the simulation chain.

2) Range Dependence of Polar Ice Dielectric Proper-
ties: Due to the heterogeneous nature of cryosphere targets,
the dielectric profile changes with depth in a way that cannot
be estimated easily. However, we assume that, for a small
thickness (the order of a few resolution cells), the radar
reflectivity is locally constant in the vertical direction [42].
This is generally true at RS wavelengths since the sensitivity
of the RS to small changes in the dielectric profile depends on
the bandwidth, which is relatively lower for long-wavelength
RSs [48].

3) Volume and Surface Scattering: Volume scattering
caused by distributed targets is assumed to be independent
of the frequency (i.e., the volume scattering observed by
the airborne RS is retained in the orbital radargrams). Thus,
the volume scattering losses between 40 and 50 MHz are
overestimated in the current approach (see Appendix A), and
the real orbital RS will be subjected to much lower levels
of these losses. Surface scattering in the simulated orbital
radargrams (i.e., surface reflectivity) is assumed to be spatially
invariable (−10 dB corresponding to Fresnel reflectivity at the
ice–air interface).

4) Other Performance-Limiting Factors: The effects of clut-
ter at the orbital footprint and the ionospheric distortions are
not addressed by the simulations. These can be addressed in
separate studies using well-established techniques [6], [30],
and their effects can be mitigated. Nonetheless, we have con-
sidered the power loss due to the ionosphere in the definition of
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the SNR margin (see Appendix A) for the assessment of target
detectability. Moreover, the difference in the antenna pattern
between the airborne and orbital systems is not accounted for
in the proposed approach.

5) Effect of Processing: The radar echo processing tech-
niques applied to the airborne RS and possibly applicable
to the orbital RS are likely to be different due to the dif-
ferences in the acquisition scenarios. The simulations do not
account for the differences in the echo processing techniques,
except for the gain in orbital signal power due to range and
along-track processing. The processing gains in the case of
the airborne data are taken into account while normalizing the
power with respect to the surface response.

6) Geometric Losses: In low-altitude airborne RS operating
at UHF frequencies, the geometry (high dipping angles) of
IRHs causes energy dispersion via several mechanisms, such
as destructive stacking, SAR processing, and off-nadir ray
path extension [50]. These losses are ignored in the proposed
approach, which is constrained by the information available
from the airborne data (i.e., the observed IRH reflectivity). The
method only accounts for geometric losses resulting from the
nadir distance between the interfaces and the platform. This
assumption can result in an underestimation of the IRH and
basal interface detection performance of the orbital RS, which
does not suffer from these losses.

E. Orbital Data Simulation

The simulation approach is based on reprocessing of avail-
able radargrams acquired over geological analogs of the inves-
tigated target [21]. This is done by identifying the differences
in the analog and investigated acquisition scenarios (in terms
of the instrument parameters, acquisition geometry, and target
geoelectrical properties) and understanding the impact of these
differences on the characteristics of the analog and investigated
radargrams. In this article, the orbital radargrams are simulated
using a special case of this analog-based simulation approach
in which the analog and the investigated RSs acquire data
over the same target (in this case, the polar ice regions). The
advantage is that it is not necessary to assume the detailed
geoelectrical models of the ice targets, and this also gives
high structural fidelity between the analog and investigated
target representation. However, the target attenuation factor
depends on the central frequency of the RSs, which should
be accounted for by processing the profile of the target radar
response.

The simulation steps are briefly outlined as follows, where
z refers to the depth computed at each row index rA assuming
a constant ice permittivity of 3.15, and Pr , Pt , G2, Gr , Gaz,
γS, γSS, and ρ are expressed in dB (refer to Nomenclature).

1) Target Geoelectrical Modeling: Considering the specular
version of the radar equation (which assumes that the targets
are flat and specular, their properties are constant over an area
larger than the first Fresnel zone [51], [52], and the refraction
gain is equal to 1), the airborne received power profile at the
frame cA is given by

Pr,A(rA, cA)

= Pt,A + G2
A + Gr,A + Gaz,A + γS,A

+ γSS,A(z, cA)− 10 log10

�
64π2{HA(cA)+ z}2

λ2
A

�
. (1)

The power received from the surface, obtained by detecting
the strongest reflection in each frame, represents the sample
z = 0 in (1). Thus,

Pr,A(z = 0, cA) = Pt,A + G2
A + Gr,A + Gaz,A + γS,A

− 10 log10

�
64π2 HA(cA)

2

λ2
A

�
. (2)

From (1) to (2), the subsurface target propagation factor
of the airborne RS can be estimated by normalizing the
frame power by the surface echo and removing the expected
geometric losses

γSS,A(z, cA) = Pr,A(rA, cA)− Pr,A(z = 0, cA)

+ 10 log10

� {HA(cA)+ z}2

HA(cA)
2

�
. (3)

The actual subsurface target propagation factor depends on
the target reflectivity profile ρ(z, cA), the target-dependent
attenuation α(z), and the central frequency fc,A of the airborne
RS and is given by

γSS,A(z, cA) = ρ(z, cA)−
� z

0
f ηc,Aα(z, cA)dz (4)

where η is the Cole–Cole distribution parameter [42] that
characterizes the frequency dependence of the englacial atten-
uation. η = 0 implies frequency independence, whereas η = 1
implies a strong linearly proportional frequency dependence
of the radar attenuation in ice.

The reflectivity depends on the presence of discontinuities
in the ice sheet (e.g., IRHs) at the scale of the RS wavelength.
We assume that the medium between successive IRHs is
homogeneous at the airborne frequency (therefore, it is also
homogeneous at the orbital frequency, which is even lower),
and the reflectivity is vertically uniform [42]. Thus, using (4),
the integral term

� z
0 f ηc,Aα(z, cA)dz is estimated as the local

slope of the troughs in the γSS,A(z, cA) profile. Since the strong
surface echo can mislead the slope estimation, we consider the
profile starting from 100 m below the surface. This is justified
because the attenuation within the surface layer is negligible
due to very small values of the depth z compared to the deeper
layers. In the top 100 m of the ice, we assume α = 0. Since
the central frequency is a constant in the integral, we can
easily obtain

� z
0 α(z, cA)dz by dividing the slope by f ηc,A. The

corresponding EORS target propagation factor γSS,E (z, cA) is
given by

γSS,E (z, cA) = γSS,A(z, cA)

− �
f ηc,E − f ηc,A

� � z

0
α(z, cA)dz. (5)

Note that
� z

0 α(z, cA)dz is positive. Therefore, (5) indicates
that the orbital power decreases as the value of η decreases
since the orbital central frequency is lower than the airborne
one.
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2) Signal Magnitude Correction: Using radar equations (1)
and (5), and the suitable orbital parameters that result in a
given value of SNRb, the orbital received power Pb

r,E (rA, cA)
is calculated as

Pb
r,E (rA, cA) = Pt,E + G2

E + Gr,E + Gaz,E + γS,E

+ γSS,E (z, cA)− 10 log10

�
64π2(HE + z)2

λ2
E

�
(6)

where the surface reflectivity in the orbital case γS,E is cal-
culated from the dielectric permittivity at the ice–air interface
and assumed to be −10 dB for all the simulations.

3) Noise Correction: This step considers the differences in
the noise power level of the two scenarios due to the presence
of different sources of noise. Note that, at airborne flying
altitudes, the data are not affected by the galactic noise. On the
contrary, sounding from a satellite platform is subjected to the
isotropic cosmic microwave background (CMB). In this step,
Rayleigh distributed galactic noise power [37], corresponding
to an equivalent noise temperature at the orbital frequency and
bandwidth, is stochastically added to the processed airborne
radargrams.

4) Bandwidth Correction: The orbital bandwidth BE is
typically lower than that of the airborne BA (as considered
in this study). This difference is corrected by applying a
low-pass filter to the processed airborne radargrams after the
signal magnitude correction. Bandwidth correction ensures
that the target reflectivity profile corresponds to the dielectric
interfaces detectable with the bandwidth of the orbital RS.

5) Range and Along-Track Sampling Correction: The spac-
ing between the samples in the range direction depends on the
sampling frequency of the RSs. Similarly, the distance between
successive pulses (frames of the radargrams) depends on the
PRF of the RSs. These differences are addressed by appro-
priately resampling the radargram in range and along-track
direction, using the nearest neighbor resampling technique.
The details of the filtering and resampling process can be
found in [21].

With these steps, we obtain the simulated radargram repre-
sented in terms of received power Pb

r,E (rE , cE ) for the design
parameter SNRb.

F. Primary Performance Assessment

1) Automatic Extraction of the Prominent Dielectric Inter-
faces From Radargrams: The dielectric interfaces representing
the IRHs are known to have high reflectivity and a horizontal
aspect. This information is well-known and used in the lit-
erature for automatic detection of the IRHs [53]–[55]. These
techniques identify the IRHs based on their connectivity in
the along-track direction and high contrast with respect to
their neighboring range samples. We have adapted the state-of-
the-art approaches [53] to formulate a computationally simple
IRH detection algorithm applied to the airborne radargrams.
The algorithm extracts horizontally connected linear features
from the denoised radargram by wavelet decomposition. The
extracted edges are refined by a morphological closing oper-
ation to eliminate isolated speckle reflections. The result is

a binary IRH position mask matching the dimensions of the
airborne radargram. It has a value of 1 at pixel positions
where the IRHs have been identified in the airborne radargram
and 0 elsewhere. Due to possible artifacts caused by the
strong surface and basal interface reflections in the simulated
radargrams, the mask considers only the region from 100 m
below the surface to 100 m above the basal interface.

The basal interface is the deepest reflecting horizon in
the radargram having a significantly high intensity (due to
high dielectric contrast) and a horizontal continuity with its
along-track neighboring samples. This knowledge has been
used for the automatic detection of the basal interface from
the radargrams following the techniques described in [56]
and [57]. The output of the automatic detection is a binary
basal interface position mask matching the dimensions of the
airborne radargram. It has a value of 1 at positions where the
basal interface has been identified in the airborne radargram
and 0 elsewhere.

