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Tree-Species Classification using High Density
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and Lorenzo Bruzzone, Fellow, IEEE

Abstract—Crown features derived from high density Airborne
Laser Scanning (ALS) data have proven to be effective for forest
species classification at the individual tree level. Most of the
general state-of-the-art techniques rely on coarse-level crown
features extracted from ALS data, and under-utilize both the
spatial and the spectral information available in the point clouds,
Moreover, they are designed on the expected properties of the
specific analyzed forest. We present a novel species classification
approach, based on quantization of the entire 3D tree crown
into smaller Elementary Crown Volumes (ECVs), that effectively
captures the spatial distribution of filled (i.e., stem, branch and
foliage) and empty volumes of crowns. In the first step, a data-
driven process dynamically tests and compares three quantization
strategies to tailor the definition of the ECV to the forest type
(e.g., conifer, deciduous forest). In the second step, for each ECV a
histogram vector is made-up by features representing the LiDAR
point-distribution and intensity to model the internal and the
external local crown characteristics. Then, tree histogram feature
vectors are obtained by stacking all the ECVs histogram feature
vectors. Finally, classification is performed by a Support Vector
Machines (SVM) classifier using the histogram intersection ker-
nel. All experiments were performed on three high density (50
to 200 points/m2) ALS datasets of deciduous, conifer, and mixed
(i.e., both deciduous and conifer) trees. The higher classification
accuracy of the proposed method over the state-of-the-art (SoA)
one proves its ability to better capture the crown characteristics
of individual trees, including species-specific traits.

Index Terms—Airborne Laser Scanning (ALS), High Density
LiDAR Data, Tree Species, Classification, Histogram Feature
Vector, Remote Sensing.

I. INTRODUCTION

THe knowledge of tree species is crucial to accurate
biophysical parameter estimation, forest management,

and ecosystem studies [1]. In particular, the species detail
at the individual tree level is of great significance for any
comprehensive mapping of forest parameters including tree
height, crown cover, stem diameter and biomass [2], [3].
Remote sensing is an effective and valid tool to monitor
wide-area forests, and it is fast replacing the costly field
based inventorying. A variety of optical remote sensing data
based methods have been developed to address the problem
of tree species classification. Whatsoever, optical sensors have
minimal visibility on the sub-canopy layers, and hence only
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canopy level spectral characteristics [4], structure [5] and
phenology [6] of tree(s) are usually modeled to achieve
species classification. Thus, employing optical data for species
classification in multi-layered forests may lead to poor species
classification results.

Airborne Laser Scanning (ALS) scanning is an increas-
ingly popular remote sensing technique for forest inventory
collection. ALS scanning uses the airborne platform posi-
tional information from the Differential Global Positioning
System (DGPS) and the orientation information from the
Inertial Navigation System (INS) to assign accurate Three
Dimensional (3D) geographic coordinates to the recorded laser
signal intensities. ALS systems with single-return detection
capability and low scanning frequency produce low density
point clouds, and hence are suitable for species studies at the
area level [7]. However, modern multi-return ALS scanners
capture high density points cloud that encapsulates detailed
crown structural details of tree(s) including stem, branch and
foliage. For example, Leica ALS80 scanner has the capability
to capture more than 50 points m2 from a flying altitude
of 1 km and with a speed of 100 km/hr. A denser point
cloud also allows a better 3D delineation of individual tree
crowns [8], and this nurtured the development of automatic
individual tree level methods for species classification. Many
individual tree crown delineation methods are based on 2D
segmentation of the Digital Surface Model [9], and on 3D
point cloud clustering [10], normalized cuts segmentation [11],
graph based technique [12] and local reprojection of data
points [13].

