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Abstract—The combination of data acquired by Landsat-8 and
Sentinel-2 Earth Observation (EO) missions produces dense Time
Series (TSs) of multispectral images that are essential for mon-
itoring the dynamics of land-cover and land-use classes across
the Earth’s surface with high temporal resolution. However, the
optical sensors of the two missions have different spectral and
spatial properties, thus they require a harmonization processing
step before they can be exploited in Remote Sensing (RS)
applications. In this work, we propose a workflow based on a
Deep Learning (DL) approach to harmonize these two products
developed and deployed on an High-Performance Computing
(HPC) environment. In particular, we use a multispectral Gener-
ative Adversarial Network (GAN) with a U-Net generator and a
PatchGan discriminator to integrate existing Landsat-8 TSs with
data sensed by the Sentinel-2 mission. We show a qualitative
and quantitative comparison with an existing physical method
(National Aeronautics and Space Administration (NASA) Har-
monized Landsat and Sentinel (HLS)) and analyze original and
generated data in different experimental setups with the support
of spectral distortion metrics. To demonstrate the effectiveness of
the proposed approach, a crop type mapping task is addressed
using the harmonized dense TS of images, which achieved an
Overall Accuracy (OA) of 87.83% compared to 81.66% of the
state-of-the-art method.

Index Terms—Landsat-8, Sentinel-2, dense Time Series (TSs),
harmonization, virtual constellation, Remote Sensing (RS), Deep
Learning (DL), Generative Adversarial Network (GAN), High
Performance Computing (HPC).

I. INTRODUCTION

THE availability of multispectral images systematically
acquired by Remote Sensing (RS) satellites is pivotal

for the observation of land surface change and dynamic
processes [1], such as changes resulting from natural calami-
ties [2], expansion of urban areas [3], vegetation anomaly
and phenology changes [4], distribution of surface water
resources [5], deforestation [6], etc. The time series (TS)
of multispectral images acquired by the NASA/United States
Geological Survey (USGS)’s Landsat-8 [7] and the European
Space Agency (ESA)’s Sentinel-2 [8] missions are the most
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widely accessible moderate-to-high spatial resolution RS satel-
lite images.

Landsat-8 was launched in 2013 and carries the Operational
Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). It
acquires multispectral images at 30m spatial resolution, which
is suitable for a wide variety of tasks. However, Landsat-8
can only revisit the same area every 16 days, which is not
sufficient in applications requiring more frequent observations
(e.g., near real-time monitoring of continuous processes [9]).
The Sentinel-2A and Sentinel-2B are the two polar orbiting
satellites of the Sentinel-2 constellation that were launched in
2015 and 2017, respectively. This constellation can reach a
revisit time of 5 days at the equator (and even less for areas
covered by more than one orbit) and acquire 13 optical bands
with 10, 20 and 60m spatial resolution.

The starting of the Sentinel-2 mission has opened potential
opportunities for combining its data with the ones acquired by
Landsat-8 to achieve more dense observations. In particular,
their integration can densify the acquired TSs and increase
the revisit time up to 3–5 days [10] and obtain more frequent
cloud-free surface observations. Furthermore, the spatial reso-
lution and spectral configuration (i.e., placement and number
of spectral bands) of the Sentinel-2 sensor were designed to be
compatible to analogous bands in Satellite Pour l’Observation
de la Terre (SPOT) and Landsat sensors [11]. Consequently,
many research works have exploited virtual constellations of
Sentinel-2 and Landsat-8 for addressing different types of
applications, for example to assess winter wheat yields at
regional scale [12], estimate number and timing of mowing
events of grasslands [13], monitor aquatic systems [14], re-
trieve the temporal variations in biochemical and structural
vegetation properties [15], estimate inland water quality [16],
detect irrigated areas [17], analyse land productivity and yield
assessment [18], map land surface phenology at continental
scale [19], determine the spatial distribution of evergreen forest
in cloudy and rainy areas [20], etc.

Despite the similarity between Sentinel-2 and Landsat-8
observations, the two missions have different spatial reso-
lution, field of view spectral bandwidth, and spectral re-
sponse function. Consequently, before using together Sentinel-
2 and Landsat-8 images, it is necessary to apply models for
cross-sensor data integration [21] [22] [23]. Linear regression
is the most widely used approach to reduce the spectral
differences between the two sensors. The authors in [24]
used Bidirectional Reflectance Distribution Function (BRDF)
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correction and data re-sampling to attenuate the difference
introduced by the different field of view and spatial resolution,
respectively. Other studies designed regional fixed per-band
transformation coefficients for applying reflectance adjustment
in Australia [25], southern Africa [26], and United States [27].

Since 2018, NASA is producing a Harmonized Landsat and
Sentinel (HLS) dataset 1 to further improve the temporal reso-
lution of the combined product [28]. NASA proposed a method
that creates global fixed per-band transformation coefficients
to reduce the reflectance difference between Landsat-8 and
Sentinel-2 and generate smooth spectral TSs. In particular,
the approach takes into account the differences in spatial
resolution, atmospheric correction approaches, view geometry
and radiometric characteristics of spectral bands. ESA has
considered this approach as a reference work for the definition
of the Sen2Like framework [29]. The objective of Sen2Like
is to generate Sentinel-2 like harmonised/fused surface re-
flectances with higher periodicity by integrating additional
compatible optical mission sensors. The current implementa-
tion (November 2020) can harmonize Landsat-8 and Sentinel-
2 data products 2. The authors in [30] observed that these
methods can reduce the reflectance difference to only some
degree. It is possible that the regional or global scale fixed
per-band transformation coefficients may not be suitable for all
land cover types and at all geographical locations. To mitigate
this problem, they proposed a time-series-based approach 3 to
improve the consistency of the HLS datasets, which uses the
TSs of matched Landsat-8 and Sentinel-2 observations to build
linear regression models for each pixel. They then conducted
the reflectance adjustment for each individual pixel separately.

