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Abstract—Supervised classification algorithms require a suffi-
ciently large set of representative training samples to generate
accurate land-cover maps. Collecting reference data is difficult,
expensive and unfeasible at large scale. To solve this problem,
this paper introduces a novel approach which aims to extract
reliable labeled data from existing thematic products. Although
these products represent a potentially useful information source,
their use is not straightforward. They are not completely reliable
since they may present classification errors. They are typically
aggregated at polygon level, where polygons do not necessarily
correspond to homogeneous areas. Finally, usually there is a
semantic gap between map legends and Remote Sensing (RS)
data. In this context, we propose an approach which aims to:
(i) perform a domain understanding to detect the discrepancies
between the thematic map domain and the RS data domain, (ii)
use RS data contemporary to the map to decompose the thematic
product from the semantic and spatial view point, and (iii) extract
a database of informative and reliable training samples. The
database of weak labeled units is used for training an ensemble
of classifiers on recent data, which results are then combined in
a majority voting rule. Two sets of experimental results obtained
on MS images by extracting training samples from a crop type
map and the 2018 Corine Land Cover (CLC) map, respectively,
confirm the effectiveness of the proposed approach.

Index Terms—Weak learning classification, remote sensing
(RS), unsupervised methods, land-cover map update.

I. INTRODUCTION

THE major bottleneck of supervised Remote Sensing (RS)
data classification is the availability of an adequately

large set of representative training samples (i.e., reference
data). At operational level this is a crucial issue, since it is
impossible to obtain a large amount of either ground reference
data or annotated data by photo-interpretation. Besides the
amount of training samples, it is also necessary to have
a set of informative labeled units being able to represent
the behavior of the classes in different portions of a scene.
This is particularly evident when classifying multispectral
(MS) or hyperspectral optical images, because of the spatial
variability of the spectral signatures of the land-cover classes
[1]. Different ground conditions strongly affect the spectral
response of the same land-cover class, which should be prop-
erly characterized to guarantee accurate classification results
(i.e., training samples collected all over the scene). Moreover,
if the number of labeled units is relatively small compared
to the number of features, the system architecture may fail
in estimating accurately the classifier parameters and lead to
classifier with poor generalization capabilities [2]–[4].

To tackle these problems, in the last years many semi-
supervised approaches have been proposed [2]–[7]. These
methods aim to enlarge the set of labeled data by using
the unlabeled data to better model the distributions of the
classes, thus increasing the classification accuracy. Typically,
iterative procedures gradually include unlabeled units in the
training set to progressively adjust the classification func-
tion [3], [5], or graph-based methods are used to connect
labeled and unlabeled units according to their similarity [8]–
[13]. When the graph is established, unlabeled units can be
naturally associated with their land-cover classes under the
assumption of consistency (i.e., nearby points should belong
to the same class) [14]. Although these strategies can be
effective in enlarging small training datasets, often results
of semisupervised methods are affected by the initial model
assumptions, i.e., inaccurate matching of pattern structure may
lead to a degradation of classifier performances. Thus, the
possible use of semisupervised techniques requires the choice
of strategy robust to initial conditions.

To ensure a reliable transfer of labeled units, several works
exploit the multitemporal correlation of Time Series (TS) of
RS images. When ground truth is available for at least one
image of the TS, it is possible to transfer the labeled units to
more recent images in a reliable way [15]–[17]. In [17], Yang
et al present a domain adaptation framework for multitemporal
hyperspectral data. By assuming that local geometries between
multitemporal data are similar, two manifold alignment strate-
gies are defined for classifying the hyperspectral images in
a common manifold space. In [15], Demir et al first detect
unchanged areas between the image to be classified and the
one where training samples are available. Then, the labels
of the unchanged reference areas are used to classify the
more recent image. Although these approaches are effective
at local level, at country or continental scale most of these
methods do not guarantee robust solutions to generate training
sets representative of the whole study area. Due to the high
spatial variability of the spectral signatures of classes, different
portions of the scene present different spectral behavior for
the same land-cover classes because of physical factors (e.g.,
soil moisture, vegetation), and atmospheric conditions [18].
Thus, by extracting samples from small local areas, there
is no sufficient information for modelling this variability.
Moreover, samples taken from the same region usually have
high correlation, thus violating the required assumption of
independence [18].

The need of large sets of training samples is even more ev-
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ident at operational level, when the goal is to generate/update
land-cover maps at country, continental or global level. In the
last decades, a lot of effort has been devoted to develop the-
matic/cartographic products due to their valuable contribution
to a wide range of applications (e.g., climate change models,
monitoring of natural resources, spatial distribution of ecosys-
tems and landscapes, etc). At global level, various thematic
products are available [19]–[22]. However, they present many
discrepancies when harmonized and compared [23], [24]. This
is mainly due to the fact that these land-cover maps were gen-
erate by using different data sources, classification schemes,
and methodologies. At European level, the Corine Land Cover
(CLC) map [25] is one of the most accurate cartography [26],
with its detailed classification scheme composed of 44 classes
(mixed land-cover and land-use classes). Nevertheless, the
minimum mapping unit of 25 Ha does not allow the direct
extraction of training samples from the map. At such coarse
scale, many pixels aggregated within the same polygon are
not correctly associated to their labels. Including them in the
training set leads to poor classification accuracies [27].

To generate reliable thematic products, some methods pro-
pose to fuse different maps [26], [28], [29]. In [28], Lesiv et
al generate a hybrid forest map by fusing several well-known
cartographic products (e.g., GLC2000, GlobCover 2005, etc)
with crowd-sourced data on forest cover collected through the
Geo-Wiki project [30]. A Crowd-sourced thematic product is
also used in [31], where the authors extract training samples
from OpenStreetMap to classify a TS of MS images. A noise
tolerant classifier is used to handle the mislabeled units present
in the extracted training set due to the inaccurate matching
between the polygon boundaries and the real land-cover class.
In [26], Pérez-Hoyos et al generate a hybrid land-cover map
at European level by combining the GLC2000, the MODIS
GLC, the GlobCover and the CLC Map. All the maps are
re-projected and co-registered into the GLC2000 grid (1km
spatial resolution) and the legends of the existing products are
linked using semantic rules based on affinity scores. Although
mixing different products can be effective, the result strongly
depends on the diversity and the initial accuracy of the fused
thematic maps. While diversity ensures that the dataset make
uncorrelated errors, the initial accuracy is necessary to avoid
poor classifications when combining the maps.

Similar results are obtained in [32], [33], where different
cartographic products are merged to extract large databases
of training samples in an unsupervised way. To deal with
the considerable amount of mislabeled units present in the
resulting training set, the authors exploit a tolerant to noise
classifier [34]. Although the selected classifier can tolerate
more than 15% of mislabelled units in the training step, due
to the difficult heterogeneous landscape the obtained land-
cover map contains numerous classification errors. In [32],
better classification results are obtained since the authors
merge databases provided at national level (more accurate
and updated) and ground data collected during fieldwork
campaigns. In particular, the French National Land Cover
database produced by the French mapping agency at 1 m
spatial resolution is used together with the French Land Parcel
Information System database (which maps annually the French

crop fields). However, from an operational view point it is
not feasible to assume such updated and high resolution
cartographic products available at large scale.

Few works introduced approaches to reduce the class noise
(i.e., pixels with wrong class assignments) present in the
extracted training set [27], [35]. Since thematic products are
usually provided at polygon level, within the same polygon
not all the pixels belong to the polygon label. To increase
the probability of selecting pixels correctly associated to their
labels, typically pixels on the polygon boundary are discarded
via a simple erosion performed along the edges of the polygon
[27], [35]. Moreover, a spectral analysis of the labeled units
extracted from the map associated to the same class can
be performed to remove the outliers from the distribution
(i.e., pixels associated to wrong labels) [36]. Although these
outliers removal strategies increase the probability of selecting
reliable units from the map, their main drawback is the risk
of removing diverse but informative training samples [34],
thus strongly affecting the generalization capability of the
classifier. In [37] Lin et al propose a transfer learning approach
to frequently update land-cover maps of rapidly urbanizing
regions. First, a rule-based approach based on prior knowledge
is used to extract labeled units from the 2010 GlobeLand30
map available at global level. Then, a relational knowledge
transfer technique is applied to transfer the labels to a recent
RS image and update the map.

