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A Triangulation-based Technique for Tree-top
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Abstract—This letter presents a novel approach to tree-top
detection in heterogeneous forest structures characterized by
mixed species using high-density Light Detection and Ranging
(LiDAR) data. Although literature techniques can achieve ac-
curate results in even-size and even-age homogeneous forests,
they detect several false tree-tops in forests characterized by
variable crown dimensions. To solve this problem, the proposed
method: (1) identifies a preliminary set of candidate tree-tops
(CTPs) used to build a triangulated network, (2) performs an
edge-based local forest analysis to identify groups of CTPs
having the highest probability of belonging to the same crown,
and (3) removes false tree-tops according to a local directed
graph analysis. To address large-scale forest analysis, the method
exploits the Delaunay triangulation that efficiently defines a
network topology made up only by relevant edges, thus sharply
reducing the edge-based analyses to be performed. Given the
triangulated network properties, the computational effort of the
local analysis is not affected by the network size. The method has
been tested in a mixed multi-layer multi-age forest located in the
southern Italian Alps. The results obtained demonstrate that this
computationally scalable algorithm outperforms standard tree-
top detection methods increasing the overall detection accuracy
up to 15.3%.

Index Terms—Tree-top detection, Canopy Height Models
(CHM), Forestry, Light Detection and Ranging (LiDAR), De-
launay Triangulation, Remote Sensing (RS).

I. INTRODUCTION

H IGH-density Light Detection and Ranging (LiDAR) data
have demonstrated their effectiveness to perform detailed

forest mapping [1]. At single tree level, the prerequisite for
an accurate estimation of forest parameters is a reliable tree-
top detection. This analysis is typically conducted in the
Canopy Height Model (CHM), the raster image interpolated
from the LiDAR point cloud. A filtering operation is usually
applied to smooth the CHM and the peaks are identified
according to the use of different possible approaches such as
for example maxima filtering. The accuracy and applicability
of existing tree-top detection methods is hampered by the need
of parameters tuning (e.g., filtering parameters or local maxima
window size), which should be adaptive for heterogeneous
forest structures. While conifers present a conical crown shape
usually dominated by a local maximum, broad-leaves are
characterized by almost flat round canopies, where multiple
prominent local maxima are present [2]. Moreover, the shape
and the size of the broad-leaves canopies are totally different
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from those of the conifers. Thus parameters tuning one forest
type, often reduces the detection accuracy on the other. This is
true also for uneven-age forest study areas, where old-growth
conifers have larger crown sizes compared to younger trees
of the same species. In [3], eight tree-top detection methods
are compared over different forest types and structures. As
expected, all the methods achieve the best accuracy on single-
layered coniferous forests, whereas the multi-layered mixed
forests show the lowest detection rates regardless of the
method. Besides the peculiar properties of the considered
forest structure, also the topography plays an important role
in the tree-top detection as demonstrated in [4], [5]. Both the
terrain slope and the topographic normalization approach (used
to generate the CHM) introduce a tree-top displacement which
may affect the detection. Regardless of the specific forest
conditions, one of the main limitations of existing tree-top
detection methods is that they do not take advantage of the
crown structure information [6]. Although this is a valuable
information source that can improve the tree-top detection,
the complex information is typically discarded to reduce the
computation lead on large scale tests,

This letter proposes a novel automatic triangulation-based
technique which aims to accurately detect tree-tops in hetero-
geneous forests in a fast and efficient way. Differently from
the literature, the technique refines the preliminary set of tree-
tops identified by standard tree-top detection methods by using
the local forest environmental information which is modeled
using a triangulated local network topology. The method has
been tested in a study area located in the southern Italian
Alps, where high resolution LiDAR data (i.e., up to 50 pulses
per m2) are available. Due to the peculiar topography, the
presence of multi-age and multi-layered trees belonging to
both broad-leaves and conifer species, the considered study
area represents a complex test case. The results obtained
demonstrate the effectiveness of the proposed method, which
sharply reduces the false tree-tops detected by standard state-
of-the-art approaches.