Species classification using ALS data is largely performed
by modeling the differences in structural and or spectral
characteristics of tree crowns [14], [15]. In particular, crown
structural features are more reliably used over intensity ones
due to the limited amount of spectral information in ALS,
except for the case of multi-/hyper- spectral Light Detection
and Ranging (LiDAR) data. Statistical features that model
the point distribution within the crown provide details of the
abstract/high-level characteristics of the tree. These features
are successfully used in classification of tree species having
considerable differences in foliage distribution characteristics
along the crown height profile. Orka et al. [16] used statistical
features representing both spatial and spectral crown char-
acteristics from high density discrete-return LiDAR data to
distinguish between conifer and deciduous trees. Based on the
assumption that 3D crown shape varies for different species,



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MARCH 2020 2

methods that model the tree crowns using paraboloid [17] and
alpha shape [18] are also proposed. Although these approaches
perform well for classifying trees belonging to different genera
(i.e., that show considerable difference in crown shape), the
performance is often suboptimal for classification of species
that fall within the same genera. This motivated several authors
to propose methods to extract the local crown structural
characteristics. For example, Ko et al. [19] proposed a merge-
and-split algorithm to model the branching structure within
a crown, which allowed an automatic delineation of internal
branch clusters followed by branch-level feature extraction.
However, in addition to being largely affected by variance in
point density, the method has a reduced accuracy for trees
with increased branch complexity. Alternatively, Harikumar
et al. [20] jointly used the branch level and overall crown
features to perform species classification of four dominant
European conifer species (Norway Spruce, European Larch,
Swiss Pine, and Silver Fir), based on prior knowledge of
conifer structure, they achieved an improved species classifi-
cation accuracy over the state-of-the-art. Despite being costly
in terms of money and computation, attempts were made
to improve the species classification by supplementing the
3D structural information in LiDAR data with 2D optical
and infrared data [21]. Many studies [22], [23] proposed to
exploit the laser intensity together with the spatial data to
perform species classification, and stress on the need for range
normalization. However, highly rugged forest canopy results
in range normalization ambiguities which distort the intensity
data. Blomley et al. [24], performed tree species classification
using features derived from projecting data to a vertical image
plane that spins around the stem-axis and proved to be useful
for drawing key crown structural traits. Although the method
is robust to possible crown asymmetry, it fails to maximally
exploit the 3D information provided by the LiDAR data.

From this literature overview, it turned out that, features
designed for species classification are primarily: a) extracted
at coarse scales resulting in under-exploitation of the both the
structural and the spectral information in high density ALS
data, and b) designed on prior expectations on the forest
characteristics including species and sensor characteristics
[24]. Moreover, current research on tree species classifica-
tion mainly focuses on the extraction of feature parameters
tailored to the peculiar classification problem, whereas lit-
tle has been done to propose a data-driven approach able
to handle heterogeneous forest classification problems [1].
Hence, there is a need to develop a species and forest inde-
pendent approach that automatically derives optimal features
by maximally exploiting the local crown information. We
propose an approach to tree species classification in ALS
point clouds, that divides the crown volume in sub-volumes
referred to as the Elementary Crown Volumes (ECVs). The
division process is referred to as quantization. The quantization
is conducted under the assumptions that: a) trees have a
central stem surrounded by branches growing away from the
stem, and b) local branch structure, foliage density and laser
reflectance vary over the crown in a unique and species-
dependent way (thus points in ECVs are used to extract
representative features). The proposed species classification

approach: a) automatically detects the optimal 3D quantization
strategy without requiring any prior knowledge on the forest
type and or species, b) mitigates the effect of point density
variance within the crown, c) defines tree histogram feature
vectors to capture efficiently the complex crown structures,
d) extensively exploits the information provided by the 3D
LiDAR point cloud by performing a fine/localized analysis
of crown point cloud, and e) performs species classification
by using a Support Vector Machine Classifier (SVM) with
histogram kernel. The potential of the proposed method lies
in its capability to capture the local variation in crown char-
acteristics, by means of features extracted from point cloud
in individual ECVs, and to perform an accurate supervised
classification of different tree species.

The rest of the manuscript is structured as follows. Section
II presents the proposed method to tree species classification.
The details about the dataset, the experiments, and the results
are illustrated in Section III. Finally, Section IV concludes the
paper and presents some prospective future developments.

II. PROPOSED TREE SPECIES CLASSIFICATION APPROACH

The workflow of the proposed method is shown in Figure
1. In the considered implementation, the individual tree crown
delineation is performed directly in the 3D point cloud space
as proposed in [13]. However, any other method that allows
an accurate 3D individual crown delineation can be employed
[8]. For each segmented tree point cloud, the proposed method
performs the ECV quantization of the crown by testing
three strategies including, a) angular, b) radial and c) hybrid
quantization. For each quantization strategy, a set of features
are extracted representing the LiDAR point-distribution, the
internal and the external crown structure [25], [26]. This
condition allows us to adaptively determine the best set of
ALS features for different classification problems. The tree
histogram feature vector is calculated by stacking all the ECVs
histogram feature vectors. Finally, the species classification is
performed by using a SVM with histogram kernel. It is worth
noting that the proposed method directly operates in the 3D
point cloud space.