2) Definition of the Primary Performance Metrics: In the
next step, we define metrics to quantify the detectability of the
prominent interfaces in the bth simulated radargram against
the galactic noise level. For this step, the reference ground
truth is taken as the IRH and basal interface position masks
derived from the input airborne data (this is valid since the
data quality, and therefore the detection performance of the
airborne, is higher than the orbital and has been validated in
the literature). The mask is first resampled to the dimensions
of the simulated radargrams (in terms of range resolution,
sampling frequency, and along-track sampling) to achieve a
pixel-to-pixel correspondence.

The evaluation of the IRH detection metric consists of
checking the SNR in the simulated radargram at the positions
given by the IRH reference ground truth. First, the resampled
IRH position mask is compared pixel-by-pixel to the simulated
radargram to create a binary map of the detectable IRHs. The
map has a value of 1 at positions for which the mask is 1, and
the simulated SNR (Pb

r,E − 10 log10[k BE Tcmb]) is above the
SNR margin and has 0 elsewhere. Next, we estimate the ratio
of the total number of detectable IRHs in the map to the total
number in the IRH position mask for each frame cE of the bth
simulated radargram. The ratio, thus, obtained is defined as the
IRH detection performance metric θb(cE ), i.e., the probability
of IRH detection in the frame cE .

Similarly, the basal interface position mask is compared
pixel-by-pixel with the bth simulated radargram to create
the basal interface detection metric βb(cE), defined for each
frame cE . The metric is βb(cE ) = NULL for the frames for
which the mask is 0 at every sample, representing the case
where the basal interface is not detectable in the airborne data
and, hence, definitely not present in the simulated data (the
simulation process cannot create information that is absent in
the input airborne data). At the pixel positions where mask =
1, the metric is βb(cE ) = 1 if the simulated SNR is above the
SNR margin (representing the cases of the detectable basal
interface in the simulated data), while βb(cE ) = 0 if the
simulated SNR is below the SNR margin (representing the
cases of nondetectability of the basal interface in the simulated
data).
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Note that the noise power level is implicit in the SNR eval-
uation from the received EORS power. Hence, the simulated
radargrams used for extracting the IRH and basal performance
metrics do not include the Noise Correction processing step.
If the noise corrected radargrams are used for IRH and basal
performance analysis, they can lead to overestimation of the
performance due to the stochastic nature of noise. The high
levels of noise can be falsely identified as detectable IRHs or
basal reflections, which is purely due to the simulation process
(thus, this does not represent the real scenario).

3) Projection of the Performance Onto the Parameter
Space: Next, the performance metrics are grouped by the
geolabels. For the frames cL

E having the same geolabel L,
we define the cumulative fraction of frames χ L

b (θ) for which
the IRH detection metric θb(cE ) is greater than a probability
threshold θ ∈ [0, 1]

χ L
b (θ) = count

�
θb

�
cL

E

� ≥ θ
	

N L
E

. (7)

The plot of χ L
b versus θ can be understood as a cumulative

distribution of IRH detection performance for each geolabel
and each simulated radargram. For interpreting the perfor-
mance and supporting the design, the information from the
cumulative plots is projected onto the parameter space defined
by the target and the instrument parameters. This can be done
by knowing the requirement on the probability threshold θ
and the cumulative performance χ L

b (θ) that should be satisfied
by the design. These are defined in terms of the minimum
required per-frame probability of IRH detection θ L

min and the
minimum required cumulative fraction of frames χ L

min. The
superscript L denotes that these requirements may be different
for different geolabels. The minimum required SNR for the
detectability of the IRHs in the zone L is given by the smallest
value of SNRb such that at least χ L

min frames have more than
θ L

min IRHs detectable per frame

SNRmin
�
θ L

min, χ
L
min, L

�
= min∀b



SNRb : χ L

b

�
θ L

min

� ≥ χ L
min

�
. (8)

However, the orbital instrument should be designed for a
single value of SNR that should satisfy the detection require-
ments across all the geolabels. For a set of requirements
(θ L

min, χ
L
min), the best design parameter SNRdesign is given by

SNRdesign = max∀L



SNRmin

�
θ L

min, χ
L
min, L

��
. (9)

In a more straightforward approach, the values of the
basal interface detection βb(cE) are grouped for the frames
cL

E having the same geolabels. The grouped performance is
estimated as the fraction of frames βL

b for which the basal
interface detection metric is equal to 1 and is given by

βL
b = count

�
βb

�
cL

E

� = 1
	

count
�

βb

�
cL

E

� = 1
� ∨ 


βb
�
cL

E

� = 0
�	 . (10)

For a mission requirement of βL
min on the basal inter-

face detectability for the geographical zone L, the minimum
required SNR is given by the smallest value of SNRb such
that at least βL

min frames have a detectable basal interface

SNRmin
�
βL

min, L
� = min∀b



SNRb : βL

b ≥ βL
min

�
. (11)

The design SNR is obtained similar to (9), as the maximum
value of SNRmin satisfies the requirement in all the zones.

G. Secondary Performance Assessment
1) Characterization of the Nature of the Basal Interface:

For the secondary performance assessment, we focus on the
ability to characterize a crucial basal boundary condition,
i.e., the presence of subglacial lakes. It is obvious that the
secondary performance is analyzed only for frames for which
the primary performance is satisfied, i.e., the basal interface
is detectable in the orbital data. To detect subglacial lakes,
we consider the automatic algorithm proposed in [24] for
analyzing airborne radargrams and adapt it to the case of
orbital data. The algorithm exploits the extreme differences in
the properties of the basal interface waveforms (set of range
samples centered around the basal reflection in each frame)
depending on its constituent materials, namely, ice–bedrock
or ice–water (i.e., subglacial lake).

For each pixel of the basal interface, considering these
properties, a set of eight features are extracted that model
the basal interface topography (root mean square height and
the local waveform correlation), the shape of the waveforms
(leading and the trailing edge steepness), and the statistical
properties (mean adjusted basal peak power, the coefficient of
variation, the skewness, and the kurtosis). These features are
extracted and normalized for each frame in which the basal
interface is detected, and analyzed by an SVM classifier with
a radial basis function (RBF) kernel to discriminate between
samples related to the presence n+ or the absence n− of
subglacial lakes.

The algorithm [24] is applied to the airborne and the corre-
sponding simulated radargrams. Training is performed using
25% randomly picked samples from those labeled lake n+ and
not-lake n−, and cross-validation using the remaining 75% of
the samples. A balanced training set is created comprising
equal proportions of lake n+ and not-lake n− samples. The
classification performance is expressed in terms of overall
accuracy, precision, specificity, and recall (also called hit rate)
for the orbital data and the airborne data. The specificity is
computed as = 100—false alarm rate, while the recall =
100—miss rate.

2) Subglacial Lakes’ Detection Metric: Next, we define the
lake detection performance metric as a vector �b(cE ) defined
for each frame of the bth simulated radargram. The metric
is evaluated as follows: 1) the trained SVM classifier is sepa-
rately applied to the airborne and simulated orbital radargrams
to obtain two vectors �ARS and �EORS of the predicted labels
of the basal interface (i.e., n+ lake and n− nonlake); 2) the
vector of the ARS predicted labels �ARS is resampled to match
the along-track resolution of the orbital, to have a one-to-one
correspondence between the two vectors; and 3) for both the
ARS and the EORS predicted labels, we compute the vectors
representing correct prediction, i.e., ξARS and ξEORS as follows:

ξi =
�

1, if �i = GTi

0, otherwise
(12)

where GTi indicates the ground truth and the index i indicates
i = EORS,ARS. Hence, vectors ξARS and ξEORS are equal to 1
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when the label is correctly predicted, whereas it is equal to
0 if the prediction is incorrect; and 4)we define �(cE ) by
comparing the vectors ξARS and ξEORS as follows:

�(cE ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, if βb(cE ) = 0

1, if ξARS = 0 ∧ ξEORS = 0

2, if ξARS = 0 ∧ ξEORS = 1

3, if ξARS = 1 ∧ ξEORS = 0

4, if ξARS = 1 ∧ ξEORS = 1.

(13)

IV. EXPERIMENTAL RESULTS

A. Definition of the Dataset

Based on the significant advantages of a 45-MHz sounder
(see Section II) with respect to the other cases presented
in the literature, we consider an orbital RS with para-
meters similar to the one proposed in [12] and [14].
The airborne radargrams are taken from the database pro-
vided by the Centre for Remote Sensing of the Ice-Sheets
(CReSIS), acquired by the airborne multichannel coherent
radar sounder (MCoRDS) [1]. The details of the selected
campaigns and flight lines are 2017_Greenland_P3 (0328_01,
0410_03, 0413_01, 0502_01, 0505_01, 0412_01, 0511_01);
2017_Antarctica_P3 (1125_03, 1116_03, 1112_03, 1124_03,
1103_05); 2013_Antarctica_P3 (1120_01, 1119_01, 1126_01,
1127_01); and 2016_Antarctica_DC8 (1115_03, 1115_04,
1103_06).

Table I lists the parameters of the airborne and the proposed
orbital systems. The input radargrams are processed with the
range and azimuth compression, and the minimum variance
distortionless response (MVDR) algorithm [26], [58]. The
MVDR algorithm mitigates clutter and noise in the data with
better performance than other techniques, which helps in the
primary performance assessment by reducing misclassification
of clutter as subsurface reflectors. Moreover, the algorithm
in [24] used for the secondary performance assessment is
also based on MVDR-processed data. However, the MVDR
processing suffers from a self-nulling problem that is related
to the suppression of very strong signals relative to the
noise [26], [58].

The Cole–Cole distribution parameter η, henceforth referred
to as frequency-dependence factor, is expected to have high
spatial variability. For simplicity, we have considered a con-
stant value of 0.08 [42], [59] for Greenland and 0.18 [42],
[60] for Antarctica simulations. The sensitivity of the proposed
approach to the uncertainties in the value of η has been
discussed in Appendix B-B.