Besides their large uncertainty, leverage on existing thematic
products seems to be a promising way to generate large
databases of labeled units. Thematic/cartographic products
represent an extremely interesting source of information to
generate reference data at large scale. However, their use is
not straightforward. As emerged from the literature overview,
these products are not completely reliable since they may
present misclassified units. They are typically aggregated at
polygon level, where the polygon label represents the predom-
inant class, i.e., most of the units belonging to the polygon are
correctly associated to the polygon label but not all of them.
Moreover, the polygon boundaries do not perfectly match the
grid of pixels of the RS data, thus leading to spurious pixels
associated to a single label. Besides the spatial component,
it is also necessary to accurately manage the semantic gap
between the map legend and the RS data. Most of these
products have been generated by multiple sources (e.g., photo-
interpretation, ancillary data, crowd sourcing assessment), thus
leading to a map legend which does not necessarily correspond
to classes discriminable using RS data. In addition, frequently
map legends present semantic classes which aggregate natural
classes discriminable through the information provided by the
RS data, i.e., the land-cover classes. In this context, it is
necessary to accurately model the discrepancy between the
map domain and the RS domain to extract reliable information
from existing thematic products.

This paper presents a novel approach for the extraction
of labeled units from existing thematic maps. The approach
is based on four main components: (i) source domain un-
derstanding, (ii) source domain decomposition, (iii) design
the training database and, (iv) land-cover map production.
The properties of the thematic product are analyzed to point
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Fig. 1: Work flow of the proposed approach for the automatic extraction of reliable training samples from existing thematic
products for the classification of recent RS data.

out its main discrepancy with respect to the RS data. In
particular, we analyze the relationship between the spatial
properties of the RS data and the map (i.e., map projection,
spatial resolution and minimum mapping unit), as well as the
semantic gap between the map legend and the set of classes
discriminable with the RS data. Then, the approach performs a
spatial and a semantic decomposition of the map to facilitate
the detection of pure spectral pixels correctly associated to
their labels. The training database is designed by selecting
informative and reliable labeled units. Finally, the obtained
database of weak labeled units is used to produce a high
resolution land-cover product provided at pixel level. Due to
the complex ill-posed problem faced, the method is based on
the following assumptions: (1) RS data contemporary to the
map are available, (2) the vector map has been converted into
raster and accurately co-registered to the RS data, and (3)
the map legend has been converted into an exhaustive set of
classes discriminable with the considered RS data.

The rest of the manuscript is organized into nine sections.
Section II gives an overview of the proposed approach. Section
III describes the source domain understanding component
providing a taxonomy of the semantic and spatial properties
of the existing thematic products. Section IV focuses on the
source domain decomposition component, while Section V
explains the design of the training database. In Section VI the
production of the land-cover map is presented. Section VII
reports the employed dataset in terms of thematic products
and RS data images employed, while Section VIII discusses
the experimental results obtained. Finally, Section IX draws
the conclusion of the paper and presents possible future
developments.

II. PROPOSED APPROACH TO THE EXTRACTION OF
RELIABLE TRAINING SAMPLES FROM EXISTING

THEMATIC PRODUCTS

Fig. 1 shows the work flow of the proposed approach for
the design of systems which extract reliable labeled units

from existing cartographic products. Once the discrepancies
between the RS data and the thematic product are understood,
the elements of the system architecture can be implemented
with data analysis techniques that handle the inconsistencies
between the selected thematic map and the RS data. The
proposed approach is based on the following four components:

1) Understand the source domain properties. The thematic
map is analyzed from the spatial and semantic view point
to detect its discrepancy with respect to the considered
RS data. This requires an a priori understanding of the
set of land-cover classes that can be recognized using
the spectral information provided by the MS data.

2) Decompose the source domain. The systems is designed
to generate a map decomposed from the semantic and
spatial view point, which guarantees the extraction of
training samples having the highest probability of being
correctly associated to their labels.

3) Design the training database. This is the phase in which
the pixels having the highest probability of being reliable
and informative are extracted from the decomposed map.
The database is designed in order to model the prior
probabilities of the land-cover classes present in the
scene.

4) Land-cover map production. The database of reliable
labeled units is used to generate a pixel-level classifi-
cation map. A supervised learning approach is applied
to high spatial resolution RS data contemporary to the
map to obtain a new updated map characterized by
better geometric details than the initial one. If RS data
more recent than the map are used, a standard domain
adaptation technique should be employed to produce the
high spatial resolution updated map.

The proposed approach is conceived for MS optical images
since these data are typically used to generate and update
land-cover maps with many classes. However, it is flexible
and its general concept can be applied to any RS data (e.g.,
polarimetric synthetic aperture radar data [38], [39]) under the
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assumption that the considered data allow the discrimination
of the set of classes present in the map legend. It is worth
noting that once the setup and the design of the architecture
are over, the system automatically extracts the training samples
from the thematic product in an unsupervised way without any
labor intensive manual analysis. To the best of the author’s
knowledge, current research on the extraction of training sets
from existing maps focuses on the removal of mislabeled units
at the end of the extraction procedure. There is no work in the
literature addressing the spatial and semantic decomposition
of the thematic map to increase the probability of detecting
reliable and informative samples during the selection process.

III. SOURCE DOMAIN UNDERSTANDING

Many land-cover products are now available at regional,
national, continental and global level. At local scale, very high
spatial resolution RS data are typically used to detect detailed
spatial patterns. When moving to large scales, coarse spatial
resolution RS images become a primary data source to map
the extent and the distribution of the major land-cover classes.
In this context, it is necessary to understand the properties of
the considered thematic product to extract reliable knowledge
from it. Fig. 2 reports a categorization of the spatial and
semantic properties of existing thematic products.

A. Semantic Understanding
First, it is necessary to analyze and understand the nomen-

clature of the thematic map. The main goal of this step is
to identify the type of classes present in the legend. Indeed,
cartographic products usually present semantic classes that do
not correspond to land-cover classes that can be discriminated
by using the MS information. At the highest level, we can
distinguish among four main types of semantic in thematic
products: 1) land-use classes (ΩUse), 2) land-cover classes
(ΩCov), 3) spatially aggregated classes (ΩSpa), and 4) semanti-
cally aggregated classes (ΩSem). Each category is detailed as
follows.

Land-Cover Classes (ΩCov): Natural classes which can
be discriminated with the spectral information provided by
the MS image. These classes represent different physical
and biological cover of the Earth’ surface, which are thus
characterized by different spectral signatures (e.g., “Grass”,
“Water”, etc.).

Land-Use Classes (ΩUse): classes that describe the socio-
economic purpose of the territory assigned by photo-
interpretation but not discriminable using the spectral informa-
tion provided by the MS data. For instance, at pixel level, the
“Industrial Units” class is not characterized by a pure spectral
signature but can include different natural classes [23].

Spatially Aggregated Classes (ΩSpa): The definition of the
thematic product is constrained by the minimum mapping unit,
even though the corresponding natural classes are present in
the map legend. For instance, even though the land-cover
classes “Broad-leaves” and “Conifers” are represented, the
“Mixed forest” class has to be assigned to areas where both
“Broad-leaves” and “Conifers” are present in the scene with
an extension smaller that the minimum unit (e.g., minimum
mapping unit of 5 ha).

Fig. 2: Taxonomy of the semantic and spatial properties of
existing thematic products.

Semantically Aggregated Classes (ΩSem): natural classes
that have been semantically aggregated in the map, since
their labels are not present in the map legend. This typically
occurs in thematic products provided at large scale. The larger
is the map scale, the higher is the level of abstraction. A
clear example is the agricultural case. At large scale, it is
not possible to include in the map legend all the different
cultivations present in the scene. While at continental level,
typically thematic products present classes such as “Winter
crops” or “Summer crops”, at continental or global scale they
may be categorized simply as “Crops”.