Instead of using a physical method or fitting the transfor-
mation coefficients of a linear regression, in our work we
developed an approach based on Machine Learning (ML),
and more specifically on a Generative Adversarial Network
(GAN) architecture to harmonize the Sentinel-2 and Landsat-
8 products, transforming the data acquired by the Sentinel-2
Multi-Spectral Instrument (MSI) sensor into Landsat-8 OLI-
like data. In the last decade DL has enabled a leap in the
quality of a wide variety of applications in RS [31]. In
particular, GANs were first presented by [32] in 2014 and are
based on the training with the backpropagation algorithm of
two sub-models, a generator and a discriminator. An extension
of GANs are the Conditional GANs [33], in which the
generator is given additional information to better approximate
the distribution of the real samples. The competitive game of
one model against the other pushes the generator to create new
fake examples that are indistinguishable from real ones. While
the generator creates new data from an input distribution,
the discriminator is devoted to discern the real and generated
examples looking at their distribution. For these reasons, GAN
have attracted much research efforts to computer-vision-related
tasks [34].

GANs have been employed also in different RS applications.
Among those, a promising application is super-resolution,

1Online [Available]: https://hls.gsfc.nasa.gov/
2Online [Available]: https://github.com/senbox-org/sen2like
3Online [Available]: https://github.com/GERSL/TRA

where GANs offer the ability to retrieve high-frequency com-
ponents that seem not to be captured by existing Convolutional
Neural Networks (CNNs) [35], thanks to the contribution of
the adversarial loss [36] [37] [38]. Chen et al. [39] proposed a
GAN-based approach to super-resolve Landsat-8 images and
reconstruct them to be Sentinel-2-like using the true color
composite of RGB bands. In our approach we propose the
opposite direction of the data flow, from Sentinel-2 to Landsat-
8 data, as our proposed method focuses on radiometric consis-
tency rather than spatial resolution. Moreover, we also use the
near infrared (NIR) and the short wave infrared (SWIR) bands,
which are extremely important to perform environmental mon-
itoring (e.g., vegetation biophysical and biochemical variable
retrieval, ice detection, etc. ). In particular, the NIR and SWIR
spectral channels provide key information on vegetation and
crops status. GANs have been applied also to other tasks, such
as to enhance the detection of small objects in RS data with
an adaptation of the Enhanced Super-Resolution Generative
Adversarial Network (ESRGAN) [40], or to change detection
with multi-sensor data with the use of a CycleGAN [41]. Con-
ditional GANs were used also for the fusion of acquisitions
from Synthetic Aperture Radar (SAR) and optical sensors, e.g.,
in [42] optical data were reconstructed from SAR and in [43]
a GAN was used to fuse SAR and optical multispectral data
for cloud removal.

A well known bottleneck of employing DL models is
the large amount of computational resources that are needed
for the training phase. DL models require to be fed with
large amounts of data in order to learn meaningful features,
thus implying the need for dedicated pipelines for extraction
and handling of such data, which can impact severely the
performances of the methods. Despite the great success of
CNNs, their deployment on commodity hardware (e.g., desk-
top computers, laptops) is often challenging, given their com-
putational power and memory constraints. High-Performance
Computing (HPC) systems can come at aid in that regard,
offering dedicated hardware accelerators to efficiently deploy
and scale-up processing workflows and significantly enhancing
their computational performance (i.e, reported as Floating
Point Operations per Second (FLOPS)). HPC systems are on
the verge of entering into the new era of exascale computing
in the coming years, as currently the most powerful com-
puters can reach hundreds of PetaFLOPS4. A large number
of fields of research use HPC systems for addressing data
storage challenges and developing scalable data processing
workflows: from climatology to astrophysics, medicine and
industrial applications [44]. In RS, HPC has been an essential
component from the very beginning in the field of EO since
its technology and applications include unique data processing,
storage or transmission requirements [45] [46]. In the current
era of Artificial Intelligence (AI) supercomputers (i.e., HPC
systems equipped with specialized hardware accelerators [47]),
applications from RS also use them to speed-up the process-
ing of DL models that include a high number of trainable
parameters [48].

From this brief analysis of the literature, it turns out that the

4Online [Available]: https://www.top500.org/lists/top500/2020/11/



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2021.3115604, IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing

3

integration of the multispectral images acquired by Landsat-8
and Sentinel-2 is extremely interesting from the operational
view point due to the complementary properties of the two
sensors. While Landsat satellites are approaching 50 years
of continuous global data collection with a temporal revisit
of 16 days, the recent launch of Sentinel-2 allows for the
acquisition of images having a very high revisit time (i.e.,
5 days at the equator with 2 satellites which results in 2-3
days at mid-latitudes). In this context, Sentinel-2 images can
be used to generate Landsat-8 like images (from the spectral
and spatial view point) with the aim of having dense TSs of
images compatible with the TSs of real Landsat-8 available in
the past. Such long and dense TSs of images allow for long-
term environmental analyses, which are extremely important
for several applications (i.e., climate change, deforestation
analysis, desertification, urban monitoring, etc.).
In the literature, the integration of Landsat-8 and Sentinel-2
images has been mainly addressed by the RS community con-
sidering physical methods or regression models due to: (i) their
capability of properly handling the harmonization problem
from the physical view point, and (ii) their low computational
burden. The latter is particularly important when working at
country or continental scale, where the optical pre-processing
has to be applied over a hundred of images. However, such
methods can only partially mitigate the reflectance difference
and may fail in heterogeneous areas where complex non-linear
harmonization problems have to be solved. In this framework,
it is necessary to define an automatic system suitable for all
land cover types and at all geographical locations, which is
able perform the integration of these data in a fast and efficient
way.