The SNR budget at the surface (which is considered as the
main variable for the design of the system) is given by

SNRb = Pt + G2 + γS + Gr + Gaz

+ 10 log10

�
λ2

64π2 H 2k BTcmb

�
(14)

where k is the Boltzmann’s constant and the other symbols
are described in Table I. In this experiment, we consider six
different values of the SNR budget at the surface SNRb =
{65, 70, 75, 80, 85, 90} dB. For considering the subsurface
reflector to be detectable, the SNR margin at the subsurface

TABLE I

PROPOSED ORBITAL [12] AND AIRBORNE MCORDS [1] PARAMETERS

is taken to be 5 dB, accounting for ionospheric and coherence
losses. Justification of the value of the SNR margin is provided
in Appendix A.

The five geolabels L are determined with the help of
several ancillary datasets available for the earth’s polar regions.
For Greenland, the MEaSURE’s Greenland Ice Mapping
Project (GIMP) ice, ocean, and grounded-ice masks [61] are
used to obtain the labels for grounded ice L = GGI and float-
ing ice L = GFI in Greenland. For Antarctica, the Norwegian
Polar Institute’s Quantarctica package [62] is used to identify
the grounded ice L = AGI and the floating ice L = AFI from
the boundaries dataset [63], [64]. The subglacial lakes L =
ASG are analyzed within the Lake District of East Antarctica
and Siple Coast. They are labeled using the radar-detected
lakes [65] in the subglacial lakes inventory [66], [67] and
the demarcated boundary of the Vostok lake [68] (present
along the East Antarctica radar track). As in [24], a subset
of these labels is also used as ground truth for the secondary
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Fig. 3. Selected airborne radargram tracks and related geolabels: (a) in
Greenland and (b) in Antarctica. The black triangles in (b) indicate
radar-detected lakes [65], [66], which were used to generate the geolabels
for the subglacial lakes. The inset map shows the location of the track
corresponding to Fig. 4.

performance assessment. Fig. 3 shows the track locations of
the input airborne data along with their geolabels. The selected
airborne dataset covers a track of 1 08 000 km, of which about
99 000 km are expected to have a detectable basal interface in
the airborne data.

In the following, we present the experimental results
obtained by applying the proposed approach to the selected
set of airborne radargrams. First, we show some examples of
simulated orbital radargrams. Next, we present the results of
the primary performance assessment for the detection of the
IRHs and the basal interface. Finally, we report the secondary
performance analysis related to the characterization of the
basal interface, in terms of classification accuracy of subglacial
lakes.

B. Simulated Orbital Radargrams
Fig. 4(a) shows an example of the average received power

profile of the simulated orbital and the airborne frames for a
radargram acquired over the Vostok lake in East Antarctica.
The effect of the signal magnitude correction step is visible
from the different slopes of the received power profile for
the two different RS frequencies. Furthermore, the effect of
noise correction resulting in the noise floor nearly matching
the cosmic noise level can also be observed. Fig. 4(b)–(d)
shows examples of the input airborne radargram and the
simulated radargrams for two extreme values of the SNR
budget. Visually, we can see that increasing the SNR budget
increases the detectability of the IRH and the basal interface.
Another observation is the reduction in the range resolution
due to a lower bandwidth of the orbital RS. This results
in a reduced spatial sampling of the detectable IRHs in the
simulated radargrams.

C. IRH Detection Performance
Fig. 5(a)–(e) shows the cumulative distribution of the IRH

detection performance for each geolabel L. The horizontal
axis shows the probability θ , while the vertical axis shows
the cumulative fraction of frames χ L

b (θ) having IRH detection
greater than θ . We see that the distribution shifts toward the
top right corner by increasing the SNR budget, indicating

Fig. 4. Examples of simulated radargrams and average received power
profile corresponding to the airborne radargram 20131127_01_045 in East
Antarctica. (a) Average frame power of the airborne and the simulated orbital
radargrams for different SNRb values, (b) airborne radargram, (c) simulated
orbital radargram for SNRb = 65 dB, and (d) simulated orbital radargram for
SNRb = 90 dB. The location of the track is shown in the inset map in Fig. 3.
Note that η = 0.18 for this simulation.

an improvement in the grouped IRH detection performance
(i.e., a higher number of frames has a higher IRH detection
metric). Furthermore, the plots reveal that the IRH occurring
in the floating ice in Greenland and Antarctica has a better
detection performance compared to the grounded ice and
subglacial lakes. An example of projecting the performance
onto the parameter space is demonstrated here, considering the
requirements θ L

min = 0.70 and χ L
min = 0.70 for all L. These

requirements are indicated by the red vertical lines and the
magenta dashed horizontal lines, respectively, in Fig. 5(a)–(e).
For ease of understanding, the region of the cumulative dis-
tribution satisfying these two conditions is marked by a green
box. For each geolabel, the plots occurring within the green
box represent the required SNRb values. For example, for the
ASG lakes, the green box contains the plots corresponding
to SNRb ≥ 80 dB. Therefore, for this zone, the minimum
required SNR budget is SNRmin(0.70, 0.70, L = ASG) =
80 dB. Similarly, by analyzing all the zones, we obtain the
projection of the geolabels versus the required SNR budget
shown by the yellow bars in Fig. 5(f). From this graph, we can
see that the design SNR budget that satisfies the detectability
of IRHs in all the five geographical zones for the given set
of requirements is SNRdesign = 85 dB (indicated by the red
dashed vertical line).

The mission requirements typically flow down from the
scientific goals of the mission and may be different for
different geographical zones. However, due to the absence of
a well-defined orbital mission and avoid introducing any bias
due to subjective assumptions, we evaluate the design SNR for
the full range of the mission requirements and also consider
them to be independent of the geolabels. Fig. 6 tabulates the
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Fig. 5. Results of the IRH detection performance for different geolabels and SNRb’s. Cumulative distribution of the IRH detection performance for (a) AFI,
(b) AGI, (c) ASG lakes, (d) GFI, and (e) GGI. An example of the SNR budget selection based on a possible set of mission requirements is presented in (f).
It shows the value of SNRb that gives the per-frame IRH detection probability θ greater than 0.70 (red dashed vertical line in (a)–(e), which is satisfied by
at least 70% of all the frames (magenta dashed horizontal line in (a)–(e)]. The regions of the cumulative distribution plots that satisfy these requirements are
highlighted in the green box. The corresponding minimum required SNRb values for detectability in each zone are indicated by the yellow bars in (f). The
red dashed vertical line in (f) corresponding to SNRb = 85 dB indicates the design SNR budget necessary for satisfying the IRH detection requirements for
all the five geolabels.

Fig. 6. SNR values for detectability in all the five zones for different sets of
mission requirements on the probability of IRH detection and the cumulative
fraction of frames. The red box identifies the scenario shown in Fig. 5. The
values in the matrix indicate the minimal value of SNRb that satisfies the
requirements in the corresponding row and column headings.

design SNR budget that satisfies the detectability in all zones
computed for the full range of possible θmin and χmin.

Depending on the scientific objectives of the mission and
the feasibility of obtaining the desired SN R, a tradeoff
between the requirements and the instrument design should

be identified. Let us illustrate how the performance projection
supports this tradeoff analysis. From the cumulative distrib-
ution plots (see Fig. 5), we see that, for the floating ice in
Antarctica, even with SNRb = 65 dB, very high IRH detection
performance is obtained (more than 95% of the IRHs are
detectable in more than 90% of the frames). For the floating
ice in Greenland, this is the case for SNRb ≥ 70 dB. The IRHs
in the interior of the ice sheets are relatively more difficult to
detect. To detect more than 70% of the IRHs in the grounded
ice in Antarctica, SNRb ≥ 75 dB is required, whereas, over
the subglacial lakes, this requirement is even higher (SNRb ≥
80 dB). Moreover, the IRH detectability is highly sensitive to
the SNRb values for the ASG zone, ranging from probability
of detection smaller than 0.3 for SNRb = 65 dB to one
larger than 0.9 for SNRb = 90 dB. The most critical targets
appear to be the IRHs in the grounded ice in Greenland, which
requires at least 90-dB SNR to detect more than 70% of the
layers.

Considering the same requirements for all geolabels, the val-
ues of the design SNR shown in Fig. 6 are likely to be affected
by the interior of the ice sheets (AGI, GGI, and ASG). Besides
design and performance assessment, such tradeoff analysis
combined with the study on the scientific interests in each
zone can also be used to define the feasible IRH detection
requirements for each geographical zone.
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TABLE II

BASAL INTERFACE DETECTION PERFORMANCE FOR DIFFERENT
GEOGRAPHICAL ZONES (REPORTED AS PERCENTAGE)

D. Basal Interface Detection Performance

Table II shows the performance projection of the basal
interface detection for each geographical zone and SNR bud-
get. The reported values represent the grouped performance
metric (βL

b ), which denotes the percentage of frames having a
detectable basal interface in the simulated radargrams. As an
example of the selection of the design SNR, let us consider
a basal interface detection requirement of βL

min = 60% for all
zones. With a design SNR budget of 85 dB, this requirement
is satisfied in all five zones.

The table can be used for a tradeoff analysis similar to
that described for IRH detection performance. Similar to the
IRH detection, the highest basal interface detectability is seen
for the floating ice. These are shallow targets with high
interface reflectivity (ice–water dielectric discontinuity) and,
thus, have a very high basal interface detection performance,
even with low SNR values. In the subglacial lakes zone,
an SNR higher than 75 dB is required to penetrate up to the
basal interface of more than 90% of the frames. However, due
to the strong reflectivity of the ice–water interface, nearly all
the basal interfaces can be detected when SNRb ≥ 80 dB. The
grounded ice in Greenland is a critical target for basal interface
detection, especially at low values of SNRb as also observed
with the IRH performance. A plausible explanation can be
the value of the frequency-dependence factor considered for
the simulations. As shown in Appendix B-B, incorrect lower
values of η can result in underestimation of the detection
performance.