B. Spatial Understanding

In the second step of this component, we analyze the spatial
properties of the thematic products. From the spatial view
points, the cartographic products can be categorized according
to the data structure used to encode the spatial information:
1) vector thematic product, and 2) raster thematic product.
Vectors have been widely employed for surveying and map-
making due to their capability of capturing topological infor-
mation difficult to achieve with the raster model. However,
raster maps are particularly useful to easily perform spatial
analysis and comparison [40].

Vector Thematic Products: Databases made up of geo-
referenced polygons where each element is associated to a
thematic attribute. Due to the predefined minimum mapping
unit, some polygons may include different land-cover classes
even though they are associated to a single label. Typically, the
majority rule approach is employed to assign the label to the
polygon, i.e., the dominant class is the polygon label. Since the
polygon boundaries do not perfectly match the pixel grid of
the optical data, when re-sampling the map on the pixel grid of
a MS image, several pixels may fall across vector boundaries.

Raster Thematic Products: Maps sampled on a geo-
referenced grid according to a predefined ground sampling
distance (GSD). The need of projecting the land-cover areas
on a predefined grid penalizes the naturally fuzzy boundaries
between classes as well as the topological details of complex
geometric structures. Typically raster products generated at
large scale (continental of global) are provided at coarse spatial
resolution. Note that, if the MS data used are characterized
by a different map projection and spatial resolution, the map
has to be re-sampled to match the grid of the MS data. These
maps can be provided at polygon or pixel level.

In both cases, there are a one-to-many and a many-to-one
relations between the label assigned to the minimum mapping
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unit (i.e., polygon or pixel) and the ones correctly associated to
the pixels of the MS data since: (i) the minimum mapping unit
may include different classes, and (ii) re-sampling the thematic
product on the MS image pixel grid leads to spurious pixels
associated to partially correct labels.

IV. SOURCE DOMAIN DECOMPOSITION

Fig. 3 summarizes the source domain properties that should
be accurately modeled to extract reliable knowledge from the
considered thematic product. The goal of this component is
to convert the initial thematic product into a map which is: 1)
spatially decomposed, and 2) semantically decomposed into
an exhaustive set of land-cover classes. According to the tax-
onomy presented in Section III-A, Ω may be partitioned into
the following categories {ΩCov,ΩUse,ΩSem,ΩSpa}. While ΩCov
can be directly inherited, the ΩUse should be converted into
land-cover labels according to the Land-Cover Classification
System (LCCS), which is the standard common land-cover
language for translating and comparing existing legends [41].
For instance, the “Industrial Units” class, which is a land-use
definition that can be assigned by photo interpretation, should
be converted into “Artificial Surfaces” since at pixel level
no pure spectral signature can be unambiguously associated
to the “Industrial Units” definition [23], [24]. The spatially
aggregated classes ΩSpa can be neglected since the land-
cover classes included in ΩSpa are already present in the
legend. Thus, the pixels belonging to these classes will be
replaced by the corresponding land-cover classes if correctly
classified. In contrast, ΩSem should be decomposed. Thus,
first the thematic map is converted in order to have only
classes Ω1 = {ΩCov,ΩSem}. Then, the spatial and semantic
decomposition is performed.

Let Xt1 be the MS image acquired at time t1 and Mt1
Ω1

the
contemporary thematic product co-registered and re-sampled
at the same spatial resolution of Xt1 . The MS image is made up
of N×M pixels and characterized by B spectral channels, i.e.,
Xt1 ∈ RN×M×B . The considered map Mt1

Ω1
is characterized

by a set of K classes Ω1 = {ωk}Kk=1 and a set of J polygons
P = {Pj}Jj=1. The number of polygons is expected to be
different from the number of classes since many polygons can
be associated to the same label (i.e., J � K). Therefore, the
ith pixel xi ∈ Xt1 is a B-dimensional spectral vector xi ∈ RB ,
with i ∈ [1, · · · , N×M ], associated to a unique label ωk ∈ Ω1

and a unique polygon Pj ∈ P .

A. Spatial Decomposition

According to the spatial analysis presented in Section III-B,
the approach has to deal with: the possible presence of more
than one natural class in each polygon (i.e., minimum mapping
unit decomposition), and (ii) spectrally spurious pixels asso-
ciated to unique labels (i.e., pixel decomposition). Note that
the map is assumed to be characterized by a coarser spatial
resolution with respect to the MS data used. In this context, it
is necessary to spatially decompose the map into a pixel map
having the same spatial resolution of the considered MS data.

Let Pj = (xj1; xj2; · · · , xjnj
) ∈ Rnj×B be the jth polygon

composed of nj pixels and characterized by the B spectral

channels of Xt1 . Let us assume that the polygon label is ωk.
The proposed system aims to exploit the MS information to
detect the pixels belonging to Pj that are correctly associated
to ωk. To this end, the polygons are partitioned into Vj clusters
according to their spectral similarity. The number of clusters
Vj is automatically detected by using the Calinski Harabasz
(CH) Index [42], which is widely employed for determining
the optimal number of clusters in a data set. This index
is computed as the ratio between the overall within-cluster
variance and the overall between-cluster variance, as follows:

Vj = argmax
Vj∈[2,L]

{
[traceBj/(Vj − 1)]

[traceWj/(nj − Vj)]

}
(1)

where Bj and Wj are the between and within cluster scatter
matrices computed for Pj , respectively, and Vj is the optimal
clustering value among the L tested. Due to the spectral
similarity of the labeled units belonging to the same class,
the algorithm automatically detects homogeneous clusters be-
longing to different land-cover classes. Here, for simplicity we
use the standard K-means clustering algorithm, but any other
clustering technique can be employed. At each iteration, the
method adjusts the centroid position with respect to the cluster
centers by minimizing the intra-cluster variance in the feature
space, i.e.,:

nj∑
q=1

Vj∑
v=1

||xjq −mv||2 (2)

where mv is the centroid of cluster v. For the land-cover
classes ΩCov, it is reasonable to assume that the cluster having
the highest number of labeled units represents the dominant
polygon class. For the semantically aggregated classes ΩSem,
which may include several land-cover classes, the method re-
moves the cluster having the smallest number of labeled units
which has the highest probability to be wrongly associated to
its polygon label.

B. Semantic Decomposition
The spatial decomposition step allows us to discard most

of the pixels having the highest probability of being associ-
ated to wrong labels. Then, the main goal of the semantic
decomposition step is to ensure that all the land-cover classes
aggregated under the same semantic label are identified. Let
us focus on the generic semantic class ωk ∈ ΩSem. In the
considered implementation, we assume to know the number of
land-cover classes of ωk. First, we fit a multivariate Gaussian
Distribution to the labeled units belonging to the semantic
class by considering its number of modes (i.e., number of
land-cover classes). Then, for each pixel xi (still associated to
the ωk label after the spatial decomposition step), we calculate
the vector of Mahalanobis distances from each Gaussian mode
as follows:

DM (xi) =

√
(xi − µk)TΣ−1

k (xi − µk) (3)

where µk and Σk are the mean vector and the covariance
matrix of the multivariate Gaussian distribution representing
ωk. The unit xi is associated to the nearest natural class
(i.e., Gaussian mode) from the spectral view point (i.e., the
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Fig. 3: Qualitative representation of the source domain properties in a vector polygon map. (i) Each polygon may present a
spatial aggregation of parcels (homogeneous spectral areas) due to the minimum mapping unit of the map, (ii) each parcel may
present a semantic aggregation of land-cover classes, and (iii) each polygon/parcel has to be mapped onto the geo-referenced
pixel grid of the MS images thus leading to spurious pixels associated to partially correct labels.

class having minimum Mahalanobis distance). At the end of
this step we have the decomposed thematic product Mt1

Ω2

characterized by a set of G land-cover classes Ω2 = {ck}Gk=1

where the pixels having the highest probability to be wrongly
associated to their labels are neglected.