This paper presents an automatic work-flow which aims to
facilitate the integration of the optical satellite images acquired
by Landsat-8 and Sentinel-2 spectral sensors at operational
level. Differently from the literature, the proposed system
architecture takes advantage from the capability of the GAN to
accurately learn and model the considered non-linear problem,
while preserving the spectral and spatial properties of the
two satellite sensors. To mitigate the computational cost of
the required DL models, we take advantage of HPC systems
to deploy a parallel and scalable processing workflow that
encompasses the extraction of the features from the input
tiles, the training of the model and the reconstruction of the
harmonized Landsat-8 and Sentinel-2 data product. The speed-
up of the training of the DL model is obtained thanks to
the adoption of a data parallel strategy, which distributes the
training of the GAN on multiple GPUs.
The main contributions of this work are: (1) the definition
of a multispectral adaptation GAN tailored to the peculiar
properties of Sentinel-2 and Landsat-8 in terms of spatial
resolution, spectral bandwidth, and spectral response function,
(2) the implementation of a fully automatic and unsupervised
dedicated pipeline, ready-to-use, being able to ingest Sentinel-
2 and Landsat-8 data and to produce a dense TS of optical
satellite images, and (3) the efficient implementation of a
parallel and scalable processing workflow developed and de-
ployed on an HPC environment on up to 16 GPUs thanks to
the adoption of a data distributed strategy, which contributes

to mitigate the computational burden of the training.

II. PROPOSED MULTISPECTRAL ADAPTATION GAN

The aim of this work is to generate harmonized dense
TSs of Landsat-8 and Sentinel-2 images. To this end, we
propose a Multispectral adaptation GAN (MGAN) model
tailored to the specific properties of the considered satellite
optical data. Our objective is to model the spatial and spectral
properties (Point Spread Function) of the two sensors in order
to adapt the Sentinel-2 data to be Landsat-8 like. Indeed,
the proposed GAN is tailored to the specific spectral and
spatial properties of the considered sensors to facilitate the
adaptation of the Sentinel-2 images to the Landsat-8 ones.
In particular, the proposed architecture is build upon the
established pix2pix conditional GAN [49] that was designed
for color and grayscale image-to-image translation. Based
on the GAN concept, the adversarial game played by the
two models of the original pix2pix architecture [49] can be
represented by the formula:

min
G

max
D

V (G,D) = EX,Y[logD(X,Y)] +

+ EX,z[log (1−D(X, G(X, z)))],
(1)

where E is the expected value, X and Y are the source and
target images (having the same resolution), z the input noise of
the generator and V (G,D) is the value function. In particular,
the generator G and the discriminator D of pix2pix are a U-
net encoder-decoder architecture with skip connections and a
PatchGAN, respectively. In the U-net encoder-decoder gen-
erator [50], the first part contains a number of downsampling
convolution layers. The second part is a mirrored version of the
first, with a transposed convolution for upsampling the data,
which flows from the bottom to the top of the U-net through a
bottleneck. The skip connections, which link the inner layers
of the encoder and decoder, allow low-level information to
pass directly from the first to the last layers of the U-net.

Differently from the original implementation of the pix2pix,
the input data are no more RGB natural images, but multi-
resolution and multiband images with different spectral prop-
erties. To handle the peculiarities of the considered RS data,
we trained the proposed MGAN from scratch using paired
Landsat-8 and Sentinel-2 images. Table I reports the properties
of the considered spectral bands in terms of spatial and spectral
resolutions for both the considered optical sensors. According
to the spectral characteristic of Sentinel-2 and Landsat-8, we
focused the attention on the four 10 m bands and the two
shortwave infrared spectral channels acquired at 20 m by
Sentinel-2 (i.e., the spectral bands consistent with the Landsat-
8 ones). Let us focus on the multiresolution Sentinel-2 images.
Let XHR ∈ Rd1×d1×LHR and XLR ∈ Rd2×d2×LLR be the set
of high resolution (10 m) and low resolution (20 m) spectral
channels of Sentinel-2, respectively, where XHR has d1 × d1
pixels and LHR bands while XLR has d2 × d2 pixels and LLR
bands. Let Y ∈ Rd3×d3×L3 be the real Landsat-8 image
contemporary to the Sentinel-2 one, having d3 × d3 pixels
and a number of bands equal to L3 = LHR + LLR.

In the considered implementation of the proposed MGAN,
the bottom of the generator has been modified to take as input
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Fig. 1. Flowchart of the modified U-Net tailored to the peculiar spectral and spatial properties of Sentinel-2 and Landsat-8.

the patches of Sentinel-2 at original resolution XHR and XLR
(i.e., 10m and 20m). To this end, we added one convolutional
layer for each initial resolution, concatenating their output
before entering into the encoder-decoder structure. Fig. 1 illus-
trates the modified U-Net tailored to the peculiar spectral and
spatial properties of Sentinel-2 and Landsat-8 for facilitating
the sensor adaptation performed by the proposed MGAN. The
patches of the high-resolution Sentinel-2 spectral channels
XHR have size 384× 384× 4, while the low-resolution ones
XLR have size 192 × 192 × 2. The different convolutions
and transposed convolutions lead to the direct production of
a Landsat-8 like image having size 128 × 128 × 6, which
implicitly includes the 2 channels of XLR and the 4 channels
XHR having spatial resolution of 30m. This condition allows
us to keep the same number of inner layers of the generator
and the discriminator as in the original implementation. Let
Ŷ ∈ Rd3×d3×L3 be the downsampled Sentinel-2 image having
all the spectral bands at the spatial resolution of the desired
target image. Please note that the downsampling convolution
layer allows us to directly handle the spatial resolutions of
the different spectral bands of Sentinel-2 without the need of
performing any pre-processing interpolation step.