Figure 2 shows the cylindrical model used to define the
bounding volume of the 3D segmented tree point cloud. Let
pt and gt be the highest point of the segmented tree point
cloud and its projection onto the ground (i.e., XY plane),
respectively. The line Lt connecting pt and gt represents the
vertical axis of the tree, i.e., the tree stem. The maximum
radius rt of the tree crown ti is the shortest distance between
the Lt, and the farthest LiDAR point from it, i.e., pt. The
maximum height ht of the tree crown is the highest point
in the tree point cloud. These parameters define a cylindrical
volume that contains the entire tree point cloud having angular
α ∈ [0, 2π], radial ρ ∈ [0, rt] and height ζ ∈ [0, ht]
coordinates, where t ∈ (1, T ) and T is the total number of
trees.

A. Elementary Crown Volume Quantization

By taking advantage of the cylindrical model representation
of the crown, the proposed method performs a 3D quantization
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of the volume spanned by the cylinder along the α, the ρ and
the ζ dimensions to generate sub-volumes, i.e., the ECVs. The
shape and size of the ECVs determine the local section of
the crown leading to unique crown perspectives/details. For
this reason, the proposed method tests and compares three
crown Quantization Strategies (QS) which include: a) angular,
b) radial and c) hybrid options.

The angular quantization strategy, referred to as QSα,
simultaneously quantizes the cylindrical volume along the
α and ζ dimensions into αN and ζN quantization steps,
respectively (Figure 3a). With such quantization, the shape of
the resulting ECV is a cylindrical sector. Spatial and spectral
features derived from the set of these ECVs represent the
structure of branch/foliage and intensity distribution along the
α dimension.

Fig. 1: Workflow of the proposed crown quantization based
individual tree species classification method.

The radial quantization strategy, referred to as QSρ, simul-
taneously quantizes the cylindrical volume along the ρ and ζ
dimensions into ρN and ζN quantization steps, respectively
(Figure 3b). Here, each ECV has a cylindrical annular shape,
and models the structural variations along the radial direction
of the crown. In particular, the features derived from this set
of ECVs represent the branch/foliage structure and intensity
distribution along the ρ dimension.

The hybrid quantization strategy, referred to as QSαρ,
simultaneously quantizes the cylindrical space in αN angular,
ρN radial and ζN quantization steps along the α, ρ and the ζ
dimensions, respectively (Figure 3c). The shape of the ECV is
a cylindrical annular sector which allows us to model complex
structural variations within the crown. Here, the branch/foliage
structure and intensity distribution along both the α and the ρ
dimensions are represented by the features derived from the
ECVs.

The proper representation of the trees requires the definition
of quantization steps to model the complex structural varia-
tions within the crown. Here, we propose a tree-independent
strategy such that the cylindrical dimensions rt and or ht along
the ρ and ζ dimensions are fixed (i.e., the radius and the height
of the cylinder are the same for every tree). In this context,
the quantization step along the angular direction α is

δα =
2π

AN
; (1)

the one along the radial direction ρ is,

δρ =
rmax
ρN

; (2)

and the one along the height direction ζ is,

δζ =
hmax
ζN

; (3)

where rmax and hmax represent the maximum radius and
height within the considered set of trees, respectively. En-
forcing a fixed cylindrical dimension for every tree allows
the proposed method to model data-free volume between tree
crown and the enclosing cylinder. Hence, ECVs with at least
one point define the filled crown volume, while those without
any point define the void crown volume (mostly between
the crown surface and the cylindrical boundaries). This void
volume differs in size and spread, with species. In particular,
the difference in spread of data-free volume within and beyond
the crown is useful in indirectly modeling: a) the internal
distribution of the branches and foliage, b) the external crown
geometric characteristics, and c) the overall crown span within
the cylindrical volume.