V. DESIGN OF TRAINING DATABASE

Due to the large availability of labeled units extracted from
the map, we are in the condition of selecting the ones that will
be use to generate a training database. To extract reliable and
informative training samples from existing thematic products it
is necessary to: 1) accurately represent the land-cover classes
present in the scene from the spectral view point, 2) define
a strategy for identifying pure spectral pixels associated to
a valid label. Thus, even though the spatial decomposition
strongly increases the probability of selecting labeled units
correctly associated to their labels, we need to take into
account that: (i) the cluster analysis may fail in detecting
the pixels correctly associated to their label, and (ii) some
polygons may be wrongly associated to their labels.

Under the reasonable assumption that the classes are
Gaussian-distributed, we extract from each natural class
present in the decomposed map Mt1

Ω2
, the labeled units closer

to the core of the distribution. Hence, it is reasonable to assume
that these units have the highest probability of being correctly
associated to their labels. Moreover, due to the semantic
decomposition performed in the previous phase, we are in
the condition of generating informative databases since we
guarantee the selection of units belonging to all the land-cover
classes present in ΩSem.

The number of labeled units per class is defined according
to a stratified random sampling strategy, by taking advantage
from the information provided by the thematic product in
terms prior probabilities of the land-cover classes. Thus, the
amount of pixels per class present in the original map is used
as reference to define the number of units per class [43].

VI. LAND-COVER MAP PRODUCTION

The last component of the proposed approach generates
the high resolution land-cover map at pixel level. If MS data

contemporary to the map are employed, the approach generates
a thematic product characterized by a better geometric detail
with respect to the initial one (i.e., supervised learning case). If
recent MS data are considered, a standard domain adaptation
technique is employed to produce an updated map (i.e., domain
adaptation case). In the following details are given.

A. Supervised Learning

The main advantage of the proposed approach is the possi-
bility of including a huge amount of units in the database
of weak labeled pixels extracted from the map. Thus, the
database can be sampled without replacement in order to
generate a set of S statistically independent weak training
sets {T1, T2, · · · , TS}. These weak training sets are then used
to train an ensemble of classifiers combined with a majority
voting rule. In this paper we use the Support Vector Machine
(SVM) classifier but any classification technique can be used
with the proposed approach.This classifier has been widely
employed in the RS literature since it does not require an
estimation of the statistical distributions of classes to perform
the classification task [44]. Moreover, SVM is intrinsically
effective compared to traditional classifiers due to the struc-
tural risk minimization principle, which leads to accurate
classification results and good generalization capabilities [44].
Let {fs}Ss=1 be the decision functions of the ensemble of S
classifiers trained using the S training sets extracted from the
weak database of labeled units. The majority voting decision
of the ensemble of SVMs for xi is given by:

xi ∈ ck if
ck = argmax

ck∈Ω2

(#{fs(xi) = ck}), s ∈ [1, S] (4)

where #{fs(xi) = ck} is the number of SVMs whose
decision for the pixel xi is the class ck.

B. Domain Adaptation

If the considered thematic product is outdated, the database
of weak labeled units can be employed to classify a more
recent MS image. Let Xt2 be the MS image acquired at
time t2 and used to perform the update. The multitemporal
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correlation between the MS images is employed to transfer
the knowledge in a reliable but effective way. As we are
considering a multitemporal dataset, we assume to deal with a
covariate shift problem, where the prior probabilities of the
classes in t1 and t2 are different [i.e., Pt1(x) 6= Pt2(x)],
while the conditional probabilities are almost the same [i.e.,
Pt1(ck|x) ≈ Pt2(ck|x) with ck ∈ Ω2].

In the considered implementation, we exploit the semisu-
pervised LapSVM [10] to maintain consistency with the su-
pervised learning step. LapSVM has been extensively applied
to RS domain adaptation problems [9], [10] since it models
the data distribution by using both the labeled pixels and
the information provided by the high number of available
unlabeled pixels. LapSVM formulation takes advantage from
both the kernel function of the SVM and the graph Laplacian
for manifold regularization. The data are first projected into a
high dimensional feature space by means of the SVM kernel
function, thus increasing the separability of the labeled units.
Then, the intrinsic geometry of marginal distribution of data
is captured by a graph in which nodes are both labeled and
unlabeled units connected by weights [45]. The weights are
calculated by minimizing the regularized function representing
the graph in the kernel space, thus improving the estimate of
the marginal distribution of the considered land-cover classes.
We refer to [10] for more details on LapSVM. Although
LapSVM allows us to face the covariate shift problem, more
sophisticated domain adaptation method can be employed
[46]. Similar to the supervised classification step, Xt2 is
classified by an ensemble of LapSVM classifiers using the
weak database of labeled units {T1, T2, · · · , TS} derived from
the decomposed map.

VII. DATASET DESCRIPTION

A. Dataset 1: Czech Republic

To assess the effectiveness of the proposed system in
updating outdated thematic products, we considered a crop
type vector map of Czech Republic generated in the framework
of the Sen2Agri project [47]. The data used to generate this
map are Sentinel 1A, Sentinel 2A, Landsat 7 (L7), Landsat
8 (L8) images, the Crop Parcel Dataset [Czech Land Parcel
Identification System (LPIS)], in situ crop data, IACS (crop
declaration data) and IACS (OTCS results - ground truth data)
[48]. The RS data were acquired from November 2014 to
September 2015 to characterize the main annual cultivations.
The map is characterized by 7 classes, where four of them
present semantic aggregation (see Tab. I). In greater detail,
“winter cereals”, “spring cereals” and “fodder crops” present
three land-cover classes, while “annual crops” includes five
land-cover classes. The map has been aggregated at polygon
level according to the GIS-tabase Czech LPIS [49]. Almost
20% of the polygons of the full Czech LPIS dataset present
more cultivations in a single polygon. The crop label has been
assigned following the majority rule criterion.

For the experimental analysis, we considered a portion of
the whole thematic product (5129 km2). The coordinates of
the central point of the study area are 50.272588 latitutde,
14.354876 longitude (see Fig. 4). In situ data acquired on

TABLE I: Semantic properties of the crop type map. (Czech
Republic dataset)

Map Legend Class Type Land-Cover Classes
Rapeseed ΩCov -
Winter Cereals ΩSem winter wheat

winter triticale
winter barley

Spring Cereals ΩSem spring barley
oat
spring wheat

Sugar Beet ΩCov -
Maize ΩCov -
Fodder Crops ΩSem alfalfa

grass
trefoil

Annual Crops ΩSem Soy
Peas
Poppy
Mustard
Wheat

TABLE II: Reference data collected by field survey in 2016
divided per class. The data have been used to validate the
results obtained when classifying the 2016 TS of L8 images
with the training set extracted from the 2015 crop type map.
(Czech Republic dataset)

ID Class # Validation Units
ω1 Rapeseed 4932
ω2 Winter Cereals 9177
ω3 Spring Cereals 2259
ω4 Sugar beet 2855
ω5 Maize 437
ω6 Fodder Crops 119
ω7 Annual Crops 1200

TABLE III: L8 images used in the experiments. The TS
acquired at time t1 (contemporary to the map) was used
to perform the spatial, the semantic decomposition and to
generate weak training set. The TS acquired at time t2 was
classified to generate the updated land-cover map.

TS of L8 images (t1) TS of L8 images (t2)
13/01/2015 31/12/2015
18/03/2015 04/03/2016
19/04/2015 21/04/2016
06/06/2015 24/06/2016
09/08/2015 27/08/2016
12/10/2015 28/09/2016

2016 were used to quantitatively evaluate the obtained updated
LC map. The spatial distribution of the reference data is
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(a)

(b)

Fig. 4: Czech Republic dataset: (a) 2016 validation dataset superimposed on the true color composite of the L8 image acquired
on the 06th June 2015, (b) outdated thematic product representing the 2015 crops. Coordinates are reported in the UTM
WGS84 33N system.
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represented in Fig. 4, while Tab. II shows the number of
labeled units divided per class. Please note that the considered
study area is complex due to the crop rotation practice which
leads to many land-cover changes on the ground. An accurate
extraction of reliable and informative labeled units from the
initial map is thus fundamental to generate an accurate land-
cover product.