II. PROPOSED METHOD

Figure 1 shows the architecture of the proposed method,
which is based on three main phases: (i) tree-tops triangulated
network generation, (ii) edge-based local forest area analysis
and, (iii) local directed graph analysis. The input data is the
filtered CHM, obtained by rasterizing the normalized LiDAR
point cloud (i.e., after terrain subtraction) and by applying an
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Fig. 1: Flow scheme of the proposed method. The green blocks
represent the 3 phases.

average filtering with kernel size of K ×K pixels. Note that,
differently from existing literature methods, in the proposed
technique the filtering is only a pre-processing step to discard
the most obvious false tree-tops. Thus the choice of the K
value is not critical for the final results of the method. First,
a preliminary set of candidate tree-top (CTP) is identified by
using a standard tree-top detection method. Then, the goal of
the proposed technique is to automatically identify groups of
CTPs having the highest probability of belonging to the same
crown. To this end, we determine the relationship between
each CTP and its surrounding ones. Indeed, while the CHM
features of a false tree-top may be very similar to the ones of
a true tree-top (i.e, they are both local maxima), by enlarging
the analysis in the local forest environment more discriminant
features can be identified. To avoid high computational effort,
such an analysis is performed considering small groups of
locally connected tree-tops.

A. Tree-Tops Triangulated Network Generation

The first phase of the method identifies a preliminary set
of candidate tree-tops in the scene. We exploit a Level Set
Method (LSM) technique, which is more robust to noise in the
CHM with respect to standard local maxima approaches [7].
However, any other technique can be used. The LSM generates
a set CT = {cti}Ni=1 of N candidate tree-tops, where each
cti = {xi, yi, zi} represents the CTP location (xi, yi) and
height (zi). The preliminary tree-top detection is expected to
include several false trees, especially in forest characterized
by heterogeneous environmental condition. We aim to identify
the false tree-tops by performing a local contextual analysis
around each CTP.

For each cti, its neighbouring CTPs are identified to gen-
erate a network (i.e., define a set of edges locally connected
to cti). To achieve this goal in a fast and efficient way, it
is necessary to minimize the number of edges that have to
be analyzed without discarding none of the relevant ones.
Since we are dealing with points located in a 2-D space,
i.e., {xi, yi}Ni=1, the set of defined edges must satisfy two
requirements: (i) the edges do not overlap and, (ii) the edges
connect only spatially close CTPs. Nearest neighbors strategies
are usually considered [8]. However, the results are strongly
affected by the distance threshold. Moreover, such methods
do not guarantee for an efficient and consistent definition of
the edges and may not be compliant with the listed require-
ments. Therefore, we use a point-set triangulation to connect
the CTPs with non-overlapping edges defined in their local

neighbourhood, without the need of tuning any parameters.
To this end, we consider the Delaunay triangulation that has
the peculiar property of generating a network where no vertex
(i.e., set CT ) is inside of any circumcircle of the triangu-
lation’s triangles. This makes the triangulation unique and
maximizes the minimum angle of all the obtained triangles,
thus minimizing the number of sliver triangles. Such sliver
triangles are typically composed by edges connecting CTPs
far from each other or edges that almost overlap. Therefore,
they are not informative for the problem in analysis. Note that
the Delaunay Triangulation has been used for LiDAR data
processing to generate Triangulated Irregular Network (TIN)
[9] and to delineate individual tree crown [10]. However, to
the best of the author’s knowledge, such triangulation approach
has never been used to improve the tree-top detection.

Let the planar graph G = (V,E) represent the triangulated
network obtained on the whole study area, where V ≡ CT ,
and E is the set of connecting edges. Let us focus the
attention on the edge eij that connects the neighbouring
tree-tops cti and ctj . By analyzing the geometrical features
associated to the edge (see next section), it is possible to
characterized the local forest environmental properties. Indeed,
even though the triangulation covers the entire area of interest,
the edges connect only spatially close CTPs while minimizing
the number of connections thus improving efficiency. Figure 2
depicts an example of the resulting local triangulated network
showing the local properties of the latter.

B. Edge-Based Local Forest Area Analysis

Using the triangulated network computed in the previous
phase, the method works at the edge level to perform a local
analysis of the forest structure. Let us focus the attention
on edge eij . We study the spatial interaction of cti and ctj
by analyzing the intersection area between their hypothetical
crown (HC) areas. We define as HC the two dimensional
polygon representing the boundaries of the hypothetical crown.
It is reasonable to assume that if two CTPs belong to the same
tree, their HCs areas may intersect significantly more than for
candidates belonging to different trees. Indeed, in the case
where a tree is correctly associated with only one tree-top,
its HC boundaries will likely match the actual boundaries of
the real crown thus showing little (or no) intersection with
HC belonging to different trees. In contrast, in the case that
two or more CTPs are detected for one tree, their HCs areas
are expected to intersect significantly more. Accordingly, we
aim to exploit such a property to automatically identify edges
connecting CTPs having the highest probability of belonging
to the same tree crown.

