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Abstract—The availability of multitemporal images acquired 

by several very high geometrical resolution (VHR) optical sensors 

makes it possible to build VHR image Time Series (TS) of images 

acquired over the same geographical area with a temporal 

resolution better than the one achievable when considering a 

single VHR sensor. However, such TS include images showing 

different characteristics from the geometrical, radiometrical and 

spectral viewpoint. Thus, there is a need of methods for building 

homogeneous VHR optical TS when using multispectral 

multisensor images. By focusing on the spectral domain, we 

propose a method to transform a VHR image into the spectral 

domain of another image in the same multisensor TS, but 

acquired by a different sensor. To this end, a prediction-based 

approach relying on a non-parametric regression method is 

employed to mitigate sensor-dependent spectral differences. The 

impact of possible changes occurred on the ground is mitigated 

by training the prediction model on un-changed samples, only. 

Experimental results obtained on VHR optical multisensor 

images confirm the effectiveness of the proposed approach. 

 

Index Terms— VHR Time Series, Radiometric Normalization, 

Multisensor Prediction, Non-parametric Regression, Change 

Detection, Remote Sensing. 

I. INTRODUCTION 

 generation of satellite sensors (e.g., IKONOS, 

QuickBird, GeoEye-1, WorldView-2) is available that 

enables to acquire multitemporal images with Very High 

spatial Resolution (VHR). Such sensors open to a large set of 

new applications in the field of Multi-Temporal (MT) analysis 

(e.g., Change Detection (CD)) that require spatial detail 

information. Nevertheless, when a single VHR optical sensor 

is considered, Time Series (TS) are likely to show a poor 

temporal resolution and to include images with non-

homogeneous acquisition conditions (e.g., lack of similar light 

conditions, different acquisition angle). This is mainly due to 
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the satellite revisit period, the possible competing orders of 

different users on the satellite pointing, the limited life of a 

satellite mission, and weather conditions [1]–[5]. In order to 

mitigate the abovementioned limitations and to have TS 

showing a (very) high resolution, in both space and time, 

multisensor optical acquisitions can be considered for TS 

construction. In this way, the probability of having frequent 

and good images over the same geographical area of interest 

increases. However, the use of multisensor multitemporal 

images shows several issues. The main one is related to 

images consistency. Lack of consistency in MT images 

applications impacts on the outcomes accuracy and reliability 

[4]. On the one side, images in multisensor TS are affected by 

differences induced by the acquisition conditions (e.g., 

atmospheric conditions and acquisition system). Some of the 

differences in atmospheric conditions (e.g., cloud cover), and 

acquisition system (e.g., view angle and seasonal effects) 

affect single-sensor multitemporal image as well [1]–[4]. On 

the other side, multisensor TS poses the big challenge of 

having system intrinsic differences due to the type of sensor. 

The above-mentioned issues are mainly related to differences 

in: i) the geometrical resolution; ii) the radiometric resolution; 

and iii) the spectral resolution, range and bandwidth of the 

sensors [1], [2], [6], [7]. In conclusion, among the various 

aspects of image pre-processing for CD when considering 

multisensor heterogeneous images, there are two outstanding 

requirements: i) geometric and, ii) spectral homogenization. 

The issues related to geometric homogenization have been 

widely studied in the literature for low to VHR images and for 

multisensor images as well [1], [2], [8]–[13]. Whereas the 

huge variability arising in the spectral domain is less 

investigated. VHR available sensors may show significant 

differences in this domain since sensors are available 

acquiring images over different spectral ranges (e.g., IKONOS 

acquires bands in the range 445-853nm, while Pleiades 

acquires in the range 430-950nm [14]). In the case where 

similar spectral ranges are considered, the number of bands 

and/or their width may differ (e.g., QuickBird has 4 bands 

whereas WorldView-2 has 8 bands over the same range). 