E. Subglacial Lakes’ Detection Performance
We illustrate the subglacial lakes performance considering

two cases: case (i) SNRb = 85 dB and case (ii) SNRb =
90 dB, where the basal interface detection metric is more
than 99%. To determine the kernel parameters of the SVM
classifier, we apply a tenfold cross-validation considering the
range of the parameters c ∈ [1, 220] and γ ∈ [2−2, 24].
In the cross-validation, for each value of c and γ , the training
samples are divided in k = 10 folds, and an SVM model
is trained with c and k − 1 folds. Each SVM model is
then validated on the remaining sample fold, considering the
accuracy as a metric. The validation accuracy is averaged over
the k experiments. Finally, the best values of c and γ are
defined as those maximizing the average accuracy. The optimal

TABLE III

CLASSIFICATION PERFORMANCE OF THE SUBGLACIAL LAKE DETECTION
ALGORITHM APPLIED TO THE AIRBORNE DATA AND THE ORBITAL

DATA FOR THE CASE (i) SNRb = 85 dB and
Case (ii) SNRb = 90 dB

Fig. 7. Results of the automatic lakes’ detection algorithm applied to
simulated orbital radargram corresponding to SNRb = 90 dB and for the
radar track 20131127_01_045-047 in East Antarctica containing the Vostok
lake. The blue region of the basal interface is detected as lake while the
magenta region is detected as nonlake.

kernel parameters are c = 220 and γ = 8 for both cases
(i) and (ii). Table III shows the classification performance
for the airborne [24] data and for the orbital data for cases
(i) and (ii). For both cases, the accuracy is higher than 98.5%
and comparable to that obtained from the ARS data. Also,
the other classification performances (specificity, precision,
and recall) have high values, confirming the possibility of
detecting subglacial lakes from the orbital data with high
performance. The difference in the classification performance
of cases (i) and (ii) is extremely small, indicating that, if the
basal interface is detectable, it is possible to analyze the nature
of the interface and detect the presence of subglacial lakes.

Fig. 7 shows a simulated orbital radargram corresponding
to SNRb = 90 dB and the predicted labels of the basal
interface. In this radargram, the Vostok lake, which appears
as a continuous flat reflector (indicated in blue), is detected
by the algorithm and well discriminated from the surrounding
bedrock samples (indicated in magenta). Fig. 8 shows the
lake detection metric for SNRb = 90 dB, plotted along the
radar tracks in the Lake District of Antarctica. From the map,
it is evident that the algorithm effectively classifies the basal
interface into lakes and nonlakes for a major part of the
track (marked in green) for both the airborne and the orbital.
The basal interface around the margins of the Vostok lake
is misclassified (marked in red) in both the airborne and the
orbital radargrams. However, there are a few locations where
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Fig. 8. Lakes’ detection performance metric �(cE ) plotted along the radar
track in Antarctica Lake district and Siple Coast. The metric values indicate
locations for which the basal interface is: not detectable (0); not correctly
classified in both the airborne and the simulated orbital radargrams (1);
correctly classified in the airborne but not in the orbital ones (2); correctly
classified in the orbital but not in the airborne ones (3); and correctly classified
in both the airborne and the simulated orbital radargrams (4). The matrix on
the right shows the percentage of frames for each of the metric values.

the classification is accurate for the airborne and not for the
orbital (yellow) and vice versa (blue).

V. DISCUSSION AND CONCLUSION

In this article, we have presented a methodology for a
detailed and realistic assessment of the performance of an
orbital RS in detecting important scientific targets in the polar
ice subsurface. The performance assessment methodology is
based on simulating the orbital radargrams, starting from the
available databases of airborne radargrams and evaluating a
set of performance metrics defined in this article. The orbital
radargrams are simulated corresponding to different values of
the SNR budget at the surface, and the performance analysis
of the simulated radargrams is used to reveal the SNR budget
that maximizes the detectability of the targets across different
geographical regions of the polar cryosphere. A hierarchical
approach is used to evaluate the detection performance of:
1) IRHs; 2) basal interface; and 3) subglacial lakes.

The methodology, in general, has been demonstrated on
an orbital RS with a carrier of 45 MHz and a bandwidth
of 10 MHz, by simulating the radargrams starting from data
acquired by MCoRDS (operating in the UHF band). The
results indicate that the SNR budget required to detect IRHs
and the basal interface varies across different geographical
zones. Detection performance of the primary interfaces close
to 100% is obtained in the floating ice zones, even at low
values of SNR. In the interior of the Antarctic ice sheets
(including the subglacial lakes regions), detectability is more
critical, with at least 85 dB of SNR required for detecting
more than 90% of the basal interface and 80% of the IRHs.
The condition with the grounded ice in Greenland is the
most critical and needs to be explored further, especially to
analyze the appropriate frequency dependence of the signal
attenuation.

The detectable basal interfaces are also identified as sub-
glacial lakes and bedrock with very high accuracy using an
automatic classification algorithm [24] applied to the orbital
simulated radargrams. The accuracy is comparable to that

of the airborne data, which has been demonstrated for the
SNR budget of 85 and 90 dB for illustration purposes. This
also shows that existing automatic algorithms for airborne
radargrams can be successfully adapted for the extraction of
similar information also from the future orbital data. Of course,
as in all automatic techniques, there is an intrinsic error
rate of the classifier, irrespective of whether the airborne or
orbital data are used. The automatic classification depends
on the capabilities of the selected training samples to repre-
sent the problem in terms of generalization. Hence, varying
the training set (e.g., randomly selecting different samples
for each experiment) can also result in variations in the
accuracy.

As an additional experiment, we have verified the proposed
approach by comparing the simulated orbital RS performance
obtained from MCoRDS with that obtained from another
airborne system [69] having parameters close to the 45-MHz
orbital RS. The results of this experiment are presented in
Appendix B and show a good agreement between the perfor-
mance obtained from different airborne radargrams.

Recently, a distributed radar sounder [22] architecture has
been proposed, which is based on the deployment of an
array of small satellite sensors in a suitable orbital flying
configuration. Such an architecture allows the synthesis of
very large antenna apertures, thereby significantly improving
the along-track resolution, the clutter performance, and the
SNR. In particular, the SNR of such a system depends on
the antenna gain and transmitted power of individual sensors,
and the total number of sensors. Therefore, the performance
analysis presented in this article can support and simplify
the design of the distributed architecture for an orbital RS.
The results presented here can also support a risk assessment
of the distributed architecture, such as evaluation of the loss
in detection performance due to damage of some of the
individual sensors (the resulting loss in SNR budget can be
computed, and the corresponding detection performances can
be extracted).

For simplicity, the simulation approach proposed here is
not integrated with the ionospheric effects and the off-nadir
clutter response. However, the losses due to propagation
through the ionosphere, roughness of the surface, and volume
scattering have been included in the SNR margin. Another
performance-limiting factor that has not been considered in
this study is the effect of seasonal changes in englacial water
storage, which can cause a seasonal increase in the attenuation
factor that should be considered in the mission design phase
[70], [71]. On the contrary, certain factors degrade the quality
of the input airborne radargrams and may lead to underesti-
mation of the orbital RS performance. For example, in the
radar equations (1) and (6), we do not consider refraction
effects in estimating the subsurface path lengths [52]. These
effects are negligible for the orbital RS, while they increase
the losses in the case of the airborne systems. Including
the refraction effects can improve the orbital RS detection
performance, especially over deeper targets, such as the Vostok
lake. Moreover, the ARS frames for which the roll angle
of the aircraft is significantly high may also be degraded
resulting in an underestimation of the orbital RS performance.
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These frames could be removed or corrected in future sim-
ulations to further improve the accuracy of the performance
assessment.

Clutter is an important factor in the selection of the orbital
RS frequency, as shown in previous studies [6]. The clutter
performance can be integrated into the proposed analysis,
by complementing it with the simulation of the cluttergram
(using several well-established approaches [30], [32]) over the
selected airborne tracks using available digital elevation mod-
els (DEMs). The masking of the IRHs by the off-nadir clutter
should be considered for evaluating the actual IRH detection
performance in terms of SCR. However, in the context of this
article, clutter does not significantly influence the SNR budget
parameter. Regarding the ionosphere performance, the loss of
signal strength and coherence (due to phase errors) may reduce
the estimated detection performance in the case of extreme
values of TEC. The ionospheric effects can also be easily
integrated into the proposed simulation approach using the
phase information of the input airborne data and applying
the estimated phase distortions as a function of the earth’s
ionospheric parameters. The integration of ionospheric distor-
tions and clutter simulations into the proposed methodology
presents the scope for future research. The results presented
here can be further improved by supporting the analysis
with laboratory and field measurements of polar ice dielectric
properties at UHF and VHF frequencies in order to input more
accurate values of the spatially varying Cole–Cole distribution
parameter.

The simulated radargrams generated by the proposed
method can also be used to test the adaptability of automatic
target detection algorithms developed for the airborne data to
the orbital case. This has been demonstrated in this article
using a subglacial lakes’ detection algorithm. In preparation
for the scientific interpretation of the data in the advanced
phases of development of the mission, the proposed simulation
approach can be used to adapt the existing algorithms for
applications to the orbital radargrams. As a final remark, it is
worth noting that the scientific objectives of an orbiting RS
are not restricted to the detection of bedrock, subglacial lakes,
and ice shelves. In future activities, we plan to analyze the
required conditions for interpreting the basal state, such as
frozen or thawed bedrock [46], subglacial water flow channels
[4], and the presence of marine ice and cavities at the base of
ice shelves [72].

APPENDIX A
SNR MARGIN CALCULATIONS

The proposed simulation approach does not include some
of the losses that can be critical for the detection of the ice
targets. In order to include their effects in the detectability
analysis, we consider an SNR margin of 5 dB, i.e., a subsurface
interface is considered to be detected if its SNR is at least
5 dB. In this section, we justify how 5 dB is a conservative
SNR margin and is sufficiently higher than the total expected
losses.