The PatchGAN discriminator is designed to capture the
patterns at the scale of the input image. Its objective is
to classify N × N patches of G(X, z) (the input synthetic
patch created by the generator) and Y (the target Landsat-
8 patch) as fake or true, encouraging the generator to pro-
duce more accurate and realistic outputs. Differently from
the standard pix2pix implementation, the considered MGAN
does not perform the instance normalization [51], since it is
not suited to multispectral images. Indeed, similarly to the
case of the standard batch normalization typically used in
computer vision, the patches may not be consistent from the

TABLE I
SPECTRAL BANDS OF LANDSAT-8 AND SENTINEL-2 SELECTED

ACCORDING TO THE SPECTRAL AGREEMENT OF THE OPTICAL SENSORS.

Landsat-8 Sentinel-2

Band Wavelenght (µm) Res. (m) Band Wavelenght (µm) Res. (m)

2 0.450-0.515 30 2 0.458-0.523 10

3 0.525-0.600 30 3 0.543-0.578 10

4 0.630-0.680 30 4 0.650-0.680 10

5 0.845-0.885 30 8 0.785-0.900 10

6 1.560-1.660 30 11 1.565-1.655 20

7 2.100-2.300 30 12 2.100-2.280 20

spectral view point. For this reason, in the model we added the
spectral normalization right after the instance normalization
in the downsampling blocks of the discriminator [52]. The
addition of those layers in the discriminator is beneficial for
the stability of the training and the spectral content of the
obtained synthetic Landsat-8 images. The addition of those
layers in the discriminator is beneficial for the stability of
the training and the spectral content of the obtained synthetic
Landsat-8 images. In greater details, we train the generator
and discriminator jointly, employing two losses. The L1 loss
is used in for the training of the generator to learn a low-
frequency representation:

L1 = EX

∥∥∥Ŷ −Y
∥∥∥ , (2)

where Ŷ = G(X, z) is the generated image obtained con-
sidering as input the Sentinel-2 image X and Y is the target
Landsat-8 image. We adopted a relativistic adversarial loss for
the discriminator (shown in equation 3) as a replacement of
the original adversarial loss employed in pix2pix. Using the
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relativistic loss, instead of the absolute probability that one
input image is real or fake, the relative probability that a real
image is more realistic than a fake one is computed [53]. The
adoption of the relativistic adversarial loss increases for the
stability of the training [54]. The discriminator loss is:

LD = −EY[log(DRa
(Y, Ŷ))]−

−EŶ[log(1−DRa
(Ŷ,Y))]

(3)

and the generator loss:

LG = −EY[log(1−DRa
(Ŷ,Y))]−

− EŶ[log(DRa
(Y, Ŷ))],

(4)

where Y and Ŷ are the real and the fake generated images,
respectively, and DRa

is the output of the discriminator.
To properly train the considered MGAN from scratch, we
implemented data augmentation. The lack of large amount of
data is known to pose several challenges during the training
of GAN, since in that setting the discriminator tends to fool
the generator easily, which in turn gets stuck and cannot
improve anymore. This is particularly true when dealing with
RS data. [55] recently introduced a data augmentation tech-
nique specifically designed to work with GANs. Differentiable
augmentation addresses this issue by applying the same set
of transformations on both the generated and real images,
regularizing the discriminator and reducing training instability.
We adopted the color (contrast, brightness, saturation), trans-
lation (the images are translated and zero padded) and cutout
(masking a region of the images) policies.

III. DATASET DESCRIPTION AND DESIGN OF
EXPERIMENTS

In this section, we present the considered study area and
the RS data employed to test the proposed approach. Then,
we describe in detail the procedure designed to generate the
harmonized TS of Sentinel-2 and Landsat-8 images.

A. Dataset Description

Fig. 2 presents the considered study area, which covers
the valley of the Donau in the proximities of Linz, Austria
(tile 33UVP of Sentinel-2, tile 191/026 of Landsat-8). Such
area is characterized by a heterogeneous landscape typical of
the Alpine region, where the topography ranges from high
mountain to lowlands areas. The land cover is characterized
by the presence of many crop types, which model a complex
scenario since crops rapidly change their textural and spectral
features. Moreover, the study area is heavily affected by
cloud and snow coverage. Due to high temporal resolution
of Sentinel-2, several pairs of real Landsat-8 and Sentinel-2
images acquired at the same date (or a one day of distance) are
used to train the GAN network from scratch. Table II reports
the acquisition dates of the considered images collected in
Spring and Autumn. Only images having low cloud coverage
(smaller than 30%) were used to train the MGAN.

To assess the capability of the trained MGAN to correctly
generate synthetic Landsat-8 data from Sentinel-2 images, the
Sentinel-2 data acquired on 03/07/2018 was not involved in

TABLE II
LANDSAT-8 (TILE 191/026) AND SENTINEL 2 (TILE 33UVP) IMAGES
USED IN THE EXPERIMENTS. FIVE IMAGES WERE USED TO TRAIN THE

MGAN, WHILE THE SENTINEL 2 IMAGE ACQUIRED ON THE 03/07/2018
WAS USED FOR PREDICTION ONLY.

Landsat-8 images Sentinel-2 images

Training

04/04/2018 04/04/2018

20/04/2018 21/04/2018

06/05/2018 06/05/2018

27/09/2018 26/09/2018

13/10/2018 13/10/2018

Prediction - 03/07/2018

TABLE III
NUMBER OF SAMPLES FOR EACH CROP TYPE.