Thus, the effective usage of multisensor TS poses the issue of 

how to perform multisensor data spectral homogenization. In 

the literature, two kinds of approaches have been proposed for 

addressing radiometric differences in single-sensor: i) 

Absolute Radiometric Normalization (ARN) [6] and; ii) 
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Relative Radiometric Normalization (RRN) [7]. ARN refers to 

the use of physical parameters and makes it possible to relate 

the Digital Number (DN) with the radiance and reflectance at 

the Earth surface. A considerable amount of work has been 

carried out in the literature to design ARN methods and with 

focus on atmospheric corrections [15]–[20]. Other works 

showed the importance of using physical quantities for 

improving the CD accuracy [4], [21], [22]. Nevertheless, the 

use of ARN methods is not that common, even for single-

sensor images, since their application requires knowledge of 

both the sensor spectral profile and atmospheric conditions at 

the time of acquisition. When data from two sensors 𝑆1 and 𝑆2 

are considered, their spectral information is less comparable 

from the physical viewpoint with respect to data acquired from 

the same sensor. Thus, the use of ARN methods is mandatory 

before performing any further analysis [1], [2], [4]. RRN 

refers to transformations at pixel level for image-to-image 

adaptation. RRN methods use one image as a reference and 

adjust the radiometric properties of the other image to match 

the reference [6], [20], [23]. Thus, normalized images appear 

as being acquired with the reference image sensor and under 

similar atmospheric and illumination conditions [23]. 

However, RRN methods do not remove the differences 

introduced by atmospheric conditions in MT images, whereas 

ARN ones do. 

A variety of RRN methods have been developed in the 

literature for single-sensor images. Hall et al [23] developed a 

radiometric rectification technique that corrects or rectifies 

images of the same area by using landscape elements with 

nearly constant reflectance over time. Others used similar 

procedures [19], [24], [25]. The drawback of these kind of 

approaches is that the landscape elements are selected by 

visual inspection, which could result in a subjective 

radiometric normalization. Thus, further methods perform the 

correction by scene-to-scene histogram normalization [7], 

[26], [27], scene-to-scene correction using dark and bright 

targets [23] or Pseudo Invariant Features (PIF) [28]. Most 

RRN methods assume that a linear relationship exists among 

times 𝑡1 and 𝑡2. Thus, the mathematical model describing 

standard RRN for MT images involves a linear regression 

[15]. Such regression models are built according to invariant 

samples or target points known as Radiometric Control Set 

Samples (RCSS). Burns and Joyce [29], and Singh [30] 

developed different techniques to select RCSS; however, those 

techniques still lead to low accuracy. Heo and Fitzhugh [31] 

suggested a method for obtaining the optimal linear equation 

with a given set of target points, but the results are biased by 

the subjective selection of RCSS. Methods for sample 

selection exist also in the literature of change detection based 

on classifiers [32], [33]. However, they do not account for the 

radiometric normalization of having radiometrically 

representative samples and seldom consider the complex 

nature of multisensor multitemporal images. Many other RRN 

methods, based on a linear relationship, can be found in the 

literature [15]–[17], [20], [34]–[37]. Most of them assume 

images with the same spectral and geometric characteristics 

(single-sensor), and acquired by medium or high spatial 

resolution sensors, devoting poor attention to multisensor and 

VHR optical images [6], [7], [35]. This linear relation 

influences the normalization results and is usually assumed 

because of simplification of modeling [38]. However, and as 

shown in Fig. 1, when multisensor VHR images are 

considered, the assumption of a linear model is seldom 

satisfied, leading to critical limitations. In fact, a non-linear 

non-parametric regression model would better adjust to the 

multisensor VHR problem. The problem remains how to 

automatically select the proper RCSS to derive the model 

itself. Therefore, development of new homogenization 

methods suitable for multisensor MT VHR images becomes of 

great relevance where VHR intrinsic characteristics are 

considered. 

This paper presents a novel method for the generation of 

homogeneous VHR TS focused on the mitigation of intrinsic 

spectral induced differences. It is based on non-parametric 

regression and aims at generating consistent multisensor 

information showing a homogeneous spectral representation. 

The proposed method jointly exploits the capabilities of ARN 

and RRN approaches, by adapting them to the complexity of 

multisensor and VHR images. A first homogenization is 

carried on by transforming DN to physical values (ARN) and 

by transforming the multisensor images into a common spatial 

resolution, by means of state-of-the-art methods [1], [2], [4], 

[8], [10], [11], [13]. The second homogenization step is based 

on RRN approaches and performs a non-parametric regression 

(prediction) to derive a model that represents the relationship 

between 𝑆1 and 𝑆2. The model is derived by means of a 

machine learning algorithm, i.e., Artificial Neural Networks 

(ANN) or Support Vector Regression (SVR), and by 

introducing a novel approach for the RCSS selection. The 

selection of reliable RCSS is based on a novel CD-driven 

approach that is based on three steps: i) selection of invariant 

features (both spectral and textural), ii) selection of unchanged 

samples by relaxing the standard threshold in state-of-the-art 

methods; and iii) reduction of unchanged samples to avoid 

overfitting in the non-parametric regression step. This last step 

reduces the RCSS by: i) selecting the unchanged samples 

common to both spectral and textural invariant features; ii) 