Let L( fc) denote the total loss in power in dB caused
by phenomena that are not accurately modeled in the sim-
ulation approach and depend on the central frequency fc

of the orbital RS. These include two-way volume scattering

Fig. 9. Coherence loss estimated over (a) Greenland and (b) Antarctica at a
45-MHz central frequency.

attenuation ν( fc), ionospheric effects �( fc), and coherence
loss due to surface roughness ψ( fc). Out of these, the simula-
tions do not include ionospheric effects while overestimating
the volume scattering and coherence losses (the simulation
represents these losses around 190–195 MHz, i.e., the central
frequency of the ARS, which are expected to be much higher
than the losses at 45 MHz, i.e., the orbital RS central fre-
quency). Let us quantitatively examine the overestimation and
the missing loss terms one by one.

At fc = 45 MHz, the volume scattering loss is nearly 0,
whereas, at fc = 195 MHz, it is about 8 dB ([6, Fig. 16],
averaged over a radius of 0–0.5 m of the volume scatterers).
The ionospheric peak loss at 45 MHz after ionospheric com-
pensation is reported in Fig. 4 of [17] and ranges between
0.1 and 2 dB during the solar minimum and rises up to 6 dB
during extreme events and high errors in TEC estimations
during the 11-year solar cycle. For this calculation, we will
consider the worst case peak loss of 6 dB in order to be
conservative.

The coherence loss due to roughness depends on the surface
elevation and slopes of Greenland and Antarctica. We have
used 90-m resolution DEM of Greenland [61] and 400-m
resolution DEM of Antarctica [73] to first evaluate the slopes
at the DEM resolution and estimate the Hurst exponent, which
was then used to scale the slopes to a horizontal lag distance
of 6.6 m (wavelength at 45 MHz) and 1.5 m (wavelength at
195 MHz) [74]. The coherence loss is related to the slope and
is obtained from backscattering models based on Kirchhoff’s
approximation [75]. Fig. 9 shows the spatial distribution of the
estimated coherence losses over Antarctica and Greenland at
45 MHz. Note that the interior of the ice sheets in most of the
areas is relatively flat and has a minor contribution to the low
coherence loss. The literature values of the slopes obtained
with other datasets, including higher resolution DEMs, are
consistent or even lower than what we report here [76]–[79].
In any case, we found that the difference between the coher-
ence loss at 45 and 195 MHz is not significant, and it is not
changing the SNR margin. We have estimated the average
coherence loss at 45 and 195 MHz as 1.56 and 2.22 dB,
respectively.

Thus, the total loss at 45 MHz is

L(45) = ν(45)+�(45)+ ψ(45)

= 0 + 6 + 1.56 ≈ 8 dB. (15)

However, the losses already included in the simulation are

ν(195)+ ψ(195) = 8 + 2.22 ≈ 10 dB. (16)
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Therefore, from (15) to (16), we see that there is a net
overestimation of 2 dB of losses in the simulated radargrams.
To further allow for uncertainties in the ionospheric and
volume scattering losses, we have considered an additional
SNR margin of 3 dB for assessing the detectability, thus
resulting in a total margin of 5 dB over the expected SNR
of the targets.

APPENDIX B
SENSITIVITY ANALYSIS OF THE SIMULATION APPROACH

The simulation technique based on reprocessing available
RS data on a geologically similar terrain, which is the
basis for the EORS simulations in this article, has been
already validated in [21]. In this section, we present an
experiment to compare the performance assessment of an
orbital RS for a specific case starting from different airborne
data to show the reliability and robustness of the proposed
approach. The experimental results presented in Section IV
have been obtained using as input the data acquired by the air-
borne MCoRDS-3 instrument, which operates in the UHF band
(with central frequency around 195 MHz). However, there
exist other airborne instruments, such as the high-capability
radar sounder (HiCARS) system [69] operating at a central
frequency of 60 MHz with a bandwidth of 15 MHz, and, thus,
very close to the parameters of the proposed orbital RS (see
Table I). While this is favorable for obtaining more reliable
and realistic simulations, the coverage of HiCARS is limited
to Antarctica only (this is the reason for which they were not
used in this article).

Nevertheless, we have exploited the opportunity presented
by the availability of HiCARS data to further validate the
proposed methodology. To this purpose, we have selected
the following pair of nearly overlapping MCoRDS and
HiCARS radargrams: 1) the HiCARS-2 Level 1B time-lagged
echo strength profiles data IR2HI1B_2011349_VCD_JKB2g_
DVD01a_000 [69], [80] (low and high gain channels were
merged before use) and 2) the MCoRDS-3 MVDR processed
echoes 20131127_01_032-033 from the 2013_Antarctica_
P3 campaign [1] provided by CRESIS (see Table I). These
cover a track length of about 80 km in the grounded ice of
East Antarctica.

A. Comparison of Simulated Orbital RS Performance
Obtained From Different Airborne Radargrams

Next, starting from the MCoRDS and the HiCARS data,
we simulated the radargrams of an orbital RS having the same
parameters, as reported in Table I, and using the technique
described in Section III-E. Note that the value of η is taken
as 0.18 since the track is in Antarctica. The two sets of simu-
lated radargrams obtained are referred by the subscript H –E ,
i.e., HiCARS to EORS and M–E , i.e., MCoRDS to EORS.
Finally, we compared the primary detection performances in
terms of the IRH detection metric and basal interface power.
Note that the secondary performance analysis (i.e., detection of
subglacial lakes) is implicitly validated because: 1) it depends
on the detectability of the basal interface and 2) the underlying
classification algorithm has been already validated in [24]
using ground-truth data.

Fig. 10. Comparison of simulated EORS power: (a) MCoRDS and HiCARS
received power profile normalized by the surface echo and (b) simulated
received power profile corresponding to SNRb = 80 dB of the H –E and
M–E cases.

Fig. 11. Comparison of performance metrics for the EORS simulations
obtained from MCoRDS and HiCARS instruments: (a) cumulative distribution
of IRH detection performance corresponding to SNRb = {65, 70, 75, 80} dB
and (b) histograms of the basal interface power in the M–E and H –E
simulated radargrams corresponding to SNRb = 85 dB.

Fig. 10 shows the comparison of the input ARS power
profiles (normalized by the surface echo, since the ranges
of absolute power in the two datasets are very different) and
the simulated EORS received power obtained from MCoRDS
and HiCARS. From Fig. 10(b), it is clear that the proposed
approach is resulting in a similar power response starting from
the different ARS instruments.

Fig. 11(a) shows the cumulative distribution of IRH detec-
tion performance, which represents the probability of IRH
detection in each frame of the simulated radargrams. Here,
we observe a good agreement between the two curves rep-
resenting H –E (solid lines) and M–E (dashed lines) for
different values of SNRb, especially for values higher than
70 dB. Above 80 dB, nearly all the layers are detected in
both the simulation cases, and hence, these cases have not
been shown in the plot. Fig. 11(b) shows the histograms of
the basal interface power at SNRb = 85 dB, showing good
agreement between the two cases. Note that we do not report
the basal power histograms for all the six values of SNRb as
they have similar characteristics but the corresponding offset
in power.

B. Analysis of the Impact of the Frequency Dependence
Factor on the Simulation Results

We have further analyzed the sensitivity of the simu-
lations to the selected value of the frequency-dependence
factor η (referred to as the Cole–Cole distribution parameter
in [42]). The values of η for the analysis are 0.00 (indicat-
ing frequency-independent attenuation [49]), 0.08 (reported
by [42] and [81] for Greenland), 0.15 (reported by [42]
and [59] for Antarctica), 0.18 (reported by [42] and [60]
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Fig. 12. Impact of frequency-dependence factor: (a) average received
power profile of the simulated radargrams corresponding to different values
of η and SNRb = 90 dB. The input airborne data are the MCoRDS-3
radargram 20131127_01_032-033; (b) received EORS power profile after
signal magnitude correction applied to HiCARS and MCoRDS data [see
Fig. 10(a)] for η = 0.5 and SNRb = 80 dB. This value of η gives the
best agreement between the two cases H –E and M–E .

for Antarctica), and 1.00 (indicating linearly proportional
frequency dependence of the radar attenuation).

Fig. 12(a) shows the average received power profiles of
the simulated radargrams obtained from the MCoRDS-3 data
20131127_01_032-033 and corresponding to different val-
ues of η. We observe that, as the value of η increases,
the received power increases, and the linearly proportional
frequency dependence has the highest power among all the
cases. For the case of frequency independence or weak depen-
dence, the range of considered η values results in a maximum
variation of less than 20 dB in the received power. Note that,
for the two literature reported values of η = 0.15 and 0.18 for
Antarctica, the difference in the received power is negligible.
Furthermore, η more strongly impacts the performance of the
basal power (and other interfaces close to the base) compared
to the near-surface IRHs.

We have also compared the simulated H –E and M–E
power profiles corresponding to different values of η. It was
found that, for the closest segments along the selected
HiCARS and MCoRDS tracks, η = 0.5 resulted in the
best match between the H –E and M–E cases, as shown
in Fig. 12(b). Since the actual value of η can have high
spatial variability along the track and in the vertical direction
[42], the assumption of a uniform value of η for all the
simulations may impact the accuracy of the observed detection
performance. This needs to be further analyzed by detailed
field measurements of the polar ice dielectric properties at
different frequencies. In absence of such information, we have
used the literature reported values of η for the present analysis.

In summary, the aforementioned experiments demonstrate
the validity of the proposed performance assessment method-
ology and further show that the proposed approach is not
biased by the choice of the input airborne data (although when
possible ARS as similar as possible to the orbital RS should
be considered). To show the effectiveness of the methodology,
we have presented the comparison for lower level metrics
that are more closely related to the simulated radargrams.
However, the final performance assessment of an EORS, made
on a larger database covering several thousand kilometers of
track length and grouped by the geolabels, is expected to be
less sensitive to relatively small differences in the simulated
radargrams.