The satellite optical data considered are L8 images, due to
the availability of these data in 2015 (i.e., contemporary to the
considered thematic product). The L8 spectral channels con-
sidered are the seven bands acquired at 30m spatial resolution.
Thus, each pixel is characterized by 42 features. To perform
the source domain modeling and the domain adaptation step,
we considered a TS of six L8 images acquired in 2015 and
2016, respectively (see Tab. III). The acquisition dates of the
considered TS allow us to model the phenological cycle of
the crops present in the study area in both years. Clouds were
detected considering the Fmask algorithm [50] and removed
according to [51].

B. Dataset 2: France

To assess the capability of the proposed approach to in-
crease the spatial resolution of existing thematic products, we
considered the 2018 Corine Land Cover (CLC) generated by
the European Environment Agency. The classification scheme
is composed of 44 classes (mixed land-cover and land-use
classes) with 25 ha minimum mapping unit. This map is
generated and updated at national level by means of visual
interpretation of satellite images. This data set is located in
France and is characterized by a spatial extent of 1840 km2.
The coordinates of the central point of the study area are
45.687477 latitutde, 4.625595 longitude. The complex legend
of the thematic product is suitable to test the capability of
the proposed approach to extract a reliable and informative
training set. In particular, in the considered study area there
are seven ΩCov classes, seven ΩUse classes, four ΩSpa classes
and two ΩSem classes (see Tab. IV).

The satellite optical data considered are Sentinel 2 images
contemporary to the map. In particular, we considered a TS
of four cloud-free Sentinel 2 images (see Tab. V for the
acquisition dates). The Sentinel 2 spectral channels considered
are the four bands acquired at 10m and the six bands acquired
at 20m spatial resolution. This leads to a feature vector of 40
spectral channels. The data were downloaded atmospherically
corrected directly from the ESA’s Sentinel 2 Scientific Data
Hub [52].

To quantitatively evaluate the accuracy of the updated land-
cover maps, we employed a reference dataset made up of 1023
pixels manually labeled by photo-interpretation and distributed
all over the region. First, the prior probabilities of the classes
were estimated by considering the information provided by the
CLC Map. Then, a stratified random sampling strategy was
applied to establish the validation samples locations. Finally,
the label of each sample was defined by photo-interpretation
by visually checking both Sentinel 2 data and ESRI ArcGIS
Online World high-resolution aerial optical images. The spatial
distribution of the reference data is represented in Fig. 5,

where the scale of the samples is exaggerated to improve their
visibility. The number of labeled units divided per class is
reported in Tab. VI.

TABLE IV: Semantic properties of the 2018 CLC map for the
considered study area. (France dataset)

CLC Class Type Land-Cover Classes
Continuous urban fabric ΩCov Artificial Surfaces

Discontinuous urban fabric ΩSpa Artificial Surfaces
Bare Soil
Vegetated Areas

Industrial Units ΩUse Artificial Surfaces

Road and rail networks ΩUse Artificial Surfaces

Port areas ΩUse Artificial Surfaces
Bare Soil

Airports ΩUse Artificial Surfaces
Bare Soil
Vegetated Areas

Mineral extraction sites ΩCov Mineral Site

Green urban areas ΩUse Parks in the Cities
Trees in the Cities

Sport facilities ΩUse Artificial Surfaces
Grass

Non-irrigated arable land ΩSem Cereals
Legumes
Fodder crops

Permanently irrigated land ΩSem Arable crops
Non-permanent grass
Greenhouses Crops

Pastures ΩCov Dense grass cover

Complex cultivations ΩSpa Annual crops
Pasture
Permanent crops

Agriculture and vegetation ΩSpa Agriculture
Grass

Broadleaved forest ΩCov Broadleaved

Coniferous forest ΩCov Conifers

Mixed forest ΩSpa Broadleaved
Conifers

Natural grasslands ΩCov Grass

Inland Marshes ΩCov Inland Marshes

Water courses ΩUse Water

Water bodies ΩUse Water
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(a)

(b)

Fig. 5: France dataset: (a) reference data superimposed on the true color composite of the Sentinel 2 image acquired on the
26th August 2018, (b) original thematic product. Coordinates are reported in the UTM WGS84 31N system. The scale of the
validation units is exaggerated to improve their visibility.
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TABLE V: Sentinel 2 images dataset classified by using the
training set extracted from the 2018 CLC map (France dataset).

TS of Sentinel 2 images (t1)
18/04/2018
27/06/2018
26/08/2018
05/10/2018

TABLE VI: 2018 reference data used to validate the classifi-
cation results obtained on the 2018 Sentinel 2 images (France
dataset).

ID Class # Validation Units
ω1 Artificial Surfaces 110
ω2 Mineral Site 28
ω3 Grass 41
ω4 Non Irrigated Crops 334
ω5 Irrigated Crops 45
ω6 Pastures 164
ω7 Broadleaved 149
ω8 Conifers 57
ω9 Inland Marshes 26
ω10 Water 69

VIII. EXPERIMENTAL RESULTS

In this section, first we present the experimental setup,
introducing the baseline methods used for comparison and
defining the parameter setting used in the work. Then, the
obtained decomposed maps are analyzed from the qualitative
view point, whereas the results obtained in terms of updated
land-cover products are quantitatively evaluated. Finally, an
analysis on the quality of the extracted training set is carried
out for the 2nd dataset (France).

A. Experimental Setup

To prove the effectiveness of the proposed approach, we
compared the results obtained with the tolerant noise Random
Forest classifier [53] and a standard outlier filtering approach
[35] used in the literature to extract labeled units from existing
thematic products. When performing the domain adaptation,
the proposed system was compared also with the standard
LapSVM [10], while for the supervised learning analysis we
considered the standard SVM with Radial Basis Function
(RBF) kernel functions [54]. The parameters of the Random
Forest classifier are tuned according to [53], where Pelletier et
al suggest to use Random Forest classifier when dealing with
noisy training sets (such as the one extracted from the thematic
products) by setting the number of trees to build equal to 200,
the number of input features per node equal to the square root
of the total number of features, the maximum depth of the tree
growth equal to 25 and the minimum number of instances in
the node equal to 10.

To perform the spectral filtering step, in [35], Radoux et al
suggest to tune the probabilistic iterative trimming considering
α ∈ [0.05, 0.1, 0.2]. In the following, we reported the best
results that were achieved with α = 0.05. For the supervised
learning analysis, the proposed system employed an ensemble
of five SVMs with RBF kernels. For the proposed system, the
standard RBF SVM and [35], the optimal kernel parameters
(i.e., the regularization parameter C and the spread of the
kernel γ) were selected by a 5-fold cross-validation. For the
domain adaptation analysis, we need to tune two regularization
parameters of the LapSVM, namely γM and γL. While γM
controls the complexity of the classifier decision function in
the geometry of the marginal data distribution, γL controls its
complexity in the associated Hilbert space. According to [9],
[10] γM was set equal to 0.5 for both the baseline and the
proposed methods, while γL was set equal to γM/(u + l)2,
where u and l are the numbers of unlabeled and labeled units,
respectively.

B. Results: Source Domain Modelling
Fig. 6 reports some examples of the obtained map decom-

position results by showing the original crop type maps (Fig.
6a, 6f, 6k, 6p, 6u), the spatially decomposed maps (Fig. 6b,
6g, 6l, 6q, 6v), the semantically decomposed maps (Fig. 6c,
6h, 6m, 6r, 6w), the false color representations of the NDVI
derived from three L8 images of the considered TS (Fig. 6d,
6i, 6n, 6s, 6x) and the true color compositions of the L8
image acquired in April 2015 (Fig. 6e, 6j, 6o, 6t, 6y). The
false color composition of the NDVI was stretched for visual
enhancement to emphasize the different cultivations present in
the scene.