preserving the statistical distribution of samples, as per 

original images; and iii) guaranteeing a homogenous spatial 

distribution over the considered geographical area. To 

demonstrate the effectiveness of the homogenization 

procedure, MT information is extracted, specifically by 

applying CD by means of Change Vector Analysis (CVA) 

[39]. Experiments were carried out on MT multisensor VHR 

image pairs. 

The remainder of this paper is structured as follows. Section 

II presents an overview of the most common radiometric 

normalization methods for remote sensing images. Section III 

illustrates the proposed method for generation of 

homogeneous VHR TS by non-parametric regression of 

multisensor MT images. Sections IV and V explain in detail 

the steps of the proposed approach. Section VI presents the 

MT information extraction as an evaluation mean. Section VII 

introduces the multisensor datasets used in the experiments,  
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Fig. 1. Band by band scatterograms of QuickBird 2006 versus WorldView-2 2010 images in unchanged pixels. 

describes the design of experiments and illustrates the 

experimental results. Finally, Section VIII draws the 

conclusions and illustrates future works. 

II. RADIOMETRIC NORMALIZATION METHODS FOR REMOTE 

SENSING IMAGES  

There are several reasons why a sensor response to a given 

target varies over the time. Among the more relevant ones, we 

have: i) changes in satellite sensor calibration, ii) differences 

in illumination and viewing angle, iii) variation in atmospheric 

effects, and iv) real changes on the ground [1], [3]. The goal of 

radiometric normalization methods is to remove or 

compensate for the above-mentioned effects, but the actual 

changes on the ground. In other words, the goal is to 

normalize the DN of images acquired under different 

conditions and map them to a common domain. Rather ARN 

or RRN methods are generally used in the literature to perform 

normalization [1], [2], [8]–[13], but they are seldom used 

jointly [1], [2], [38]. Since ARN methods have been widely 

standardized in the literature, in this section we focus the 

attention on RRN ones. RRN methods can be divided into 

three categories: i) statistical methods (e.g., standard deviation 

based method), ii) histogram matching methods and, iii) 

regression methods [7], [20]. Given the image-to-image 

relationship complexity, RRN methods used in the literature 

are mostly based on regression. RRN regression methods are 

based on 3 steps: i) selection of the model, ii) selection of 

RCSS and iii) estimation of normalization coefficients. The 

most commonly used model is linear because of its simplicity 

[38]. The assumption is that linear effects on data are stronger 

than nonlinear ones. Casseles and Garcia [19] showed that for 

low spatial resolution and single-sensor images, the 

relationship between the reference and subject image can be 

linear: 

 𝑌𝑚 = 𝑐𝑚𝑋𝑚 + 𝑑𝑚 (1) 

where 𝑌𝑚 is the observed response in a given band of the 

reference image 𝑌, 𝑋𝑚 is the corresponding vector of observed 

predictors of the subject image 𝑋 and, 𝑐𝑚 and 𝑑𝑚 are the 

normalization coefficients. Thus, in equation (1), the subject 

image 𝑋 is normalized by the reference image 𝑌 by means of a 

linear regression. Nevertheless, the assumptions for applying a 

linear regression are seldom satisfied (especially if we 

consider multisensor VHR images) and the specific regression 

model is often unknown. A non-parametric regression analysis 

relaxes the assumptions of linearity, substituting it by a weaker 

assumption of a smooth population regression function of the 

form: 

 𝑌𝑚 = 𝑓(𝑋𝑚) + 𝜀𝑚 (2) 

where 𝑓 ∈ ℱ, ℱ is some class of regression functions, and 𝜀 is 

the additive error with zero mean and constant variance. The 

main advantage here is that ℱ is a rich enough class such as it 

is possible to approximate a very large set of regression 

functions. The cost of relaxing the linearity assumption 

implies higher computation burden, but with the gain of a 

more accurate estimate of the regression function. Examples 

of non-parametric regression methods are ANN [40] and SVR 

[41]. The second step is the selection of ideal RCSS. Ideal 

RCSS should [7], [42]: i) be preferably at the same elevation, 

ii) contain minimal amount of vegetation (when possible), iii) 

be invariant over the acquisition time, and iv) be distributed 

over the data spectrum such that the regression model can be 

reliable. Several methods have been introduced in the 

literature for the selection of RCSS [23], [28], [43]. In the 

next, some of the state of the art methods for selection of 

RCSS and further estimation of normalization coefficients, in 

low/medium resolution images, are briefly described together 

with their limits. 