ACKNOWLEDGMENT

The authors would like to thank the three anonymous
reviewers whose valuable suggestions greatly helped to
improve this article. They would also acknowledge the use
of data in part by the Center for Remote Sensing of Ice
Sheets (CReSIS) generated with support from the Univer-
sity of Kansas, NSF, under Grant ANT-0424589; in part by
the National Aeronautics and Space Administration (NASA)
Operation IceBridge under Grant NNX16AH54G; in part by
the use of the High Capability Radar Sounder (HiCARS)
lines, funded as a part of NSF’s International Polar Year
activities to The University of Texas at Austin under Grant
ANT-0733025; and in part by the UK’s Natural Environment
Research Council (NERC) to the University of Edinburgh
under Grant NE/D003733/1.

REFERENCES

[1] L. Shi et al., “Multichannel coherent radar depth sounder for NASA
operation ice bridge,” in Proc. IEEE Int. Geosci. Remote Sensors
Symp. (IGARSS), Jul. 2010, pp. 1729–1732.

[2] A. Moussessian et al., “A new coherent radar for ice sounding in
Greenland,” in Proc. IEEE Int. Geosci. Remote Sens. Symp. Taking
Pulse Planet: Role Remote Sens. Manag. Environment. (IGARSS), vol. 2,
Jul. 2000, pp. 484–486.

[3] D. A. Young, D. M. Schroeder, D. D. Blankenship, S. D. Kempf, and
E. Quartini, “The distribution of basal water between Antarc-
tic subglacial lakes from radar sounding,” Phil. Trans. Roy. Soc.
A, Math., Phys. Eng. Sci., vol. 374, no. 2059, Jan. 2016,
Art. no. 20140297. [Online]. Available: https://royalsocietypublishing.
org/doi/abs/10.1098/rsta.2014.0297

[4] D. M. Schroeder, D. D. Blankenship, and D. A. Young, “Evidence for
a water system transition beneath Thwaites Glacier, West Antarctica,”
Proc. Nat. Acad. Sci. USA, vol. 110, no. 30, pp. 12225–12228, 2013.

[5] R. E. Bell et al., “Deformation, warming and softening of Greenland’s
ice by refreezing meltwater,” Nature Geosci., vol. 7, no. 7, p. 497, 2014.

[6] R. Culberg and D. M. Schroeder, “Firn clutter constraints on the design
and performance of orbital radar ice sounders,” IEEE Trans. Geosci.
Remote Sens., vol. 58, no. 9, pp. 6344–6361, Sep. 2020.

[7] R. Seu et al., “SHARAD: The MRO 2005 shallow radar,” Planet. Space
Sci., vol. 52, nos. 1–3, pp. 157–166, 2004.

[8] G. Picardi et al., “MARSIS: Mars advanced radar for subsurface and
ionosphere sounding,” in Mars Express: The Scientific Payload (ESA
Special Publication), vol. 1240, A. Wilson and A. Chicarro, Eds. Noord-
wijk, The Netherlands: European Space Agency, Aug. 2004, pp. 51–69.

[9] T. Ono and H. Oya, “Lunar radar sounder (LRS) experiment on-
board the SELENE spacecraft,” Earth, Planets Space, vol. 52, no. 9,
pp. 629–637, 2000.

[10] L. Bruzzone et al., “Jupiter ICY moon explorer (JUICE): Advances in
the design of the radar for Icy moons (RIME),” in Proc. IEEE Int.
Geosci. Remote Sens. Symp. (IGARSS), Jul. 2015, pp. 1257–1260.

[11] D. Blankenship et al., “REASON for Europa,” in Proc. 42nd COSPAR
Sci. Assem., vol. 42, 2018, pp. B5–3.

[12] L. Bruzzone et al., “STRATUS: Satellite radar sounder for earth sub-
surface sensing,” Final Rep. to STRATUS Project, Italian Space Agency,
Italy, 2018.

[13] E. Heggy, P. A. Rosen, R. Beatty, T. Freeman, and Y. Gim, “Exploring
desert aquifers and polar ice sheets and their responses to climate
evolution: OASIS mission concept,” in Advances in Remote Sensing
and Geo Informatics Applications. Cham, Switzerland: Springer, 2019,
pp. 7–10.

[14] A. Freeman, X. Pi, and E. Heggy, “Radar sounding through the Earth’s
ionosphere at 45 MHz,” IEEE Trans. Geosci. Remote Sens., vol. 55,
no. 10, pp. 5833–5842, Oct. 2017.

[15] J. Dall, H. F. Corr, N. Walker, B. Rommen, and C.-C. Lin, “Sound-
ing the Antarctic ice sheet from space: A feasibility study based on
airborne P-band radar data,” in Proc. IEEE Int. Geosci. Remote Sens.
Symp. (IGARSS), Jul. 2018, pp. 4142–4145.

[16] L. Bruzzone, G. Alberti, C. Catallo, A. Ferro, W. Kofman, and R. Orosei,
“Subsurface radar sounding of the Jovian moon Ganymede,” Proc. IEEE,
vol. 99, no. 5, pp. 837–857, May 2011.

[17] T. Scuccato, L. Carrer, F. Bovolo, and L. Bruzzone, “Compensating
Earth ionosphere phase distortion in spaceborne VHF radar sounders
for subsurface investigations,” IEEE Geosci. Remote Sens. Lett., vol. 15,
no. 11, pp. 1672–1676, Nov. 2018.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

THAKUR et al.: APPROACH TO THE ASSESSMENT OF DETECTABILITY OF SUBSURFACE TARGETS IN POLAR ICE 19

[18] E. Heggy, G. Scabbia, L. Bruzzone, and R. T. Pappalardo, “Radar
probing of Jovian icy moons: Understanding subsurface water and
structure detectability in the JUICE and Europa missions,” Icarus,
vol. 285, pp. 237–251, Mar. 2017.

[19] C. Gerekos, A. Tamponi, L. Carrer, D. Castelletti, M. Santoni, and
L. Bruzzone, “A coherent multilayer simulator of radargrams acquired
by radar sounder instruments,” IEEE Trans. Geosci. Remote Sens.,
vol. 56, no. 12, pp. 7388–7404, Dec. 2018.

[20] E. Sbalchiero, S. Thakur, and L. Bruzzone, “3D radar sounder simula-
tions of geological targets on Ganymede Jovian Moon,” in Image and
Signal Processing for Remote Sensing XXV, vol. 11155, L. Bruzzone
and F. Bovolo, Eds. Bellingham, WA, USA: SPIE, 2019, pp. 442–454,
doi: 10.1117/12.2533066.

[21] S. Thakur and L. Bruzzone, “An approach to the simulation of radar
sounder radargrams based on geological analogs,” IEEE Trans. Geosci.
Remote Sens., vol. 57, no. 8, pp. 5266–5284, Aug. 2019.

[22] L. Carrer, C. Gerekos, F. Bovolo, and L. Bruzzone, “Distributed radar
sounder: A novel concept for subsurface investigations using sensors in
formation flight,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 12,
pp. 9791–9809, Dec. 2019.

[23] R. E. Bell et al., “Influence of subglacial geology on the onset of a
West Antarctic ice stream from aerogeophysical observations,” Nature,
vol. 394, no. 6688, pp. 58–62, 1998.

[24] A.-M. Ilisei, M. Khodadadzadeh, A. Ferro, and L. Bruzzone, “An
automatic method for subglacial lake detection in ice sheet radar sounder
data,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 6, pp. 3252–3270,
Jun. 2019.

[25] E. Donini, S. Thakur, F. Bovolo, and L. Bruzzone, “An automatic
approach to map refreezing ice in radar sounder data,” Proc. SPIE,
vol. 11155, Oct. 2019, Art. no. 111551B.

[26] J. Li et al., “High-altitude radar measurements of ice thickness over
the Antarctic and Greenland ice sheets as a part of operation ice-
bridge,” IEEE Trans. Geosci. Remote Sens., vol. 51, no. 2, pp. 742–754,
Feb. 2013.

[27] D. Bekaert et al., “Multichannel surface clutter suppression: East Antarc-
tica P-band SAR ice sounding in the presence of grating lobes,” Ann.
Glaciol., vol. 55, no. 67, pp. 9–21, 2014.

[28] K. C. Jezek et al., “Two-frequency radar experiments for sounding
glacier ice and mapping the topography of the glacier bed,” IEEE Trans.
Geosci. Remote Sens., vol. 49, no. 3, pp. 920–929, Mar. 2011.

[29] J. Dall et al., “ESA’s polarimetric airborne radar ice sounder
(POLARIS): Design and first results,” IET Radar, Sonar Navigat., vol. 4,
no. 3, pp. 488–496, 2010.

[30] F. Russo et al., “An incoherent simulator for the SHARAD experiment,”
in Proc. IEEE Radar Conf., May 2008, pp. 1–4.

[31] P. Choudhary, J. W. Holt, and S. D. Kempf, “Surface clutter and
echo location analysis for the interpretation of SHARAD data from
Mars,” IEEE Geosci. Remote Sens. Lett., vol. 13, no. 9, pp. 1285–1289,
Sep. 2016.

[32] Y. A. Ilyushin, R. Orosei, O. Witasse, and B. Sánchez-Cano, “CLUSIM:
A synthetic aperture radar clutter simulator for planetary exploration,”
Radio Sci., vol. 52, no. 9, pp. 1200–1213, 2017.

[33] D. Castelletti et al., “An interferometric approach to cross-track clutter
detection in two-channel VHF radar sounders,” IEEE Trans. Geosci.
Remote Sens., vol. 55, no. 11, pp. 6128–6140, Nov. 2017.

[34] R. Raney, “Radar sounder: Cross-track polarimetric selectivity,” in Proc.
7th Eur. Conf. Synth. Aperture Radar, Jun. 2008, pp. 1–4.