From the results obtained it turned out that even though
the units of the LPIS polygon database represent agricultural
parcels managed by single farmers [49], more cultivations
may be present in the same polygons. This is mainly due to
the multiple cropping practice (growing two or more crops
in the same piece of land in same growing seasons) or can
be related to possible outdated information present in the
database. However, the TS of images contemporary to the map
allows the accurate discrimination of different crops present
in the same polygon. For instance, in Fig. 6u, the two largest
polygons associated to the “sugar beet” label include different
cultivations (parcels characterized by different spectral behav-
iors) clearly visible in the false color composition of the NDVI
(see Fig. 6x). In contrast the smallest “sugar beet” polygon
is associated with an homogeneous area from the spectral
view point and similar to the ones selected by the proposed
system. The spatial decomposition step accurately removes the
labeled units belonging to the minor clusters, thus increasing
the probability of selecting units correctly associated to the
“sugar beet” label (Fig. 6v). Similarly, in Fig. 6p the largest
crop labeled as “maize” includes a parcel having spectral
behavior similar to the “spring cereal” cultivation (see Fig. 6s),
which is discarded by the spatial decomposition step. Note that
no post-processing was performed on the decomposed maps
and the results are presented at pixel level.

Due to the semantic aggregation of the map legend, it is
necessary to guarantee the selection of labeled units belonging
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

(u) (v) (w) (x) (y)

Fig. 6: Examples of map decomposition results of the 2015 crop type map: (a),(f),(k),(p),(u) original thematic products;
(b),(g),(l),(q),(v) maps spatially decomposed; (c),(h),(m),(r),(w) maps semantically decomposed; (d),(i),(n),(s),(x) false color
representations of three NDVI derived from the TS of the L8 images; and (e),(j),(o),(t),(y) true color compositions of the L8
image acquired on April 2015. The false color composition of the NDVI was stretched for visual enhancement to emphasize
the different cultivations present in the scene. (Czech Republic dataset)



13

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

(u) (v) (w) (x) (y)

Fig. 7: Examples of map decomposition results of the 2018 CLC map: (a),(f),(k),(p),(u) original thematic products;
(b),(g),(l),(q),(v) converted map; (c),(h),(m),(r),(w) maps spatially decomposed; (d),(i),(n),(s),(x) maps semantically decom-
posed; and (e),(j),(o),(t),(y) true color compositions of the Sentinel 2 image acquired on June 2018. (France dataset)
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to all the land-cover classes belonging to the same semantic
class to accurately model the class distribution. Also in this
case, the qualitative evaluation confirms the effectiveness of
the proposed approach. For instance, in Fig. 6b, the “winter
cereals” class (i.e., ω2) includes cultivation having different
spectral behaviors (see Fig. 6d). Its semantic decomposition,
reported in Fig. 6c, associates different parcels to different
land-cover classes (i.e., c3 and c4). Fig. 6f depicts a similar
example related to the “spring cereals” semantic label (i.e.,
ω3), decomposed in Fig. 6h in c6 and c7 that clearly have
different spectral behaviors with respect to most of the pixels
present in the polygon (see Fig. 6i). Fig. 6s shows different
crops associated with the “annual crops” label (i.e., ω7) clearly
visible in Fig. 6s and accurately discriminated in Fig. 6r
(i.e., c13, c14, c15 and c17). It is worth mentioning that the
spatial decomposition of the previous step correctly removes
minor crops associated to the wrong labels. However, since
we need to transfer the labels to a multitemporal dataset, it
is fundamental to accurately characterize all the land-cover
classes included into the semantically aggregated ones, in
order to face possible shift of the class distribution. Also in this
case, no post-processing was performed on the decomposed
maps in order to show the results at pixel level. Note that this
step is fundamental to extract an informative database of weak
labeled units from the source map. Thus, the missed selection
of labeled units belonging to dominant land-cover classes
present in the scene would result in a poorly representative
training set that does not allow accurate land-cover map
updates.

Fig. 7 reports several examples of the decomposition result
obtained from the 2018 CLC map on the France dataset. Fig.
7a, 7f, 7k, 7p, 7u show the original thematic maps, Fig. 7b, 7g,
7l, 7q, 7v the converted thematic products, Fig. 7c, 7h, 7m, 7r,
7w the spatially decomposed maps, Fig. 7d, 7i, 7n, 7s, 7x the
semantically decomposed maps, and Fig. 7e, 7j, 7o, 7t, 7y the
true color compositions of the Sentinel 2 image acquired on
June 2018. Differently from the crop type map, the 2018 CLC
map presents a complex classification scheme characterized
by land-cover, land-use classes, spatially and semantically
aggregated classes. In the semantically converted thematic
product, the spatially aggregated classes are removed. For
instance, in Fig. 7a the polygons associated with the “Complex
Cultivation Pattern” are discarded (Fig. 7b) since this class
includes land-cover classes already present in the map legend
(i.e., “Crops”, “Pastures” and “Vegetation”). The land-use are
converted into land-cover when possible according to the
LCCS. In Fig. 7p the “Industrial Units” and “Roads” labels
are converted into “Artificial Surfaces” since all these classes
present similar spectral behavior (see Fig. 7q). Finally, the
semantic classes are decomposed according to their number
of land-cover classes. In the considered study, the semantic
classes are “Irrigated Crops” and “Non Irrigated Crops”. Both
the classes present three land-cover classes according to the
definition of the CLC map legend.

Due to the minimum mapping unit of 25 Ha, most of
the polygons include many pixels wrongly associated to their
labels. In such thematic product, the spatial decomposition
step is fundamental to sharply increase the probability of

selecting pixel correctly associated to their labels. Due to
the high spatial resolution provided by the Sentinel 2 images
(i.e., 10 m), we are in the condition of accurately removing
wrong labeled units. For instance, Fig. 7p shows a urban area
associated to the “Artificial Surfaces” label which includes
also many “Grass” pixels. The spatial decomposition accu-
rately removes those labeled units (see Fig. 7r) by correctly
delineating the geometrical details of the buildings. In Fig. 7c
the spatial decomposition step accurately removes the small
island present in the river (see Fig. 7e), by keeping only the
water pixels. Similarly, in Fig. 7k the pixels which do not
belong to the mineral site are discarded from the polygon
(see Fig. 7m and Fig. 7o). Accurate results are obtained
also for the complex case of the semantically aggregated
classes. In Fig. 7f a polygon associated to the “Non Irrigated
Crops” label is reported. By removing the pixels belonging to
the smallest parcels, the spatial decomposition automatically
enhances the crop boundaries while keeping all the land-cover
classes belonging to the semantic class (see Fig. 7h).

The importance of the semantic decomposition step can be
assessed from the qualitative view point. Fig. 7n and Fig.
7i show the capability of the method of accurately detecting
different cultivations belonging to the “Non Irrigated Crops”
semantic class. The true color compositions of the Sentinel
2 image acquired in June (Fig. 7o and Fig. 7j) demonstrate
the presence of different cultivations that should be accurately
represented to obtain reliable classification results. Thus, the
lack of one of those land-cover classes in the training set
hampers the possibility of producing an accurate thematic
product. Similar results are visible in Fig. 7b and Fig. 7v.
Also in these cases, parcels characterized by different spectral
responses are associated with the same semantic labels (Fig.
7e and Fig. 7y). However, the semantic decomposition allows
us to accurately distinguish the land-cover classes present in
the scene (see Fig. 7d and Fig. 7x).

C. Results: Updated Land-Cover Map Production

The qualitative evaluation of the decomposed maps is con-
firmed by the quantitative classification results of the obtained
pixel land-cover maps. Tab VII and Tab. VIII report the
classification accuracy of the obtained land-cover products
derived by extracting the database of weak labeled units from
the crop type map and the 2018 CLC map, respectively. The
Producer Accuracy (PA %), the User Accuracy (UA %), the
Fscore (F1 %) and the Overall Accuracy (OA %) metrics
calculated on the validation set are reported for the baseline
methods (on 5 trials) and the proposed system.