 Simple Regression (SR) [43]: Uses all pixels in both 

images to calculate normalization coefficients throughout 

least-squares. Because of this, it works well only when 

the considered images are stable over time, which is 

seldom satisfied in VHR images. 

 Pseudo Invariant Features (PIF) [28]: Elements such as 

concrete, asphalt and rooftops are assumed statistically 

stable between the acquisition dates. Differences in the 

gray-level distribution of invariant objects are assumed to 

be linear and are corrected statistically to perform the 

normalization. It needs human intervention to extract the 

PIF set. Both linear assumption and human intervention 

are difficult while working with VHR images. 

 Dark-Bright (DB) [23]: the average of a set of dark and 

bright pixels, extracted from the subject and reference 

image through Tasseled-Cap (TC) greenness-brightness 

transformation, is used to derive the normalization 

coefficients. Appropriate threshold values are required to 

obtain the dark and bright pixel sets. However, it is 

difficult to obtain them automatically. No TC coefficients 

are available for all VHR sensors. 

 No Change set (NC) [43]: locates the statistical centers 
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for stable land and stable water data clusters using the 

near-infrared (NIR) date 1 versus date 2 scatterograms to 

establish an initial regression line. At these wavelengths a 

distinct axis of ‘‘no-change’’ can be observed. Pixels 

falling within the NC region are used in the regression 

analysis of each band to compute normalization 

coefficients. Some limitations are: i) presence of both land 

and water areas is required and ii) two NIR bands are 

necessary. The latter issue is critical in VHR images, since 

often only one NIR channel is available. 

 Iteratively Re-weighted Multivariate Alteration Detection 

(IR-MAD) [17]: uses MAD transformation to select no-

change pixels in bi-temporal images by assuming a 

Gaussian distribution of the difference image. It is based 

on the linear combination of the DN of all the bands in the 

images, where the normalization coefficients are 

determined by applying standard Canonical Correlation 

Analysis (CCA). The final normalization is carried out by 

means of orthogonal linear regression. As it has already 

been pointed out, multisensor MT VHR images do not 

follow a linear relationship, neither the difference image 

does follow a Gaussian distribution [44]. 

If single sensor VHR MT images are considered, few of the 

above methods can be applied [17], [28]. For multisensor 

VHR images, none of the existing methods can be applied for 

normalization without modifications on: i) the regression 

model and/or ii) the selection of RCSS. This is because 

multisensor VHR image pairs may show stronger radiometric 

dissimilarities than single-sensor ones, even if change did not 

occur. This results in a lower number of spectrally invariant 

objects [11]. 

III. PROPOSED APPROACH TO UNSUPERVISED CD IN VHR 

MULTISPECTRAL IMAGES ACQUIRED BY DIFFERENT SENSORS 

In this section, the details of the propose approach to 

perform unsupervised CD in VHR multispectral multisensor 

images is presented. The approach generates homogeneous TS 

from multisensor MT VHR images by jointly exploiting the 

advantages of ARN and RRN methods. First, normalization of 

multisensor optical data by means of ARN and geometric 

normalization is applied. Second, RRN is conducted by means 

of the non-parametric regression of already absolutely 

corrected VHR multisensor images. The former step 

guarantees the multisensor comparison from both physical and 

geometrical view point [1], [2]. Whereas the latter guarantees 

the comparison from the spectral view point at pixel level. The 

method is based on non-parametric regression and uses the 

information provided by image at time 𝑡2 acquired by sensor 

𝑆2 to effectively predict how spectral bands of the image 

acquired at 𝑡1 by sensor 𝑆1 would behave if acquired at 𝑡2 by 

sensor 𝑆1. Fig. 2 depicts the block scheme of the proposed 

method. 