[35] L. Carrer and L. Bruzzone, “Solving for ambiguities in radar geophysical
exploration of planetary bodies by mimicking bats echolocation,” Nature
Commun., vol. 8, no. 1, p. 2248, 2017.

[36] G. Lewis, E. Osterberg, R. Hawley, B. Whitmore, H. P. Marshall, and
J. Box, “Regional Greenland accumulation variability from operation
IceBridge airborne accumulation radar,” Cryosphere, vol. 11, no. 2,
pp. 773–788, Mar. 2017.

[37] H. Cane, “Spectra of the non-thermal radio radiation from the galactic
polar regions,” Monthly Notice Roy. Astron. Soc., vol. 189, no. 3,
pp. 465–478, 1979.

[38] F. Hélière, C.-C. Lin, H. Corr, and D. Vaughan, “Radio echo sounding of
pine Island Glacier, West Antarctica: Aperture synthesis processing and
analysis of feasibility from space,” IEEE Trans. Geosci. Remote Sens.,
vol. 45, no. 8, pp. 2573–2582, Aug. 2007.

[39] A.-M. Ilisei, J. Li, S. Gogineni, and L. Bruzzone, “Estimation of ice
sheet attenuation by using radar sounder and ice core data,” Proc. SPIE,
vol. 10004, Oct. 2016, Art. no. 1000416.

[40] O. Brandt, K. Langley, A. Giannopoulos, S. E. Hamran, and J. Kohler,
“Radar response of Firn exposed to seasonal percolation, validation
using cores and FDTD modeling,” IEEE Trans. Geosci. Remote Sens.,
vol. 47, no. 8, pp. 2773–2786, Aug. 2009.

[41] O. Eisen, F. Wilhelms, U. Nixdorf, and H. Miller, “Revealing the
nature of radar reflections in ice: DEP-based FDTD forward modeling,”
Geophys. Res. Lett., vol. 30, no. 5, pp. 1–4, Mar. 2003.

[42] J. A. MacGregor et al., “Radar attenuation and temperature within the
Greenland ice Sheet,” J. Geophys. Res., Earth Surf., vol. 120, no. 6,
pp. 983–1008, 2015.

[43] K. Matsuoka, J. A. MacGregor, and F. Pattyn, “Predicting radar
attenuation within the Antarctic ice sheet,” Earth Planet. Sci. Lett.,
vols. 359–360, pp. 173–183, Dec. 2012.

[44] K. H. Kjær et al., “A large impact Crater beneath Hiawatha glacier
in Northwest Greenland,” Sci. Adv., vol. 4, no. 11, Nov. 2018,
Art. no. eaar8173. [Online]. Available: https://advances.sciencemag.
org/content/4/11/eaar8173

[45] J. A. MacGregor et al., “A possible second large subglacial
impact Crater in Northwest Greenland,” Geophys. Res. Lett.,
vol. 46, no. 3, pp. 1496–1504, Feb. 2019. [Online]. Available:
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018GL078126

[46] K. Christianson et al., “Basal conditions at the grounding zone of
Whillans ice stream, West Antarctica, from ice-penetrating radar,”
J. Geophys. Res.: Earth Surf., vol. 121, no. 11, pp. 1954–1983,
Nov. 2016.

[47] E. Pettinelli et al., “Dielectric properties of Jovian satellite ice
analogs for subsurface radar exploration: A review,” Rev. Geo-
phys., vol. 53, no. 3, pp. 593–641, 2015. [Online]. Available:
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2014RG000463

[48] J. G. Paren and G. D. Q. Robin, “Internal reflections in polar ice sheets,”
J. Glaciol., vol. 14, no. 71, pp. 251–259, 1975.

[49] S. Fujita, T. Matsuoka, T. Ishida, K. Matsuoka, and S. Mae, “A summary
of the complex dielectric permittivity of ice in the megahertz range
and its applications for radar sounding of polar ice sheets,” in Physics
of Ice Core Records. Sapporo, Japan: Hokkaido Univ. Press, 2000,
pp. 185–212.

[50] N. Holschuh, K. Christianson, and S. Anandakrishnan, “Power loss in
dipping internal reflectors, imaged using ice-penetrating radar,” Ann.
Glaciol., vol. 55, no. 67, pp. 49–56, 2014.

[51] M. S. Haynes, E. Chapin, and D. M. Schroeder, “Geometric power
fall-off in radar sounding,” IEEE Trans. Geosci. Remote Sens., vol. 56,
no. 11, pp. 6571–6585, Nov. 2018.

[52] M. S. Haynes, “Surface and subsurface radar equations for radar
sounders,” Ann. Glaciol., vol. 61, no. 81, pp. 135–142, Apr. 2020.

[53] L. Carrer and L. Bruzzone, “Automatic enhancement and detection of
layering in radar sounder data based on a local scale hidden Markov
model and the Viterbi algorithm,” IEEE Trans. Geosci. Remote Sens.,
vol. 55, no. 2, pp. 962–977, Feb. 2017.

[54] S. Xiong, J.-P. Muller, and R. Carretero, “A new method for automat-
ically tracing englacial layers from MCoRDS data in NW Greenland,”
Remote Sens., vol. 10, no. 2, p. 43, Dec. 2017.

[55] A. Ferro and L. Bruzzone, “Automatic extraction and analysis of ice
layering in radar sounder data,” IEEE Trans. Geosci. Remote Sens.,
vol. 51, no. 3, pp. 1622–1634, Mar. 2013.

[56] A. Ferro and L. Bruzzone, “Analysis of radar sounder signals for the
automatic detection and characterization of subsurface features,” IEEE
Trans. Geosci. Remote Sens., vol. 50, no. 11, pp. 4333–4348, Nov. 2012.

[57] A. M. Ilisei and L. Bruzzone, “A system for the automatic clas-
sification of ice sheet subsurface targets in radar sounder data,”
IEEE Trans. Geosci. Remote Sens., vol. 53, no. 6, pp. 3260–3277,
Jun. 2015.

[58] P. S. Tan, J. Paden, J. Li, J.-B. Yan, and P. Gogineni, “Robust adaptive
MVDR beamforming for processing radar depth sounder data,” in Proc.
IEEE Int. Symp. Phased Array Syst. Technol., Oct. 2013, pp. 622–629.

[59] J. D. Paden, C. T. Allen, S. Gogineni, K. C. Jezek, D. Dahl-Jensen,
and L. B. Larsen, “Wideband measurements of ice sheet attenuation
and basal scattering,” IEEE Geosci. Remote Sens. Lett., vol. 2, no. 2,
pp. 164–168, Apr. 2005.

[60] T. Barrella, S. Barwick, and D. Saltzberg, “Ross ice shelf (Antarctica)
in situ radio-frequency attenuation,” J. Glaciology, vol. 57, no. 201,
pp. 61–66, 2011.

[61] I. M. Howat, A. Negrete, and B. E. Smith, “The Greenland ice mapping
project (GIMP) land classification and surface elevation data sets,”
Cryosphere, vol. 8, no. 4, pp. 1509–1518, Aug. 2014.

[62] K. Matsuoka, A. Skoglund, and G. Roth, “Quantarctica,” Norwegian
Polar Inst., Tromsø, Norway, Tech. Rep. 10, 2018. [Online]. Available:
https://doi.org/10.21334/npolar.2018.8516e961

[63] I. Howat, MEaSUREs Antarctic Boundaries for IPY 2007-2009 from
Satellite Radar, Version 2. Boulder, Colorado USA. NASA National
Snow and Ice Data Center Distributed Active Archive Center. Accessed:
Sep. 12, 2019. [Online]. Available: https://nsidc.org/data/NSIDC-0709/
versions/2

http://dx.doi.org/10.1117/12.2533066


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

20 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

[64] E. Rignot, S. Jacobs, J. Mouginot, and B. Scheuchl, “Ice-
shelf melting around Antarctica,” Science, vol. 341, no. 6143,
pp. 266–270, Jul. 2013. [Online]. Available: https://science.sciencemag.
org/content/341/6143/266

[65] E. J. MacKie, D. M. Schroeder, J. Caers, M. R. Siegfried,
and C. Scheidt, “Antarctic topographic realizations and geostatis-
tical modeling used to map subglacial lakes,” J. Geophys. Res.:
Earth Surf., vol. 125, no. 3, Mar. 2020. [Online]. Available:
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019JF005420

[66] A. Wright and M. J. Siegert, “A fourth inventory of Antarctic subglacial
lakes,” Antarctic Sci., vol. 24, no. 6, pp. 659–664, 2012.

[67] D. Blankenship, S. Carter, J. Holt, D. Morse, M. Peters, and D. Young,
“Antarctic subglacial lake classification inventory,” Nat. Snow Ice Data
Center, Boulder, CO, USA, Tech. Rep. Final, 2009.

[68] M. Studinger et al., “Ice cover, landscape setting, and geological
framework of lake Vostok, East Antarctica,” Earth Planet. Sci. Lett.,
vol. 205, nos. 3–4, pp. 195–210, Jan. 2003.

[69] D. D. Blankenship et al. (2017). IceBridge HiCARS 2 L1B Time-
Tagged Echo Strength Profiles, Version 1. Subset. Accessed:
Feb. 12, 2021. [Online]. Available: https://IR2HI1B_2011349_
VCD_JKB2g_DVD01a_000

[70] A. K. Kendrick et al., “Surface meltwater impounded by seasonal
englacial storage in West Greenland,” Geophys. Res. Lett., vol. 45,
no. 19, pp. 10–474, Oct. 2018.

[71] W. Chu, D. M. Schroeder, and M. R. Siegfried, “Retrieval
of englacial Firn aquifer thickness from ice-penetrating radar
sounding in Southeastern Greenland,” Geophys. Res. Lett.,
vol. 45, no. 21, pp. 11770–11778, 2018. [Online]. Available:
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018GL079751

[72] H. A. Fricker, S. Popov, I. Allison, and N. Young, “Distribution of
marine ice beneath the Amery ice shelf,” Geophys. Res. Lett., vol. 28,
no. 11, pp. 2241–2244, Jun. 2001.