Fig. 2: Cylindrical model used to define the bounding volume
of the segmented tree point clouds. pt, gt and rt are the highest
point of the segmented tree point cloud, the projection of pt
onto the ground, and the radius of the cylinder, respectively.
Lt is the cylinder axis assimilated to the tree-stem axis.

If we assume V to be the number of ECVs generated per
tree, which is equal to αN ·ζN , ρN ·ζN , and αN ·ρN ·ζN for the
angular, radial, hybrid quantization strategies, respectively, the
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(a) (b) (c)

(d) (e) (f)

Fig. 3: The ECVs obtained considering the: (a) angular QSα (b), radial QSρ (c) and hybrid QSαρ quantization strategy. For
each quantization strategy, the obtained ECVs are highlighted in different colors. The tree histogram feature vector ~HT obtained
by stacking all the ECVs histogram feature vectors extracted from its crown ~hv, v ∈ [1, V ] are reported for the: (c) angular
QSα, (d) radial QSρ (e) and hybrid QSαρ quantization strategy.

vth quantization volume ECVv , v ∈ [1, V ] encloses a unique
set of LiDAR points which represents the local crown structure
within the sub-volume.

B. Generation of the Tree Histogram Feature Vector

For each ECV, the proposed method generates an histogram
feature vector considering the set of standard features reported
in Table I, [1]. The fZ , fD and fI feature sets are derived
from height, positional and intensity attributes of points in
each ECV, where f = [µ, σ, s, k] are the mean, the standard
deviation, the skewness and the kurtosis features, respectively.
Together with the statistical distribution of the input features,
we model the geometric shape of local crown components
based on the 3D spread of points in each ECV, i.e., rp. This
feature models the distribution of local linear structure within
the crown. Thus, the root mean squared error corresponding to
regression fitting a plane PR on ECV points will be minimum
in the presence of linear structures such as stem and branches,

while the error will be relatively higher for volumes containing
mostly foliage. The vth ECV histogram feature vector ~hv =
[µvZ , σ

v
Z , · · · , rpv] is derived from the attributes (i.e., position

and intensity) of the LiDAR points that are enclosed in the
considered ECV to model the local crown structure. The tree
histogram feature vector ~HT is obtained by stacking all the
ECVs histogram feature vectors extracted from its crown, i.e.,
~HT = [~h1,~h2, · · · ,~hV ] (Figure 3d, 3e and 3f).

Due to laser obstruction by crowns themselves, the number
of laser points tends to decrease: a) from the tree top to the
bottom, and b) from the outer to the inner region of the crown.
Thus, the features have to be normalized before performing the
classification step. The normalization strategy aims to mitigate
the effect of point density variation under the assumption that
the scan-density is comparable in ECVs which are equidistant
from Lt. To this end, a global normalization is performed
separately for each feature type in ~hv (i.e., µ, σ, s, k and rp) for
all the ECV histogram feature vectors ~hv, v ∈ [1, V ] belonging
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to the crown, as follows,

~HT in
=

[~hi1,
~hi2, ...

~hiV ]

max
v=1,...,V

(~hiv)
(4)

C. Individual Tree Species Classification

The normalized tree histogram feature vector ~HTn encom-
passes the entire crown structural information. To accurately
perform the classification of the individual tree species, we
considered an SVM classifier with histogram intersection
kernel Khist(.) [27]. This kernel performs better compared to
other nonlinear kernels on challenging classification problems
having high dimensional feature spaces since it: a) assigns
maximum weights to key features, b) optimizes computa-
tional performance despite a large number of features, and
c) generalizes well through efficiently modeling the sparsity
of data. Moreover, the Khist(.) kernel is a positive definite
parameter-free kernel for histogram-based features, such as
the ones defined in Sec. II-B. Accordingly, even though
the proposed method may generate high-dimensional tree
feature vector when considering small quantization steps,
due to the high generalization capability of SVM with the
Khist( ~H

p
Tn
, ~Hj

Tn
) =

∑vl
p,j=1min(

~Hp
Tn
, ~Hj

Tn
) kernel with

~Hp
Tn
≥ 0, ~Hj

Tn
≥ 0, the classification results do not suffer

from the curse of dimensionality (i.e., the classification accu-
racy does not decrease when increasing the number of features
beyond a given threshold). The objective function of the SVM
with histogram intersection kernel has the following dual form,

maximize
ap∈[0,C]

vl∑
p=1

ap −
1

2

vl∑
p=1

vl∑
j=1

apajypyjKhist( ~H
p
Tn
, ~Hj

Tn
)

subject to
vl∑
p=1

apyp = 0, and 0 ≤ ap ≤ C for ∀ p.