Let us focus the attention on the Czech Republic dataset.
The Outlier Filtering method achieves an F1% ranging from
4.57 % (for the “Annual Crops” class) to 87.20% (for the
“Rapeseed” class), whereas the Random Forest F1% ranges
from 29.13% (for the “Sugar Beet” class) to 88.43% (for
the “Winter Cereals class). By taking advantage from the
multitemporal information, the LapSVM obtains better clas-
sification results with respect to the other baselines, with
an F1% that ranges from a minimum of 57.82% (for the
“Fodder Crops” class) to a maximum of 94.29% (for the



15

TABLE VII: Land-cover map update results of the Czech Republic dataset. The Overall Accuracy (OA%), User Accuracy
(UA%), Producer Accuracy (PA%) and Fscore (F1%) are reported for: 1) the reference method based on a outlier filtering
procedure [35]; 2) the Random Forest noise-tolerant classifier [53]; 3) the standard LapSVM [10]; and 4) the proposed
unsupervised approach.

Baselines Proposed

Map Legend Outlier filtering [35] Random Forest [53] LapSVM [10] Method

PA% UA% F1% PA% UA% F1% PA% UA% F1% PA% UA% F1%

Rapeseed 77.46 99.80 87.22 79.57 99.89 88.58 95.28 93.20 94.23 89.50 96.78 93.00

Winter Cereals 85.56 82.06 83.77 95.48 79.57 86.80 97.23 89.01 92.94 96.14 93.52 94.81

Spring Cereals 90.30 63.36 74.47 66.58 53.66 59.43 61.52 74.84 67.53 71.92 97.96 82.95

Sugar beet 69.64 93.40 79.79 17.20 99.63 29.34 69.56 96.65 80.90 96.59 89.18 92.73

Maize 95.24 53.09 68.18 43.20 94.40 59.27 52.59 92.29 67.00 72.94 62.93 67.57

Fodder Crops 64.87 30.64 41.62 25.24 41.54 31.40 45.59 79.69 58.00 76.96 55.53 64.51

Annual Crops 2.38 100 4.65 91.85 38.25 54.01 83.65 47.08 60.25 82.51 57.42 67.71

OA% 76.73 73.85 85.18 89.55

TABLE VIII: Classification results of the France dataset. The Overall Accuracy (OA%), User Accuracy (UA%), Producer
Accuracy (PA%) and Fscore (F1%) are reported for: 1) the reference method based on a outlier filtering procedure [35]; 2)
the Random Forest noise-tolerant classifier [53]; 3) the standard RBF SVM [54]; and 4) the proposed unsupervised approach.

Baselines Proposed

Map Legend Outlier filtering [35] Random Forest [53] SVM [54] Method

PA% UA% F1% PA% UA% F1% PA% UA% F1% PA% UA% F1%

Artificial Surfaces 85.82 64.39 73.58 64.18 88.03 74.24 81.82 82.42 82.12 89.09 94.23 91.59

Mineral extraction sites 14.29 6.33 8.77 36.43 92.73 52.31 50.00 60.87 54.90 92.86 92.86 92.86

Grass 74.63 83.61 78.87 78.54 90.45 84.08 85.37 90.67 87.94 90.24 97.37 93.67

Non Irrigated Crops 25.75 81.59 39.15 74.55 75.18 74.86 78.38 89.47 83.56 91.32 92.99 92.15

Irrigated Crops 48.44 19.75 28.06 49.33 28.46 36.10 64.00 48.65 55.28 91.11 61.19 73.21

Pastures 84.02 51.73 64.03 73.41 54.93 62.84 86.71 61.99 72.30 92.07 87.79 89.88

Broadleaves 53.02 78.84 63.40 81.48 77.32 79.35 77.18 84.06 80.47 88.59 92.31 90.41

Conifers 51.93 73.27 60.78 71.58 89.08 79.38 80.70 81.56 81.13 91.23 88.14 89.66

Inland Marshes 47.69 13.36 20.87 0 0 0 20.00 35.14 25.49 57.69 71.43 63.83

Water 88.41 100 93.85 92.75 99.07 95.81 83.48 91.43 87.27 91.30 100 95.45

OA% 54.40 71.43 77.77 89.93

“Rapeseed” class). The proposed system outperforms all the
baseline techniques, with a minimum F1% of 64.51% (for the
“Fodder Crops” class) and a maximum F1% of 94.81% (for
the “Winter Cereals” class).

Both the Outlier Filtering and the Random Forest meth-
ods obtain very poor classification accuracy on semantic
aggregated classes ΩSem. In particular, the worst results are
obtained on the “Annual Crops” class (i.e., F1% of 4.57 and
54.05 for the Outlier Filtering and Random Forest, respec-
tively), which includes five land-cover classes. Due to the large
amount of changes present in the scene, poor classification
accuracy are achieved also on some land-cover classes (i.e.,

F1% of 28.16 on the “Sugar Beet” class with the Random
Forest). This problem is alleviated by the use of the LapSVM.
However, the most balance classification results are achieved
by the proposed system. Thus, even though the considered
classification problem is complex due to the crop rotation
practice (which leads to many changes on the ground) and
the complex structure of the semantically aggregated classes,
the proposed system is able to achieve good F1% for all the
land-cover classes. This is confirmed by the OA %, which
is 89.55 % for the proposed approach, which is much higher
than those obtained by the baseline methods (i.e., 76.73, 73.85
and 85.18 for the Outlier Filtering, the Random Forest and the
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LapSVM classifier, respectively).
Similar results are obtained on the pixel land-cover method

generated by extracting the labeled units from the 2018 CLC
map on the France dataset. The proposed system sharply
improves the classification accuracy with respect to the base-
line methods by achieving an OA % of 89.93% compared
to 54.40%, 71.43% and 77.77% of the Outlier Filtering,
the Random Forest and the SVM classifier, respectively. In
particular, the F1% achieved by the proposed system ranges
from a minimum of 63.83% (for the “Inland Marshes” class)
to a maximum of 95.45% (for the “Water” class). The Outlier
Filtering method ranges from 8.77% (for the “Mineral Site”
class) to a maximum of 93.85% (for the “Water” class),
whereas the Random Forest ranges from 0% (for the “Inland
Marshes” class) to 95.81% (for the “Water” class). The best
results among the baseline are achieved by the standard SVM
that reaches an F1% ranging from a minimum of 25.49% (for
the “Inland Marshes” class) to a maximum of 87.94% (for
the “Grass” class). The Outlier Filtering fails in modeling the
land-cover classes penalized by the spatial aggregation rule
(i.e., “Mineral Site” and “Artificial Surfaces”) and the semantic
aggregated classes (i.e., “Irrigated Crops” and “Non Irrigated
Crops”). Thus, discarding the outliers using a spectral filtering
technique for such complex land-cover class distributions leads
to the removal of informative labeled units which are funda-
mental for accurately training the classifier. Similar problems
are encountered also with the Random Forest classifier, which
is not able to deal with the semantically aggregated classes
as well as to manage classes having a low number of training
samples (i.e., “Inland Marshes”). In contrast, the standard RBF
SVM can handle the noisy training set extracted from the
map, even though some classes achieves low F1% (e.g., Non
“Irrigated crops” and “Inland Marshes”).

Due to the capability of the system of extracting reliable
an informative training samples, high classification accuracies
are achieved on all the land-cover classes. In particular, the
spatial decomposition results strongly increase the probability
of selecting correctly labeled units. For instance, on the
“Artificial Surfaces” class the proposed system achieves an
F1% of 91.59% compared to the 73.58%, 74.24% and 82.12%
obtained by the Outlier Filtering, the Random Forest and the
SVM, respectively. Note that due to the minimum mapping
unit of 25 Ha, the “Artificial Surfaces” polygons include
many “Grass” pixels which are discarded by the proposed
system. Similar results are obtained on the “Mineral Site”
class, where the proposed system achieves an F1% of 92.86%
compared to the 8.77%, 52.31% and 54.90% of the Outlier
Filtering, the Random Forest and the SVM, respectively. Also
in this thematic product, the baseline methods achieve low
classification accuracy on the ΩSem. For instance, the F1%
obtained for the “Non Irrigated Crops” are 39.15%, 74.86%
and 83.56% for the Outlier Filtering, the Random Forest
and the SVM, respectively, compared to the 92.15% of the
proposed system.