Crop Type # Samples
Grassland 2600

Maize 1668

Winter Barley 2400

Winter Caraway 400

Rapeseed 868

Beet 972

Spring Cereal 766

Winter Wheat 600

the training but used for prediction only. Indeed, the Landsat-8
acquisition available in July 2018 are all strongly affected by
cloud coverage; thus, they cannot be used to train the model.
This real test case demonstrates the importance of the proposed
method from the operational view point. The use of Sentinel-
2 data to generate synthetic Landsat-8 images having a good
temporal sampling of the whole year. These TSs are extremely
important to correctly handle multitemporal tasks such as crop
type mapping. To this end, a 2018 reference dataset of crop
types of the considered study area is used to accomplish this
peculiar classification task. Table III reports the set of crop
types of the considered classification problems together with
the number of samples per class. The training and test sets
are statistically independent, since training and test samples
have been extracted from spatially disjoint portions of the
considered study area. An example of ground reference data
used to perform the crop type mapping task is reported in Fig.
2, where in the zoom the different crop types are highlighted
in different colors.

B. Design of the Experiments

To train the considered MGAN, both the Landsat-8 and
Sentinel-2 images are split into patches. Fig. 3 reports the
different stages of our method, from the training of the model
to the prediction and reconstruction of the entire tiles. First, the
Landsat-8 images are warped to extract the region overlapping
with the Sentinel-2 tiles, by applying a nearest neighbor
resampling strategy that does not affect the spectral content
of the image. Then, possible spectral outliers are removed
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Fig. 2. True color representation of the Sentinel-2 image acquired on the 21/04/2018 over the considered study area (coordinates are reported in the UTM
WGS84 33N system). An example of the reference data used to perform the crop type classification task is reported in the zoom area highlighted in red.

from both images. To this end, we considered the standard
procedure of saturating the pixel values below and above the
1 and 99 percentiles of the spectral distribution computed per
band. Finally, the paired patches were extracted from the two
original TSs of Landsat-8 and Sentinel-2. For the Landsat-8
data, the dimension of the patches is 128 px× 128 px (30m
resolution), while for Sentinel-2 they are 192 px× 192 px (for
the 20m resolution bands) and 394 px× 394 px (for the 10m
resolution bands). In particular, a stride of half the dimension
of the patch is considered to generate overlapping patches, thus
increasing the number of samples. Patches with a significant
cloud or snow coverage are not used during training and are
excluded with the usage of the available masks. The informa-
tion provided by the cloud masks of Landsat-8 (i.e., pixel qa
band) and Sentinel-2 (i.e., SCL band) are used to define the
valid patches for training. The pixel values of each patch are
normalized per band by subtracting the mean and dividing by
the maximum value. Once that the GAN is trained, it can be
used to predict synthetic Landsat-8 images by using Sentinel-2
data. During prediction, each original Sentinel-2 patch is fed
into the generator and the corresponding synthetic Landsat-8
patch is produced. The final step is the reconstruction of the
entire image from the predicted patches. We applied a buffer
equal to 1/4 of the dimension of the patch when fusing them.
The tile is then reconstructed using only the central part of
the patches, skipping the buffers to limit distortions caused by
the convolution operations at the edges of the patches.

IV. IMPLEMENTATION AND EXPERIMENTAL SETUP

In this section, details are given on the implementation and
computational setup. Moreover, the quality indexes used to
quantitatively evaluate the proposed method are reported in
the experimental setup section.

A. Implementation Setup

Of the two main families to distribute the training of a
model [56], we used the data distribution approach (i.e., data
parallelism). Among the different frameworks that exist to
integrate a data distributed strategy into existing code we
adopted Horovod [57], a library that offers a flexible API that
works on top of most DL libraries, i.e., TensorFlow, Keras,
PyTorch and MXNet. Horovod makes use of Message Passing
Interface (MPI) and the NVIDIA Collective Communication
Library (NCCL) to implement a decentralized and efficient
ring-allreduce algorithm [57], which allows the computation
of the gradients in a distributed fashion. We used ADAM
with base learning rate lr = 0.0001 for the optimization of
both the generator and the discriminator, which we scaled lin-
early w.r.t. the number of Graphics Processing Units (GPUs),
without warm-up phase and learning rate schedulers. The
training was performed for 100 epochs, as after that point
the L1 loss begins to diverge and the quality of the predicted
patches deteriorates. The weights of the U-Net and of the
PatchGAN were initialized with the default Glorot uniform
distribution [58]. The local batch size used for each GPU is 16,
therefore the resulting maximum global batch size used in the
present work, computed as global batch size = number gpus
× local batch size, is equal to 256.

B. Experimental Setup

The experiments were carried out on the Extreme Scale
Booster (ESB) partition of the of the Dynamic Exascale Entry
Platform - Extreme Scale Technologies (DEEP-EST) and on
the booster partition of the Jülich Wizard for European Lead-
ership Science (JUWELS) supercomputers at the Jülich Super-
computing Centre (JSC) [59]. The training was scaled on up
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Fig. 3. Flowchart of the different stages of the proposed method. It receives
as input TSs of Landsat-8 and Sentinel-2 acquired over the same geographical
area. Firstly, the warping step aligns the two TSs. Then, the patch extractor
generates paired and overlapping patches (i.e., training samples) that are
trained by the proposed MGAN. The final stage reconstructs the whole
synthetic Landsat-8 image.

to 16 Nvidia Tesla V100 and A100 Graphics Processing Units
(GPUs). We used Horovod data-parallel framework on top of
TensorFlow2, with a custom made training loop. The data pre-
processing was deployed on the JUWELS system [47]. We
used the Geospatial Data Abstraction Library GDAL 2.3.2
through its Python API.