(5)
Here, ~HTn and y ∈ {−1, 1} are the data samples and the

corresponding labels, respectively. The regularization param-
eter is denoted as C, and vl is the total number of samples.
The support vectors to derive optimal hyperplane parameters
can be estimated using quadratic programming methods by
maximizing (5).

III. EXPERIMENTS AND RESULTS

A. Dataset Description

The considered forest is located in a mountain area in the
municipality of Pellizzano, at about 40 km northwest of the
city of Trento in Italy. The area extends approximately 3200
Ha and the altitude ranges from 900 to 2000 meters above
sea level. The forest is mainly dominated by conifer species
such as Norway Spruce (Picea abies), European Larch (Larix
decidua), Swiss Pine (Pinus cembra), Silver Fir (Abies alba),
and a small presence of deciduous trees such as Silver Birch
(Betula pendula) and Rowan (Sorbus aucuparia), hereafter
referred as AR, EL, SP, SF, SB and RO, respectively.

TABLE II: Statistics of the structural properties of the consid-
ered tree crowns.

Tree Number Tree height (m) Crown width (m)
Species of Trees Max Min Mean Max Min Mean

NS 50 43.6 16.3 30.8 6.5 2.4 4.5
EL 50 40.7 12.1 27.3 9.0 2.8 5.5
SP 50 20.6 8.0 14.2 5.4 1.2 3.3
SF 50 39.5 15.7 30.6 6.2 2.8 4.7
SB 50 19.4 6.5 11.5 7.0 2.1 3.6
RO 50 29.5 5.7 10.5 11.7 2.4 4.3

The ALS data were acquired between 7th and 9th Septem-
ber 2012 using a Riegl LMSQ680i sensor operated at a scan-
ning frequency of 400 KHz from an airborne platform flown
at an altitude of 660 m with a speed of 100 Km/hr allowing
acquisition of 10 - 50 points/m2. The variation in point density
is a result of altitude variation from 900 to 2000 m and the
effect of scan direction. The flight was repeated several times
to obtain very high density cloud of 50 to 200 points/m2. This
results in an average point density of 12000 points per tree.
All experiments were conducted on a set of 300 trees, with 50
trees per species. Table II shows the tree height and maximum
crown width statistics of the tree samples. The ALS point
cloud representations for the six tree species and their internal
crown structures are illustrated in Figure 4 and Figure 5,
respectively. As one can notice, the LiDAR point distribution
provides an explicit characterization of tree crown geometries.
While, the range-normalized intensity attribute [28] is used to
derive spectral characteristics of crown. However, to accurately
capture the distinctive properties of each tree species, a proper
quantization is necessary to decompose the structure of the
tree.

B. Experimental Setup

To validate the proposed method we evaluate its capabilities
in selecting the best quantization strategy (among the proposed
ones) and the goodness of the proposed set of structural
features in terms of classification accuracy. The available data
are divided to simulate three forest scenarios with different
species and variable complexity: (a) deciduous, (b) conifer
and (c) mixed. The first scenario represents a deciduous forest
and includes two broad-leaves species. They show similar
behaviours in terms of crown shape and height (Figure 4e and
4f). Hence, even though broad-leaves are usually separable by
standard geometric features, the similarity in external crown
properties leads to poor classification accuracy with standard
methods. The second scenario includes four tree species from
the conifer class. The four species show minor differences in
crown external features, and major differences in the internal
tree crown structure (i.e., the branch structure is one of the
most peculiar feature to distinguish conifers) [20]. The third
one is the most complex scenario of mixed forest, which
requires data-driven approaches that can handle the traits that
characterizes conifer and deciduous trees. Indeed, many of
the established methods fail when dealing with heterogeneous
forest stands [1]. The three scenarios allow to demonstrate that
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TABLE I: Crown geometric features derived from each ECV. zi, di and ti are height, distance to respective ECV data-point
centroid, and intensity of the point pi. PR is the regression fitted plane on the points within an ECV.