D. Results: Weak Training Set Analysis
In this section, we evaluate the quality of the extracted

weak training set. First, the sensitivity of the OA% of the

Fig. 8: Overall Accuracy (OA%) classification performance
versus the number of training samples for the: 1) outlier
filtering procedure [35]; 2) the Random Forest classifier [53];
3) the standard SVM [54]; and 4) the proposed method.

proposed approach versus the considered number of training
samples was analyzed. Fig. 8 reports the OA% obtained by
increasing the number of samples from 1641 to 8271 for the
outlier filtering procedure [35], the Random Forest classifier
[53], the standard SVM [54] and the proposed method. Note
that for each trial, the number of samples selected per class has
been calculated according to the stratified random sampling
strategy considering the original thematic product. From the
results obtained, one can notice that the proposed approach
outperforms the baseline methods for all the trials. Moreover,
it is slightly affected by the number of training samples by
obtaining an OA% that ranges from almost 85% to 90%. This
proves the effectiveness of the method used for the selection
of the training samples, as increasing the number of samples
we increase the amount of information given to the classifier.

Then, we evaluate the reliability of the labeled units ex-
tracted from the map. The main goal of the proposed approach
is to extract training units that: (i) have the highest proba-
bility to be correctly associated to their labels, and (ii) are
representative of the land-cover class distribution. Although
it is reasonable to assume that classifiers trained with high
quality samples achieve high classification accuracy, this is an
indirect measure that does not guarantee that the training set
is made up of reliable training sample. To verify the quality
of the extracted labeled units, a quantitative evaluation of the
training samples was performed by checking their labels via
photo-interpretation of both Sentinel 2 data and ESRI ArcGIS
Online World high-resolution aerial optical images. To this
end, we focused the attention on one of the five training
set automatically extracted by the method and we randomly
selected the 10% of samples per class (for a total number
of 822 samples checked). Differently from the previous ex-
perimental results, this analysis has been carried out only for
the 2nd dataset (France), since a reliable identification of the
different crop types in Czech Republic is not possible by
photo-interpretation.

The proposed method was compared with the Bayesian
uncertainty evaluation strategy, which is used in sample se-
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TABLE IX: Comparison between the training labels automatically extracted from the thematic product and the ones assigned
by photo-interpretation and classification results obtained on the validation set. The Overall Accuracy (OA%) and Fscore (F1%)
are reported for: 1) the proposed method; and 2) a Bayesian uncertainty method. The number of training units extracted per
class is reported.

# training Training Set Validation Set

units Map Legend Proposed Method Bayesian Method Proposed Method Bayesian Method

extracted F1% F1% F1% F1%

587 Artificial Surfaces 82.76 83.76 91.59 76.70

282 Mineral extraction sites 94.34 65.12 92.86 47.37

281 Grass 83.58 96.30 93.67 75.79

2768 Non Irrigated Crops 95.09 95.34 92.15 82.20

950 Irrigated Crops 93.26 97.33 73.21 29.03

1473 Pastures 88.42 87.97 89.88 77.42

974 Broadleaves 76.54 85.85 90.41 75.19

367 Conifers 89.74 86.15 89.66 68.09

257 Inland Marshes 63.16 63.16 63.83 32.08

278 Water 100 88.52 95.45 96.24

8217 OA% 88.81 90.02 89.93 74.78

lection [55]. To this end, first the prior probabilities and the
conditional density functions of the land-cover classes were
estimated by using the 2018 CLC thematic product and the TS
of Sentinel 2 images. Then, for each sample, we computed the
Bayes decision rule that maximizes the posterior probability
(i.e., that minimizes the error probability in the sense of
Bayesian theory) [55]. Only the most reliable samples per class
were selected to generate the training set.

Tab. IX reports the comparison between the labels of the
training units automatically extracted from the map and the
ones assigned by photo-interpretation for both the proposed
method and the Bayesian strategy. For each class, the number
of samples extracted is presented. Moreover, the classification
results obtained on the validation set with the considered train-
ing sets are reported. In particular, the OA% and F1% scores
are presented for the proposed method and the Bayesian uncer-
tainty strategy. Note that the results obtained with the proposed
method on the validation set are the same of Tab. VIII and are
replicated here to help the reader in the comparison with the
Bayesian method. As expected the Bayesian approach is able
to select more reliable samples, by selecting the samples closer
to the cores of the land-cover Gaussian distributions. However,
the results on the validation set demonstrate the importance
of selecting also training units that describes more complex
classes and better represent their distributions. Although the
training set extracted with the proposed method is slightly
less accurate compared to the Bayesian ones, the proposed
approach allows for a database of labeled units which is more
representative of the considered study area. This is particularly
evident for semantically aggregated classes such as “Irrigated
Crops”, where the selection of most reliable training units
leads to a poor representation of all the land-cover classes

aggregated under the same semantic label (i.e., the F1% of the
Bayesian method is 29.03 on the validation set compared to the
73.21 of the proposed method). In contrast, due to the semantic
and spatial decomposition steps, the proposed method achieves
high F1% scores for all the land-covers.

IX. CONCLUSION

In this paper we have presented a novel approach to the au-
tomatic extraction of labeled units from existing cartographic
products. The goal is extract training samples having the
highest probability of being correctly associated to their labels
according to the information provided by the satellite RS data.
The main assumptions of the approach are that: (i) RS data
contemporary to the map used for extracting the labels of the
units are available, (ii) the vector map has been converted
into raster and accurately co-registered to the RS data, and
(iii) the map legend has been converted into an exhaustive
set of classes discriminable with the considered RS image.
In the considered implementation we focused the attention
on satellite MS optical data. To prove the effectiveness of
the proposed approach we considered two thematic products
characterized by different spatial properties and classifications
scheme: a 2015 crop type map of the Czech Republic and the
2018 CLC map representing a study area located in France.

The crop type map has a better spatial resolution compared
to the 2018 CLC map (i.e., smaller mapping units). However,
it represents a complex dataset since it is characterized by
a classification scheme made up very similar cultivations,
where many semantic classes are present. Moreover, due to
the crop rotation practice, the update of this thematic product
is not trivial since many changes happened on the ground. In
contrast, the 2018 CLC map is characterized by a minimum
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mapping unit of 25 Ha which leads to large polygons that
include many pixels associated to wrong labels. Moreover, its
classification scheme is characterized by spatially aggregated
classes, semantically aggregated classes, land-use and land-
cover classes. Thus, this dataset demonstrates the importance
of performing the spatial and semantic decomposition to
extract a reliable and informative database of labeled units.

From the results obtained one can observe that the pro-
posed system outperforms the baseline methods in both the
experiments. By accurately understanding the properties of
the considered map, the proposed approach is able to convert
the thematic product into a set of land-cover classes that can
be discriminated by the spectral properties of the MS data.
For each polygon, the approach accurately extracts (in an
unsupervised way) the pixels which have high probability to be
correctly associated to their labels. This spatial decomposition
step strongly increases the probability of extracting reliable
labeled units from the maps. Although the spatial decomposi-
tion is fundamental to increase the probability of selecting
correctly labeled units, to generate an informative training
set it is fundamental to accurately decompose the thematic
product from the semantic view point. The importance of this
step is highlighted by the capability of the proposed approach
to achieve accurate classification results on the semantically
aggregated classes.

As future developments, we aim to exploit the proposed
system to extract huge databases of labeled units from existing
thematic products to train deep network tailored to the specific
properties of RS data. Indeed, even though deep architectures
typically outperform standard machine learning classification
systems, their main bottleneck is the need of hundred of
labeled units to train the network to avoid over-fitting problem.
While in the computer vision community, huge databases of
training samples have been created, when moving to the RS
community we clash with the major problem of limited train-
ing data. In this context, the proposed approach is promising
to generate in an unsupervised way large databases of weak
training samples to train the network. Moreover, we plan to
investigate the possibility of integrating the proposed method
with a further step which aims to detect new land-cover classes
that may appear in the most recent RS data.
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[25] B. Kosztra, G. Büttner, G. Hazeu, and S. Arnold, “Updated clc illustrated
nomenclature guidelines,” Final Report by European Environmental
Agency., 2017.
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