To quantitatively evaluate the results obtained we consid-
ered several spectral distortion metrics typically used in the
literature. In particular, we considered the Relative Dimen-
sionless Global Error (ERGAS), the Spectral Angle Mapper
(SAM), the Root Mean Square Error (RMSE), the Universal
Image Quality Index (UIQI) and the Peak Signal-to-Noise
Ratio (PSNR) measures on the valid patches (i.e., low cloud
coverage). SAM [60] measures the spectral distortion in terms
of angle between the vectors of the reference image and
generated image:

SAM(Y, Ŷ) , arccos

(
〈Y, Ŷ〉

‖Y‖2 · ‖Ŷ‖2

)
, (5)

where Y is the real input and Ŷ the predicted input. The

lower is the value of SAM, the lower the presence of spectral
deviations between the two images. ERGAS measures the
quality of the generated image compared to the reference
image as a normalized mean square error between each band
of the two images [61]:

ERGAS(Y, Ŷ) , 100
1

S

√√√√ 1

L3

L3∑
l=1

MSE(Yl, Ŷl)

µ2
Ŷl

, (6)

where 1
S is the ratio between the pixel sizes (i.e., equal

to one in our case), Yl and Ŷl are the lth bands of the
generated image and of the reference image, respectively; the
MSE(Yl, Ŷl) is the mean squared error between Yl and Ŷl

and µŶl
is the mean of Ŷl. As for SAM, a low value of

ERGAS implies a low presence of distortion in the generated
image compared to the reference. The RMSE is defined as:

RMSE(Y, Ŷ) ,
‖Y − Ŷ‖

d23
(7)

where Y is the original input, Ŷ the predicted input.

The UIQI [62] has been computed on a sliding window of
size 32 × 32 pixels, and averaged over all window positions
per band. Let yj and ŷj denote the jth windowed segment
of a single band of the reference and the simulated images,
respectively. The UIQI is given by:

Q(y, ŷ) ,
1

W

W∑
j=1

σyj ŷj

σyjσŷj

×
2µyj

µŷj

µ2
yj

+ µ2
ŷj

×
2σyj

σŷj

σ2
yi,j

+ σ2
ŷj

(8)

where σyj ŷj
is the covariance between yj and ŷj , σyj

and µyj

are the standard deviation and the mean value of yj , while σŷj

and µŷj are the standard deviation and the mean value of ŷj ,
respectively. This index has a range of [-1, 1], being equal to
1 when y = ŷ. To extend the UIQI index to the multiband
case, we average the band indexes as follows:

Q(Y, Ŷ) ,
1

L3

L3∑
l=1

Q(Yl, Ŷl), (9)

The PSNR is defined as:

PSNR(Y, Ŷ) , 20 log10

 λ2

1
d2
3
‖Y − Ŷ‖

 (10)

where λ is the number of levels of the images.

V. EXPERIMENTAL RESULTS

In this section, first we present the quantitative results ob-
tained in terms of spectral distortion metrics. The quantitative
evaluation is provided together with qualitative examples of
the obtained synthetic Landsat-8 images. Finally, the generated
TS of synthetic Landsat-8 images is used to perform a crop
type mapping task to assess the capability of the network
to accurately reproduce the spectral properties of the data.
The proposed approach is compared with the physical method
HLS [28] developed for reducing the reflectance differences
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TABLE IV
SPECTRAL DISTORTION METRICS BETWEEN THE ORIGINAL LANDSAT-8 DATA AND: (1) THE SYNTHETIC LANDSAT-8 IMAGES GENERATED USING THE

PROPOSED MGAN, (2) THE HARMONIZED LANDSAT-8 IMAGES GENERATE USING THE BASELINE METHOD HLS, AND (3) THE ORIGINAL
CONTEMPORARY SENTINEL-2 IMAGES. THE OBTAINED RESULTS ARE THE AVERAGE VALUES OVER THE 5 IMAGES OF THE CONSIDERED DATASET.

RESULTS ARE PROVIDED PER SPECTRAL BAND AND OVERALL. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Data Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Overall

SAM

Synthetic Landsat-8 (MGAN) 0.22 0.18 0.21 0.16 0.17 0.19 0.19

Harmonized Landsat-8 (HLS) 0.46 0.37 0.48 0.29 0.30 0.39 0.38

Original Sentinel-2 0.32 0.26 0.31 0.23 0.20 0.22 0.26

ERGAS

Synthetic Landsat-8 (MGAN) 719 674 731 647 669 696 1933

Harmonized Landsat-8 (HLS) 1321 924 1051 1020 882 930 2903

Original Sentinel-2 875 780 884 727 685 740 2180

RMSE

Synthetic Landsat-8 (MGAN) 185 305 313 1229 806 520 668

Harmonized Landsat-8 (HLS) 275 390 475 1381 946 692 799

Original Sentinel-2 285 371 393 1344 843 607 744

UIQI

Synthetic Landsat 8 (MGAN) 0.66 0.67 0.66 0.67 0.67 0.66 0.67

Harmonized Landsat-8 (HLS) 0.58 0.63 0.55 0.60 0.64 0.60 0.60

Original Sentinel 2 0.62 0.65 0.64 0.66 0.66 0.65 0.65

PSNR

Synthetic Landsat-8 (MGAN) 337 333 333 322 325 329 327

Harmonized Landsat-8 (HLS) 331 328 326 317 321 323 321

Original Sentinel 2 331 330 329 319 324 326 324

between Landsat-8 and Sentinel-2, thus generating smooth
spectral TSs. Please note that such method is widely used
from the operational view point [29].

A. Quantitative and Qualitative Results
Table IV reports the results obtained for different spectral

distortion metrics comparing the original Landsat-8 images
and: (1) the synthetic Landsat-8 images produced by the pro-
posed MGAN, (2) the harmonized Landsat-8 images generated
using the baseline method HLS, and (3) the original contem-
porary Sentinel-2 images. The best results are highlighted in
bold. Please note that the evaluation of the spectral difference
between real Landsat-8 data and Sentinel-2 data is reported to
evaluate the capability of the methods to reduce the spectral
difference of these data.