Group
Id Feature Id Description Equation

fZ

µvZ Mean of the zi values for all of the laser points n representing the vth ECV.
∑

zi
n
i=1

n

σv
Z Standard deviation of the zi values for all of the laser points n representing the vth ECV.

√∑n
i=1 (zi−z)2

n−1

svZ Skewness of the zi values for all of the laser points n representing the vth ECV.

∑n
i=1 (

zi−z
σv
Z

)3

n

kvZ Kurtosis of the zi values for all of the laser points representing the vth ECV.

∑n
i=1 (

zi−z
σv
Z

)4

n
− 3

fD

µvD Mean of the di values for all of the laser points n representing the vth ECV.
∑

di
n
i=1

n

σv
D Standard deviation of the di values for all of the laser points n representing the vth ECV.

√∑n
i=1 (di−d)2

n−1

svD Skewness of the di values for all of the laser points n representing the vth ECV.

∑n
i=1 (

di−d
σv
D

)3

n

kvD Kurtosis of the di values for all of the laser points representing the vth ECV.

∑n
i=1 (

di−d
σv
D

)4

n
− 3

fI

µvI Mean of the ti values for all of the laser points n representing the vth ECV.
∑

ti
n
i=1

n

σv
I Standard deviation of the ti values for all of the laser points n representing the vth ECV.

√∑n
i=1 (ti−t)2

n−1

svI Skewness of the ti values for all of the laser points n representing the vth ECV.

∑n
i=1 (

ti−t
σv
I

)3

n

kvI Kurtosis of the ti values for all of the laser points representing the vth ECV.

∑n
i=1 (

ti−t
σv
I

)4

n
− 3

rpv Regression plane fit Root Mean Squared Error.
√∑n

i=1 (pi−PR)

n

the proposed approach is able to deal with multiple kinds of
forest and no prior knowledge on their composition is required.

For all the experiments, the reference data were split into
training, validation and test data corresponding to 70%, 20%
and 10% of the total number of trees. The training set is used
to train the classifier and select the regularization parameter
of the SVM by 5 fold cross-validation in steps of one decade
in the range [10−3, 103]. The test set is used to perform
the independent assessment of the classification results. The
optimal quantization strategy and parameters are selected
in a classification-performance based sensitivity analysis, by
selecting the strategy (among QSα, QSρ, and QSαρ) which
gives the highest classification performance on the validation
set. In detail, the optimal δα, δρ and δζ quantization steps
are obtained by testing αN in the range [5, 180] with step
of 5, ρN in the range [1, 15] with step of 1, and ζN in the
range [5, 100] with step of 5. A larger number of steps is
avoided since smaller ECVs would provide less meaningful
features failing to capture the local structural information. The
maximum width rmax and height hmax in the dataset are
11.7m and 43.6m, respectively.

Table IV reports the OA obtained on the validation set
considering the three quantization strategies for the three forest
types. While the Radial quantization performs best on the
deciduous forest (i.e., an OA% of 94.2), the hybrid quantiza-
tion is able to extract the best local crown structural features
for the mixed forests (i.e., an OA% of 77.1). Similar results
are obtained on the conifer forest for both radial and hybrid
quantization (i.e., an OA% of 72.3). The optimal combinations
of quantization parameters αN , ρN and ζN are 8,4, and 70 for
both the conifer and the mixed forest,respectively, while for
the deciduous the best αN and ζN are 8 and 60, respectively.
As expected the worst results are obtained with the angu-
lar quantization, where sub-volumes do not characterize the
complex crown characteristics of the considered tree species
(Figure 5). The results obtained with the angular strategy
demonstrate the importance of having a proper tree crown
quantization for an accurate classification. Thus, even though
it is necessary to extract meaningful features from the physical
view point, a proper quantization is fundamental to capture the
local structural proprieties of the tree crowns.
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(a)
(b) (c) (d) (e) (f)

Fig. 4: Side view ALS data of the sample trees represented: (a) Norway Spruce (NS), (b) European Larch (EL), (c) Swiss
Pine (SP), (d) Silver Fir (SF), (e) Silver Birch (SB) and (f) Rowan (RO).