Let us consider two VHR optical images, acquired by 

sensors 𝑆1 and 𝑆2 over the same geographical area, at times 𝑡1 

and 𝑡2 and with sizes 𝐼1 × 𝐽1 and 𝐼2 × 𝐽2, respectively. Let a 

(𝑎 = 1,2, … , 𝐴) and b (𝑏 = 1,2, … , 𝐵) represent the generic 

multispectral bands of 𝑆1 and 𝑆2, respectively. Given the use 

of different sensors, the two images are likely to show 

different bandwidths, spatial resolutions and/or view angles. In 

other words, we assume that 𝑆1 and 𝑆2 may show: i) slightly 

different spatial resolution, ii) the same spectral range, iii) a 

different number of spectral bands 𝐴 and 𝐵, with 𝐵 > 𝐴 (if 

𝐴 > 𝐵, the role of source and target images must be reversed), 

and iv) different spectral resolution. Thus, images acquired by 

the two sensors are similar, but not homogenous, and therefore 

not fully equivalent in the context of MT information 

extraction. Nevertheless, given the acquisition of images over 

the same spectral range, more than one band from 𝑆2 acquires 

information over the same range of a single band from 𝑆1. 

Because of this, more than one band from 𝑆2 can be used to 

predict the corresponding bands of 𝑆1 while deriving the 

homogenization model. The same process can be repeated 

over several pairs of images to homogeneous TS larger than 

two images. 

 
Fig. 2. Block scheme of the proposed method for generation of homogeneous 

VHR TS from multisensor MT images. 

IV. MULTISENSOR TIME SERIES HOMOGENIZATION 

A preliminary homogenization is carried on over the VHR 

multisensor images in order to mitigate differences induced by 

the use of multisensor acquisitions that result in both spectral 

and geometrical distortions [3]. In doing this, we guarantee a 

similarity, from the physical and geometrical viewpoints. To 

achieve this goal, two main steps are applied: i) ARN 

mitigation and ii) geometric normalization (see Fig. 2). 

 
Fig. 3. Block scheme for ARN mitigation process. 

ARN mitigation process is shown in Fig. 3. The original 

VHR images are first converted from DN to radiance values 

and then to Top Of Atmosphere (TOA) reflectance, known as 

at-surface reflectance. This is achieved by applying 

atmospheric corrections, resulting in images with the same 

physical meaning (further details can be found in [1], [2] and 
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[4]). At the end of this step, some of the radiometrical 

differences among multisensor MT VHR images are 

corrected. Nevertheless, some differences remain that cannot 

be corrected or mitigated by ARN. Thus, a data-driven 

mechanism is later used to compensate for them (see sec. V). 

Concerning geometrical differences, two sources can be 

identified: i) differences in the acquisition view angle, and ii) 

differences in the type of sensor because of multisensor 

acquisitions. The former can induce differences in the images 

when there are small changes in the topography and relief of 

the terrain. Whereas the latter results in differences in the 

spatial resolution and therefore in the correspondence of the 

same spatial position in the images. To achieve the geometric 

normalization, the block scheme shown in Fig. 4 is followed. 

Once again, this process does not fully correct for all the 

possible geometrical differences, but does help to mitigate for 

them. Surface reflectance images coming from both sensors 

are used as the input images for this step. They are 

orthorectified separately and then co-registered in order to 

guarantee a correspondence of each position on the ground in 

the MT images. The preliminary homogenized images are 𝑋1,𝑎 

and 𝑋2,𝑏. Further details can be found in [1], [2]. 

 
Fig. 4. Block scheme for the geometric normalization of multisensor VHR 

images. 

V. RELATIVE RADIOMETRIC NORMALIZATION 

With the preliminary homogenization step, we guarantee 

that 𝑋1,𝑎 and 𝑋2,𝑏 have common: i) spatial resolution, ii) image 

size 𝐼 × 𝐽, and iii) radiometric representation from the physical 

viewpoint. Yet, sensor induced differences in terms of 

radiometry and number of bands remain. To mitigate for these 

issues we perform further normalization by means of a novel 

RRN based on a non-parametric regression that guarantees a 

model suitable for multisensor VHR images. This model 

jointly accounts for the remaining issues due to the spectral, 

radiometrical and geometrical differences. To estimate the 

model, we need stable RCSS that ensure capturing the 

complex relationship between 𝑆1 and 𝑆2. Opposite to state-of-

the-art methods, RCSS are automatically selected. To this aim, 

a CD-driven approach is considered. 