From the results obtained, one can notice that the metrics
computed between Landsat-8 and Sentinel-2 images demon-
strate the need of harmonizing these data from the spectral
view point. The HLS reduces the spectral distortion for some
spectral bands. However, for all the metrics, the best results
are achieve by the synthetic Landsat images generated with the
proposed MGAN. In particular, the MGAN is able to correctly
reproduce the spectral properties of Landsat-8 regardless of
the spectral bands. Indeed, similar error metrics are achieved
in both the RGB spectral channels (i.e., Band2, Band3 and
Band4) as well as the near infrared (Band5) and shortwave
infrared bands (Band6 ad Band7).

The results obtained from the quantitative view point are
confirmed from the qualitative ones. In order to assess the
consistency between the generated and the target data, Fig.
4 reports some portions of the: (1) original Landsat-8 image
(target), (2) syntethic Landsat-8 data produced by the MGAN,
(3) harmonized Landsat-8 data produced by the baseline
method (HLS), and (4) contemporary Sentinel-2 image used to
generate the Landsat-8 data. The synthetic image produced by
the MGAN looks more similar to the original Landsat-8 image
than the original Sentinel-2 input data and the harmonized
Landsat8 data produced by the HLS method. These results
also confirm that the quality of the generated images is good
and does not suffer from significant distortions and artifacts.
From the results obtained, one can notice that the generated
data looks more similar to the original Landsat 8 image than
the original Sentinel-2 input data and the harmonized Landsat-
8 data produced by the HLS method. For instance, the presence
of bright buildings absent in the real Landasat-8 images (see
Fig.4a) is visible in the harmonized data produced by the HLS
method (Fig.4c) but not present in the synthetic data produced
my the MGAN (see Fig.4b).

B. Crop Type Mapping Results
To assess the capability of the proposed MGAN to accu-

rately model the spectral information of Landsat-8, a crop
type mapping task was carried out using the obtained TS
of produced synthetic images. This peculiar classification
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(a) Target L8 (b) Generated L8 (c) HLS L8 (d) S2

(e) Target L8 IR (f) Generated L8 IR (g) HLS L8 IR (h) S2 IR

(i) Target L8 (j) Generated L8 (k) HLS L8 (l) S2

(m) Target L8 IR (n) Generated L8 IR (o) HLS L8 IR (p) S2 IR

Fig. 4. Qualitative examples of the obtained Landsat-8 images. The true color composite (RGB) is reported for the: (a)(i) target Landsat-8 image, (b)(j)
generated Landsat 8 with the proposed MGAN, (c)(k) generated Landsat 8 with the HLS, and (d)(l) original Sentinel-2 image. The false color composite is
reported for the NIR and SWIR bands for the: (e)(m) target Landsat-8 image, (f)(n) generated Landsat-8 with the proposed MGAN, (g)(o) generated Landsat-8
with the HLS, and (h)(p) original Sentinel-2 image.

task requires the availability of accurate multitemporal and
multispectral information to properly retrieve the crop types
present in the scene. Indeed, differently from other land-cover
classification tasks that can be performed using mono-temporal
data, the temporal information is fundamental to accurately
model the phenological trend of the crop types.

Table V reports the classification results obtained by con-
sidering TSs of: (1) 5 synthetic Landsat-8 images produced
by the proposed MGAN, (2) 5 harmonized Landsat-8 images
obtained by using the baseline methods (HLS), and (3) 6

synthetic Landsat-8 images produced by the proposed MGAN.
The TSs of 5 images were produced by the proposed and
the baseline methods using both the original Sentinel-2 and
Landsat-8 images. To generate the TS of 6 images, we
considered the Sentinel-2 image acquired on 03/07/2018 for
which no corresponding cloudless Landsat-8 data are available.
Since no cloud-less images were acquired by the Landsat-8
sensor in July 2018 for the considered tile, no quantitative
evaluation can be performed in terms of spectral distortion
metrics. However, the PA%, UA%, F1% and OA% confirm
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TABLE V
CROP TYPE MAPPING RESULTS OBTAINED BY CONSIDERING TSS OF: (1) 5 SYNTHETIC LANDSAT-8 IMAGES PRODUCED BY THE PROPOSED MGAN, (2) 5
HARMONIZED LANDSAT-8 IMAGES OBTAINED BY USING THE BASELINE METHOD (HLS), AND (3) 6 SYNTHETIC LANDSA- 8 IMAGES PRODUCED BY THE
PROPOSED MGAN. THE TS OF 5 IMAGES WERE PRODUCED BY THE PROPOSED AND THE BASELINE METHODS USING BOTH THE ORIGINAL SENTINEL 2
AND LANDSAT 8 IMAGES. TO GENERATE THE TS OF 6 IMAGES, A SENTINEL-2 IMAGE ACQUIRED ON THE 03/07/2018 FOR WHICH NO CORRESPONDING

CLOUDLESS LANDSAT-8 DATA ARE AVAILABLE WAS USED. PA IS THE PRODUCER’S ACCURACY OR RECALL, UA IS THE USER’S ACCURACY OR
PRECISION, F1 IS THE F1-SCORE AND OA IS THE OVERALL ACCURACY.