To identify the HC polygons, we apply a segmentation
algorithm to each CTP in CT . We used an algorithm based
on a standard directional analysis in the CHM that searches
for local minima in multiple directions starting from the CTP
[11]. Note that the objective of this step is not to obtain an
accurate tree crown segmentation, since multiple CTPs may
belong to the same crown, but a rough estimate of the HC
boundaries. Accordingly, the obtained regions (i.e., the HC
polygons) are discarded after this step. This step generates
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Fig. 2: Example of CTP triangulated network represented on
the CHM. The orange dots are the CTPs of CT while the blue
lines represent the edges in E.

a set SP = {spi}Ni=1 of N segmentation polygons where
spi represents the polygon associated to cti. Focusing on a
generic edge eij , we can now compute the area of intersection
area(spi ∩ spj) between the two polygons spi and spj . To
obtain a comparable metric between different CTPs (i.e., the
areas of the polygons may vary significantly across the forest)
we define a normalized intersection metric ηij as follows:

ηij =
area(spi ∩ spj)

min{area(spi), area(spj)}
. (1)

The normalized intersection η ranges from zero (i.e., no
intersection) to one (when the smallest polygon is completely
embedded in the larger one). The edges having the highest
probability to connect CTPs belonging to the same tree crown
(i.e., critical CTPs) are identified by applying a threshold Tη
to the normalized intersection metric of each edge. The results
is a new set of edges E′ = {eij |ηij > Tη}.

In the last step of this second phase, we explore the triangu-
lated network to search for groups of CTPs that are connected
by the edges belonging to E′. This operation generates a set of
M small local planar graphs G = {Gm}Mm=1 where each graph
connects only CTPs having high probability of belonging to
the same tree crown. Figure 3a shows an example of a local
graph plotted over the CHM where the edges with η > Tη are
depicted in blue. The CTPs that are not connected to edges in
E′ (black dashed edges) are considered as true tree-tops and
added to the final set of tree-tops FT (represented as black
dots). Note that moving from the edge-based analysis to the
local forest analysis only for the critical CTPs allows us to
limit the computational load of the method.

C. Local Directed Graph Analysis

The last phase of the proposed method individually analyzes
the local graphs, connecting critical CTPs, in G to identify only
the true tree-tops. Let us focus on the generic planar graph
Gm = (Vm, Em), where Vm is a subset of CT and Em is a
subset of set E′. To determine which CTPs Vm belonging to
Gm are true tree-tops, we transform Gm into a directed graph.
For each edge eij ∈ Em, we consider the height of the two
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Fig. 3: Example of local graph analysis where the selected
CTPs are highlighted by red dashed circles: (a) the blue
edges denote the local planar graph, while the black ones
represent the edges for which η ≤ Tη (white lines indicates
the crown boundaries manually delineated), (b) corresponding
local directed graph with the values of zi reported per CTPs.

connected CTPs (i.e., zi and zj) to define the edge direction
as:

direction of eij =

{
cti → ctj if zi ≤ zj
cti ← ctj if zi > zj

(2)

We then compute for all the cti ∈ Vm the outdegree (i.e.,
deg+(cti)) which represents the number of outbound edges
from the corresponding CTP (i.e., the number of edges for
which cti is the starting point). Finally, we select as tree-
tops to be added to set FT the vertices having an outdegree
index equal to zero (i.e., only inbound edges connected to the
considered vertex). Note that the use of the height information
to select only CTPs that are surrounded by lower points in the
graph, sharply increases the probability of defining as tree-
top the highest point of the crown. Moreover, if the graph
spans multiple tree crowns, this strategy decreases the risk of
increasing the number of omission errors. Figure 3b shows
a real example of local directed graph, where the CTPs with
outdegree equal to zero are highlighted with red dashed circles.

III. DATASET AND EXPERIMENTS DESCRIPTION

To test the effectiveness of the proposed method, we con-
sidered a 10 ha forest area in the southern Italian Alps in
the Trento province (central coordinates 46◦ 17’ 57”, 46◦ 17’
57”). It is characterized by mixed tree species composition
with Norway spruce (Picea abies) and European larch (Larix
decidua) representing the 60% of the tree species, while
broadleaves represent the remaining 40% (i.e. Aspen (Populus
tremula), Common alder (Alnus Glutinosa), Common Hazel
(Corylus avellana) Silver birch (Betula pendula) and Willow
(Salix)). Table I shows the range, average and skewness of
dendrometric measurements that characterize the considered
area. The LiDAR point cloud was acquired in 2012 by a Riegl
LMS-Q680i sensor with a mean pulse density of 60 pulses/m2.
To obtain quantitative results, we manually delineated 998 tree
crowns by joint photo-interpretation of the CHM and the point
cloud. In the considered area, for a subset of trees (130),
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TABLE I: Range, average and skewness of dendrometric
measurements that characterize the considered area (DBH =
Diameter at Breast Height).