(a) (b) (c) (d) (e) (f)

Fig. 5: Top view of ALS data (1m vertical slice) of the sample trees represented: (a) Norway Spruce (NS), (b) European Larch
(EL), (c) Swiss Pine (SP), (d) Silver Fir (SF), (e) Silver Birch (SB) and (f) Rowan (RO).

C. Experiments, Results and Discussion

We assess the effectiveness of the proposed approach by
comparing it with the state-of-the-art (SoA) method proposed
in [1], where a comprehensive set of features are defined based
on: a) spatial point distribution, b) return intensity distribution,
c) internal crown structure, and d) external crown structure.
The authors analyze the classification accuracy obtained by
integrating the best features from different categories to avoid
the curse of dimensionality phenomenon. Here, we used the
optimal combination of features only (see Table III). The
proposed method does not perform feature selection, instead.
This is because of the effectiveness of the histogram inter-
section kernel in handling high-dimensional histogram-based
features. For both the proposed and the SoA methods, the
multi-class situation was handled using the one-against-one
classification strategy with SVM. For the proposed method,
the results reported are the ones obtained with the quantization
strategy and parameters that achieve the highest classification
accuracy on the validation set.

Table V, Table VI and Table VII show the Producers
Accuracy (PA), User Accuracy (UA), and Fscore (F1) for
the proposed and the SoA methods obtained on the test set
for the deciduous, conifer and mixed forests, respectively.
From the results one can notice that the proposed approach
obtains high classification accuracy regardless of the forest
type. Moreover, it sharply improves the results of the SoA
method for all the scenarios by achieving an OA of 93.3%,
86.6% and 76.6% vs 56.6%, 61.6% and 52.2% for deciduous,
conifer and mixed forest, respectively. This is due to the
fact that the proposed approach: (i) extensively exploits the

local crown structural information in the ALS data, (ii) relies
on feature parameters automatically tailored to the specific
classification problem with no prior information on species.
Although the deciduous scenario includes two species with
similar crown properties, the proposed approach achieves the
highest OA compared to the other classification tasks, with an
F1% 0.93 for both SB and RO. The SoA approach results in
poor classification metrics with an F1% of 0.55 and 0.58 for
the SB and RO, respectively. Hence, the standard geometric
features demonstrate to be insufficient in capturing the small
differences of the internal and external structural properties
which distinguish these two species. SoA method performs
better in the conifer scenario rather than on the deciduous one.
F1% ranges between 0.48 (for SP) and 0.82 (for SF). However,
the proposed method performs better in average over all the
species showing an F1% that ranges between 0.80 (for EL) and
0.93 (for SP). It is worth noting that conifers have similar ex-
ternal structural behaviours due to the general conical shape of
their crown, yet not identical. This leads to a number of empty
EQVs towards the top of the crown. The SVMs with histogram
kernel properly captures and handles this property resulting in
robust and accurate classification performance, whereas the
standard features fail in doing so. As expected, for both the
proposed and the SoA methods the most complex scenario is
represented by the mixed forest containing both conifer and
deciduous trees. While the maximum F1% achieved by the
SoA approach is 0.57 (for SB), the proposed method obtains
0.90 (for NS). Moreover, despite the complexity, the proposed
approach achieves a classification accuracy comparable to the
ones obtained for the homogeneous forest types due to its
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TABLE III: SoA features from [1]. Here In is the intensity of the nth laser point, n is the the total number of data points
representing the target tree. HGi is the height of the ith grid. NG is the number of vertical grids for a tree. Abase is the crown
base area. Ls and Lcs are longest spread and cross-spread of tree crown, respectively.

Feature Id Description Equation

fI0−20

Mean of the intensity Ii values for the laser points lying within 0th - 20th percentile
of tree height (from tree bottom) Ini=1:| 0.0hT≤zi<0.2hT

fcl
Ratio between the height of the equivalent centers for the grids within each profile

and the crown length (average for 8 profiles)

∑
8 (

∑n
i=1 HGi/n)

8Lc

fstem
Ratio between the number of the grids for the stem-related space and all of the grids

for a tree (stem-related space: 1/3 tree height from bottom, 1/2 crown diameter)
∑ NGdown & within 0.5 crown

NG

fecd Equivalent crown diameter 2
√
Abase

fcsr Ratio between Ls and Lcs. Ls
Lcs

fc Mean height for all of the grids representing a tree.
∑n

i=1 (HGi/n)

TABLE IV: Best Overall Accuracy (OA%) obtained on the
validation set by testing the different quantization strategies
and parameters on the deciduous, conifer, and mixed forest.