TS of 5 images TS of 6 images

Crop Type Synthetic Landsat-8 (MGAN) Harmonized Landsat-8 (HLS) Synthetic Landsat-8 (MGAN)

PA% UA% F1% PA% UA% F1% PA% UA% F1%

Grassland 96.38 88.24 92.13 95.46 76.60 85.00 96.85 90.25 93.43

Maize 87.05 88.00 87.52 79.50 79.31 79.40 92.93 92.70 92.81

Winter Barley 88.17 86.37 87.26 82.83 82.08 82.45 93.92 90.30 92.07

Winter Caraway 71.00 96.60 81.84 64.50 94.16 76.56 70.00 95.89 80.92

Rapeseed 88.25 98.46 93.08 81.57 94.91 87.74 88.71 96.49 92.44

Beet 93.62 90.46 92.01 85.19 87.71 86.43 95.68 94.90 95.29

Spring Cereal 77.28 80.65 78.93 65.54 83.39 73.40 82.77 87.81 85.22

Winter Wheat 64.67 74.33 69.16 49.67 79.68 61.19 78.00 89.31 83.27

OA% 87.83 81.66 91.53

the quality of the added image. The classification is performed
by training a standard Support Vector Machine (SVM) with
RBF kernels [63]. The optimal kernel parameters (i.e., the
regularization parameter C and the spread of the kernel γ)
were selected by a 5-fold cross-validation.

This test case demonstrates the need to densify existing
TSs of satellite data. The temporal and spectral information
provided by the satellite acquisition of July 2018 sharply
increases the classification results by improving the modelling
of the phenological trends of the considered crop types. This
increases the OA% from 87.83% (TS of 5 synthetic Landsat-
8 images) to 91.53 % (TS of 6 synthetic Landsat-8 images).
From these results, we can conclude that the proposed MGAN
can be used to generate harmonized dense TSs of Landsat-8
and Sentinel-2 images.

C. Scaling efficiency

The adoption of Horovod allowed us to distribute the
training on multiple GPUs and significantly reduce the time
required to complete the optimization of the model. The
maximum number of GPUs used in the present work is 16, a
configuration with which we obtained a speed-up of 14x on
the JUWELS-BOOSTER and 12x on the DEEP-ESB partitions
compared to the use of a single GPU (shown in Fig. 5).
The scaling efficiency was close to 90% on the JUWELS-
BOOSTER and above 75% on the DEEP-ESB partitions,
respectively. In both cases, the scaling efficiency declined more
steeply with 8 and more GPUs, possibly due to the increased
communication time (time spent to synchronize the gradient
among the GPUs) w.r.t. the computation time (time spent
to optimize the model on each local GPU, which decreases
proportionally to the increase of the number of GPUs, since
each GPU is fed a smaller portion of the entire dataset). It can
be noted that the efficiency shrinks more prominently on the

DEEP-ESB partition. This behaviour could be explained by the
fact that on the DEEP-ESB partition each node is equipped
with only one V100 GPU, while each node of the JUWELS-
BOOSTER partition has 4 GPUs. This means that when using
the DEEP-ESB partition the communication is only inter-
node (the nodes are connected through InfiniBand), while on
the JUWELS-BOOSTER partition the communication takes
place both inter- and intra-node (faster NVLink connections).
We performed 3 runs for each experiment, and the reported
results are the average and standard deviation. Fig. 6 shows
the training time that was reduced from 175 and more than
200 seconds using 1 GPU to 12 and 14 seconds per epoch (16
GPUs) on the DEEP-ESB and JUWELS-BOOSTER partitions,
respectively. The JUWELS-BOOSTER, which features the
newer A100 GPUs, allowed us to obtain a 20% increase in
performances in terms of training time compared to the V100
installed on the DEEP-ESB partition.

VI. CONCLUSION

In this paper we introduced a method to densify and harmo-
nize TSs of images acquired by Landsat-8 and Sentinel-2 satel-
lite. The proposed method, which is based on a multispectral
adaptation GAN, was applied to a TS which covers 6 acquisi-
tions in 2018. We designed an experimental setup to validate
our approach by comparing it with the well established HLS.
The results obtained demonstrate that the proposed GAN
is able to accurately reconstruct the spectral properties of
Landsat-8 by using the Sentinel-2 images. Moreover, the
qualitative comparison with the baseline method confirms
the quantitative evaluation of the spectral distortion metrics.
Although the physical model employed to harmonize Sentinel-
2 and Landsat-8 is a powerful tool to generate long and dense
TSs of optical satellite images, the proposed method achieves
more accurate results from the spectral view point. Another
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Fig. 5. Training time per epoch w.r.t. the number of GPUs on the JUWELS-
BOOSTER and DEEP-ESB partitions.

Fig. 6. Time per epoch w.r.t. the number of GPUs on the JUWELS-BOOSTER
and DEEP-ESB partitions.

important result is provided by the classification accuracy
obtained when considering the TS of 6 images, which allow
us to test the capability of the network to accurately predict
synthetic Landsat-8 images never used to train the MGAN.
The OA% was increased from 87.83% (TS of 5 synthetic
Landsat-8 images) to 91.53 % (TS of 6 synthetic Landsat-
8 images). Moreover, we deployed the entire workflow in an
HPC environment, and with the utilization of Horovod we
could make an efficient use of the resources provided by such
system, reducing the time required for the training of the
model.

Although in this work we demonstrated that our approach
can successfully densify TSs of Landsat-8 images, several
challenges remain open. We focused our attention on one
single region where we could validate our method also in
terms of classification; however, our approach should be also
extended to include different areas in the future. A strategy
to ingest new data from different TSs and scale the training
should be drawn up, in order to make the training of the
models with larger amount of data feasible in a reasonable
amount of time. Further effort should be also put on finding the

optimal hyperparameters of the training, such as the optimiz-
ers, learning rate, scheduler. Neural Architecture Search (NAS)
could be employed to optimize the structure of the model,
i.e., the number and type of layers, the activation functions,
etc. Further loss functions should be also added, although this
would significantly increase the space of the hyperparameters
search, and a trade-off with available computational resources
should be found. A repository with the code is available at
https://gitlab.jsc.fz-juelich.de/sedona3/mgan.
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