Parameter Minimum Maximum Mean Skewness

DBH [cm] 5.0 89.0 32.3 0.7
Top Height [m] 2.5 39.8 21.5 0.1
Crown Area [m2] 0.03 123.7 17.0 1.6

ground reference data on the tree species are available. For
those trees, the tree species was considered to present the
results divided per conifers and broad-leaves.

The resolution of the CHM has been set equal to 0.25 m
given the pulse density of the considered LiDAR data. One of
the most important parameters to be tuned is the average filter
kernel size K. Such parameter is typically defined according to
the CHM spatial resolution and the average crown size of the
considered forest area. However, in mixed forest condition a
large kernel size introduces many omission errors (small trees)
whereas a small kernel size sharply increases the number of
false trees (large crowns). To assess the effectiveness of the
proposed method and validate its sensitivity to the smoothing
factors, we tested three kernel sizes K = 5, 7, 9. The threshold
value on the normalized area intersection Tη ∈ [0, 1] was
set equal to 0.75. We selected such high value to reduce the
probability to generate local graphs in G that span too many
crowns. Such conservative value can be considered regardless
of the forest structure since Tη is used to select the groups of
CTPs to be analyzed in the final phase of the method, but it
does not directly decide if a CTP has to be discarded.

The quantitative results are evaluated in terms of omission
errors (OE), commission errors (CE) and overall accuracy
(OA) which is defined as:

TOT− OE
TOT + CE

(3)

where TOT is the total number of reference trees. Moreover,
we consider an additional metric defined as Correct Crown De-
tection (CCD) that counts the tree crowns where just one tree-
top has been detected. Differently from the standard metrics
that evaluate a tree correctly identified if at least one candidate
tree-top is present in the crown, the CCD metric considers
as correct detection only trees associated with a single tree-
top. For example, if the method detects 4 CTPs for one tree,
the tree is considered detected with 3 commission errors, but
it is not included in the CCD metric. The proposed method
has been compared with the widely used LSM technique [3]
and the method proposed in [12] that we define Point Cloud
Domain Method (PCDM). Note that the latter works directly
in the point cloud and thus it is not influenced by the CHM
resolution and the filtering size K.

IV. EXPERIMENTAL RESULTS

Table IIa shows the OE, CE, OA and CCD obtained for the
proposed and literature methods, for different values of K.
For the considered CHM spatial resolution, the best case is
obtained by setting K = 7. This case achieves both the highest
accuracy and CCD with respect to the two baseline methods,

with a good trade-off between CE and OE for the different
crown sizes present in the scene. From the table, one can
see that the proposed technique achieves the highest OA with
respect to the baseline LSM regardless of the smoothing factor
proving the method robustness to variations of K with respect
to existing literature techniques. As expected, the heavier the
smoothing filtering applied to the CHM, the lower the OA gain
of the method with respect to the baseline LSM is. Indeed, the
application of heavy averaging filters reduces the CE of the
LSM, thus decreasing the capability of the proposed method
of improving the OA by detecting such errors. However, such
filtering sharply increases the OE, thus leading to poor tree-
tops detection results. Indeed, when moving from K = 7
to K = 9, the LSM shows a little increase of OA since
the decrease of CE is almost completely balanced by the
higher number of OE. Moreover, the proposed method always
decreases significantly the CE without increasing too much the
OE regardless of the K parameter. In particular, it decreases
the CE with respect to the LSM of 34.9%, 10.4%, 5.9%
against a slight increase of the OE of the 1.9%, 3.1%, 3%,
for K = 5, 7, 9 respectively.