Overall Accuracy (OA %)
Angular Radial Hybrid

Quantization Quantization Quantization
Deciduous Forest 92.8 94.2 88.5
Conifer Forest 70.0 71.4 77.1
Mixed Forest 69.0 72.3 72.3

capability of dynamically selecting the optimal feature set
and quantization strategy for considered classification task.
Form the computational view point, the larger number of
local features extracted from the crown makes the proposed
approach slightly more demanding compared to the SoA.
However, the proposed approach can perform the classification
of each tree separately and in parallel, thus it is possible to
strongly reduce the computational effort at large scale. Finally,
the proposed method does not require any hand-crafted feature
selection based on prior knowledge of the considered forest
area. This condition is extremely important to deal with large
forests characterized by heterogeneous properties.

TABLE V: Classifications performance obtained on the test set
for the decidous forest obtained with the radial quantization
strategy QSρ (selected on the validation set).

Tree Classification Accuracy
Proposed Method SoA Method

Species PA(%) UA(%) F1 PA(%) UA(%) F1
SB 93.3 93.3 0.93 57.1 53.3 0.55
RO 93.3 93.3 0.93 56.2 60.0 0.58

OA% 93.3 56.6

TABLE VI: Classifications accuracies obtained on the test set
for the conifer forest obtained with the hybrid quantization
strategy QSαρ (selected on the validation set).

Tree Classification Accuracy
Proposed Method SoA Method

Species PA(%) UA(%) F1 PA(%) UA(%) F1
NS 86.0 86.0 0.86 66.6 66.6 0.66
EL 80.0 80.0 0.80 47.0 53.3 0.50
SP 93.0 93.0 0.93 50.0 46.6 0.48
SF 86.0 86.0 0.86 85.7 80.0 0.82

OA% 86.6 61.6

TABLE VII: Classifications accuracies obtained on the test
set for the mixed forest obtained with the hybrid quantization
strategy QSαρ (selected on the validation set).

Tree Classification Accuracy
Proposed Method SoA Method

Species PA(%) UA(%) F1 PA(%) UA(%) F1
NS 87.2 93.5 0.90 50.0 46.6 0.48
EL 84.2 73.4 0.78 53.3 53.3 0.53
SP 58.5 66.1 0.62 46.6 46.6 0.46
SF 81.1 86.5 0.83 63.3 46.6 0.53
SB 75.2 60.0 0.66 50.0 66.6 0.57
RO 75.8 80.6 0.77 53.3 53.3 0.53

OA% 76.6 52.2

IV. CONCLUSION

In this paper, a crown quantization based approach to tree
species classification on high density ALS data is proposed.
Unlike the standard approaches, rather than focusing the
attention on specific crown features, the proposed approach
proposes a data-driven quantization of 3D crown in order
to capture the distinctive spatial and spectral crown char-
acteristics of tree species. The individual tree crown span
is approximated using a cylindrical parametric model. The
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space enclosed by the cylinder is quantized into finer 3D
elementary subvolumes, the ECVs, to perform a comprehen-
sive analysis of the crown. For each tree, a histogram feature
vector is obtained by progressively stacking the ECV feature
sets derived from the point-data enclosed by the ECV. Three
quantization strategies including the angular QSα, the radial
QSρ, and the hybrid QSαρ were tested and compared. For
each classification problem, the best quantization strategy and
parameters are automatically identified in the training phase
without requiring prior knowledge on the type of forest.

In the experimental analysis, we compared the proposed
method with a SoA method [1] presented in the literature
which extensively analyzes the ALS features for tree species
classification. By this comparison, we observed that the pro-
posed approach significantly outperforms the standard method
due to its enhanced ability to derive local crown characteristics
over the SoA method. This condition allows the extraction of
local information that leads to an accurate species classifi-
cation. Moreover, the proposed method does not require any
separate feature selection step due to the high generalization
ability of SVMs with the histogram kernel.

As future development, we plan to test the proposed method
on heterogeneous forests, considering different forest species
and to analyze its effectiveness on full waveform LiDAR data.
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