[73] H. Liu, K. C. Jezek, B. Li, and Z. Zhao, “Radarsat Antarctic mapping
project digital elevation model, version 2,” NASA Nat. Snow Ice Data
Center Distrib. Act. Arch. Center, Boulder, CO, USA, Tech. Rep. Final,
2015.

[74] M. K. Shepard, B. A. Campbell, M. H. Bulmer, T. G. Farr, L. R. Gaddis,
and J. J. Plaut, “The roughness of natural terrain: A planetary and
remote sensing perspective,” J. Geophys. Res., Planets, vol. 106, no.
E12, pp. 32777–32795, Dec. 2001.

[75] J. A. Ogilvy and H. M. Merklinger, “Theory of wave scattering from
random rough surfaces,” Acoust. Soc. Amer. J., vol. 90, no. 6, p. 3382,
Dec. 1991, doi: 10.1121/1.401410.

[76] C. Porter et al. (2018). ArcticDEM, Polar Geospatial Center,
Harvard Dataverse, V1. Accessed: Feb. 2, 2021. [Online]. Available:
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/
DVN/OHHUKH

[77] I. M. Howat, C. Porter, B. E. Smith, M.-J. Noh, and P. Morin, “The
reference elevation model of Antarctica,” Cryosphere, vol. 13, no. 2,
pp. 665–674, Feb. 2019.

[78] C. J. van der Veen, Y. Ahn, B. M. Csatho, E. Mosley-Thompson, and
W. B. Krabill, “Surface roughness over the northern half of the Green-
land ice sheet from airborne laser altimetry,” J. Geophys. Res., vol. 114,
no. F1, 2009.

[79] D. Yi, H. J. Zwally, and X. Sun, “ICESat measurement of Greenland
ice sheet surface slope and roughness,” Ann. Glaciol., vol. 42, no. 1,
pp. 83–89, Aug. 2005.

[80] M. G. P. Cavitte et al., “Deep radiostratigraphy of the East Antarctic
plateau: Connecting the dome c and vostok ice core sites,” J. Glaciol.,
vol. 62, no. 232, pp. 323–334, Apr. 2016.

[81] J. C. Hanson et al., “Radar absorption, basal reflection, thickness
and polarization measurements from the Ross ice shelf, Antarctica,”
J. Glaciol., vol. 61, no. 227, pp. 438–446, 2015.

Sanchari Thakur (Member, IEEE) received the
B.E. degree in civil engineering from Birla Institute
of Technology and Science at Pilani, Pilani, India,
in 2014, the M.Tech. degree in geoinformatics and
natural resources engineering from IIT Bombay,
Mumbai, India, in 2016, and the Ph.D. degree in
information and communication technology from
the Universitá degli Studi di Trento, Trento, Italy,
in 2020.

She is currently a Post-Doctoral Researcher with the Remote Sensing
Laboratory, Universitá degli Studi di Trento, where she is also working
on the design and performance analysis of the subsurface radar sounder
onboard ESA’s EnVision mission to Venus. Her Ph.D. thesis, titled “Advanced
methods for simulation and performance analysis of planetary radar sounder
data” was focused on developing and applying radar sounder simulators
for the radar for icy moon exploration onboard ESA’s JUICE mission, and
future terrestrial radar sounder missions. As part of her master’s thesis, she
worked on a project cosponsored by the United Nation’s International Atomic
Energy Agency (IAEA) to study spatial statistical properties of global uranium
deposits and contributed two chapters to the Quantitative and Spatial Eval-
uations of Undiscovered Uranium Resources (IAEA-TECDOC-1861). Her
research interests include radar sounders, performance simulation, geological
interpretation, and analysis of multispectral and radar remote sensing data for
the earth and planetary science-based applications.

Elena Donini (Member, IEEE) received the B.Sc.
degree in electronics and telecommunication engi-
neering, the M.Sc. degree (summa cum laude)
in telecommunication engineering, and the Ph.D.
degree (cum laude) in information and communi-
cation technologies from the University of Trento,
Trento, Italy, in 2015, 2017, and 2021, respectively.

She is currently a Post-Doctoral Researcher and a
member of the Remote Sensing Laboratory, Depart-
ment of Information and Communication Technolo-
gies, University of Trento, and the Remote Sensing

for Digital Earth Unit, Fondazione Bruno Kessler, Trento. Her research
interests include the automatic analysis of terrestrial and planetary radar
sounder data with machine learning and deep learning techniques.

Dr. Donini is also a member of the scientific team working on the radar
for the icy moon exploration (RIME) instrument that will be onboard the
upcoming ESA mission JUICE (JUpiter ICy moons explorer) to the Jupiter
system. She was a recipient of the prize for the 2017 Best Italian Master Thesis
in remote sensing awarded by the Italy Chapter of the IEEE Geoscience and
Remote Sensing Society.

Francesca Bovolo (Senior Member, IEEE) received
the Laurea (B.S.) degree, the Laurea Specialistica
(M.S.) degree (summa cum laude) in telecommuni-
cation engineering, and the Ph.D. degree in com-
munication and information technologies from the
University of Trento, Trento, Italy, in 2001, 2003,
and 2006, respectively.

She was a Research Fellow with the University
of Trento until 2013. She is currently the Founder
and the Head of the Remote Sensing for Digital
Earth Unit, Fondazione Bruno Kessler, Trento, and

a member of the Remote Sensing Laboratory, Trento. She is one of the
coinvestigators of the Radar for Icy Moon Exploration instrument of the
European Space Agency Jupiter Icy Moons Explorer and a member of
the science study team of the EnVision mission to Venus. Her research
interests include remote-sensing image processing; multitemporal remote
sensing image analysis; change detection in multispectral, hyperspectral, and
synthetic aperture radar images; and very high-resolution images, time series
analysis, content-based time series retrieval, domain adaptation, and light
detection and ranging (LiDAR) and radar sounders. She conducts research on
these topics within the context of several national and international projects.

Dr. Bovolo is also a member of the program and scientific committee
of several international conferences and workshops. She was a recipient of
the First Prize in the Student Prize Paper Competition of the 2006 IEEE
International Geoscience and Remote Sensing Symposium (Denver, 2006).
She was the Technical Chair of the Sixth International Workshop on the
Analysis of Multitemporal Remote-Sensing Images (MultiTemp 2011, and
2019). She has been the Co-Chair of the SPIE International Conference on
Signal and Image Processing for Remote Sensing since 2014. She is also
the Publication Chair of the International Geoscience and Remote Sensing
Symposium in 2015. She has been an Associate Editor of the IEEE JOURNAL

OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE

SENSING since 2011 and the Guest Editor of the Special Issue on Analysis
of Multitemporal Remote Sensing Data of the IEEE TRANSACTIONS ON

GEOSCIENCE AND REMOTE SENSING. She is also a referee of several
international journals.

http://dx.doi.org/10.1121/1.401410


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

THAKUR et al.: APPROACH TO THE ASSESSMENT OF DETECTABILITY OF SUBSURFACE TARGETS IN POLAR ICE 21

Lorenzo Bruzzone (Fellow, IEEE) received the
Laurea (M.S.) degree (summa cum laude) in
electronic engineering and the Ph.D. degree in
telecommunications from the University of Genoa,
Genoa, Italy, in 1993 and 1998, respectively.

He is currently a Full Professor of telecommu-
nications with the University of Trento, Trento,
Italy, where he teaches remote sensing, radar, and
digital communications. He is also the Founder
and the Director of the Remote Sensing Laboratory
(https://rslab.disi.unitn.it/), Department of Informa-

tion Engineering and Computer Science, University of Trento. He is the author
(or coauthor) of 294 scientific publications in refereed international journals
(221 in IEEE journals), more than 340 papers in conference proceedings,
and 22 book chapters. His articles are highly cited, as proven from the total
number of citations (more than 39 000) and the value of the H-index (91)
(source: Google Scholar). He was invited as a keynote speaker in more than
40 international conferences and workshops. His current research interests
include remote sensing, radar and SAR, signal processing, machine learning,
and pattern recognition. He promotes and supervises research on these topics
within the frameworks of many national and international projects. He is also
the principal investigator of many research projects. Among the others, he is
also the Principal Investigator of the radar for icy moon exploration (RIME)
instrument in the framework of the JUpiter ICy moons explorer (JUICE)
mission of the European Space Agency (ESA) and the Science Lead for the
High Resolution Land Cover Project in the framework of the Climate Change
Initiative of ESA.

Dr. BruzzoneDr. Bruzzone has been a member of the Administrative
Committee of the IEEE Geoscience and Remote Sensing Society (GRSS)
since 2009, where, since 2019, he has also been the Vice President of
professional activities. He is also a member of the Permanent Steering
Committee of this series of workshops. He is also the Co-Founder of the IEEE
International Workshop on the Analysis of Multi-Temporal Remote-Sensing
Images (MultiTemp) series. He ranked first place in the Student Prize Paper
Competition of the 1998 IEEE International Geoscience and Remote Sensing
Symposium (IGARSS), Seattle, WA, USA, in July 1998. Since that, he was a
recipient of many international and national honors and awards, including
the recent IEEE GRSS 2015 Outstanding Service Award, the 2017 and
2018 IEEE IGARSS Symposium Prize Paper Awards, and the 2019 WHISPER
Outstanding Paper Award. Since 2003, he has been the Chair of the SPIE
Conference on Image and Signal Processing for Remote Sensing. He had
been the Founder of IEEE Geoscience and Remote Sensing Magazine for
which he had been the Editor-in-Chief from 2013 to 2017. He was the
guest co-editor of many special issues of international journals. He is also an
editor/co-editor of 18 books/conference proceedings and one scientific book.
He is also an Associate Editor of the IEEE TRANSACTIONS ON GEOSCIENCE

AND REMOTE SENSING. He had been the Distinguished Speaker of the IEEE
Geoscience and Remote Sensing Society from 2012 to 2016.