Table IIb shows the results obtained per tree type by the
three methods (with K = 7 for the proposed and LSM
techniques). The proposed method achieved the highest OA
and CCD with respect to the two methods for both conifers
and broad-leaves trees. Focusing first on conifers, the proposed
approach removed 9 CE (-10.7%) with an increase of 2 OE
(+2.4%) compared to the baseline LSM. The highest increase
of OA is obtained for the class of broad-leaves, where the
proposed method shows an increase of 13.3% due to the
removal of 13 CE (-28.3%) with an addition of 1 OE (+2.2%).
Indeed, as expected broad-leaves are strongly affected by many
false tree-tops. For the PCDM, the larger improvement of
performances is for the conifers class with an increase of OA
of 12.9% which is due to a decrease of 15 CE (-17.9%) and
one additional OE (+1.2%). The increase of OA is smaller
for the broad-leaves class (+1.4%). These results are also
confirmed by the CCD obtained by the proposed method which
is higher than those of both literature methods regardless of
the class type. This metric emphasizes the capability of the
method of reducing the CE by properly identifying the tree
crowns present in the scene, which is important for the correct
forest parameter estimation at individual tree level (e.g., tree
biomass, crown size, tree base height).

We also evaluated the method in terms of computational
performances to assess its scalability on large forest areas. All
the tests have been performed with a MATLAB implemen-
tation running on an Intel i5-4590 3.3 GHz with 16 GB of
Random Access Memory (RAM). The total runtime of the
proposed method (with K = 7) is of 17.8 seconds for the
analysis of 2551 CTPs and a triangulation composed by 7585
edges. This roughly corresponds to 7 milliseconds for CTP.
The highest computational load is the segmentation step (13.7
seconds), which however can be parallelized as each CTP
can be analyzed independently. While the computation of the
intersection area between two polygons can be quite heavy,
the Delaunay triangulation allows us to strongly limit the
number of edges to which apply this operation thus reducing
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TABLE II: Omission Errors (OE), Commission Errors (CE), Overall Accuracy (OA) and Correct Crown Detection (CCD)
obtained by PCDM, the LSM and the proposed methods: (a) results for different kernel window size K = 5, 7, 9 for all the
998 trees, (b) results for the different forest species considering the kernel window size K = 7 (for 130 trees).

(a)

Kernel
Size K

# Reference
Trees

PCDM [12] LSM PROPOSED

OE CE OA [%] CCD OE CE OA [%] CCD OE CE OA [%] CCD

5 998 11 616 61.2 692 30 268 76.5 812
7 998 103 104 81.2 809 35 157 83.4 848 66 53 88.7 884
9 998 93 80 84 836 123 21 85.9 857

(b)

Class # Reference
Trees

PCDM [12] LSM PROPOSED

OE CE OA [%] CCD OE CE OA [%] CCD OE CE OA [%] CCD

Conifers 84 1 18 81.4 69 0 12 87.5 75 2 3 94.3 79
Broad-leaves 46 1 12 77.6 34 0 24 65.7 30 1 11 79 35

the impact of this step (2.9 seconds), which can also be
parallelized. Another significant advantage of the triangulation
is the possibility of working at local level regardless of the
forest size. Indeed, the computational load of the analysis
carried out per CTP is not affected by the size of graph
G. Therefore, the computational complexity of the method
increases linearly with the number of CTPs. In terms of RAM
usage, the segmentation step requires a maximum of 45 MB,
while all the other operations require no more than 8 MB.

V. CONCLUSION

This paper presented a tree-top detection method that aims
to accurately handle mixed forest characterized by heteroge-
neous structures. The method first identifies a set of candidate
tree-tops, the CTPs. Then, the Delaunay triangulation is used
to efficiently define a network topology composed by edges
that connect neighbouring CTPs. An edge-based local forest
analysis is carried out to detect groups or pairs of CTPs
having the highest probability of belonging to the same tree
crown. Finally, a local direct graph analysis is performed
to define the final set of tree-tops. The quantitative results
show an improvement of OA with respect to the baseline
LSM for all the filter size and with respect to method that
works in the point cloud domain (PCDM). This is due to the
capability of the method of identifying and removing the CE
without increasing significantly the OE. The numerical results
obtained considering only conifers or broad-leaves show an
increase of OA for both classes. Such results demonstrate the
capability of the method of working in mixed forest condition
characterized by heterogeneous environmental properties. The
method also proved to be computationally efficient due to the
local properties of the triangulation.

As future developments, we plan to improve the segmen-
tation step considering different strategies (e.g., hybrid of
directional analysis and watershed segmentation) and to test
the method on other forest areas characterized by different
heterogeneous environmental conditions and tree species dis-
tributions. Moreover, we plan to investigate other geometrical
contextual features which may further improve the detection
results.
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