The block scheme for the proposed RRN approach is based 

on 4 steps (Fig. 5): i) selection of invariant features from 𝑋1,𝑎 

and 𝑋2,𝑏; ii) selection of unchanged samples, iii) sub-sample 

of unchanged samples; and iv) non-parametric regression 

based on prediction and fusion with two phases, training and 

recalling. Most of these steps have been separately used in a 

different way in literature for single-sensor and low-resolution 

images. 

 

 
Fig. 5. Block scheme followed for the proposed RRN process. 

A. Selection of Invariant Features 

In order to properly model the radiometric relationship 

between 𝑆1 and 𝑆2, only un-changed (radiometrically 

invariant) samples are considered. To select them, spectral 

information is commonly used in literature. Nevertheless, the 

higher spatial details given by the use of VHR images, makes 

spectral information alone not enough to decide if a change 

has occurred or not. Spatial correlation should be used as well 

to decide if a pixel has indeed changed or not. In order to 

extract the spectral and spatial information, invariant spectral 

and spatial features are considered. The decision about which 

sample has changed or not can rely on a CD approach, where a 

pixel-by-pixel comparison is applied. Nevertheless, given that 

𝑋1,𝑎 and 𝑋2,𝑏 show different spectral behaviors, 𝐵 > 𝐴, the 

correspondence between the 𝑎th and 𝑏th bands is not one-to-

one. However, since 𝑆1 and 𝑆2 acquire images over the same 

spectral range, L couples of bands (𝑋1,𝑙 and 𝑋2,𝑙) can be 

identified that show the most similar central wavelength and 

bandwidth, with 𝐿 ≤ 𝐴 < 𝐵. From this set of most similar 

bands, a set of invariant features are derived for unchanged 

samples detection. 

Even though atmospheric corrections have been applied, 

residual differences exist among spectral channels. This 

results in L bands histogram shape difference and relative shift 

(see Fig. 6), even in case of no-change. Thus, compensation of 

spectral differences is carried out on the L pairs in terms of 

shift. This pushes the peak values (𝑃𝑚𝑎𝑥𝑆1
 and 𝑃𝑚𝑎𝑥𝑆2

) to the 

same position in the spectral domain. The shift value is 

extracted as 𝑃 = |𝑃𝑚𝑎𝑥𝑆2
− 𝑃𝑚𝑎𝑥𝑆1

|. The set of spectral (𝑠𝑝𝑒) 

invariant features is then extracted from the histogram 

compensated bands 𝑌1,𝑙,𝑠𝑝𝑒 and  𝑌2,𝑙,𝑠𝑝𝑒, with 𝑙 ∈  [1, 𝐿]. 

 
Fig. 6. Example of histogram shift of a pair of most similar bands in two 

different VHR sensors. 

The high spatial variability of spectral signatures in VHR 

images, results in the increase of single date image interclass 

variability and thus in the variability of both change and no 

change classes. This phenomenon is enhanced by the temporal 
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spectral variability induced by the use of multisensor VHR 

images. This results in a higher complexity in finding un-

changed training samples. The effect can be mitigated by 

using other features that exploit the spatial details in VHR 

images. In the proposed method, textural features extracted 

from the L most similar bands are employed as a complement 

to select the invariant training samples. We expect the spatial 

variability introduced by texture features in a single image to 

be temporally correlated. In other words, we expect the spatial 

variability to be stable in time where no changes occurred. 

Possible smoothing effects are prevented by the joint use of 

spectral and spatial features. A spatial invariant features set is 

defined by the textural (𝑡𝑥𝑡) features extracted from the L 

most similar bands as 𝑌1,𝑙,𝑡𝑥𝑡 and  𝑌2,𝑙,𝑡𝑥𝑡, where 𝑙 ∈  [1, 𝐿]. 

B. Unchanged Samples Selection 

In order to model the temporal and spectral relationship 

between 𝑋1,𝑎 and 𝑋2,𝑏, we select samples that are i) likely 

unchanged (𝜔𝑛) and ii) as much as possible representative of 

the spectral variability of unchanged information over the 

bands. The reliability of these samples is guaranteed by a CD-

driven approach based on Univariate Image Difference (UID) 

and a conservative threshold. UID is applied to each pair of 

invariant features (𝑌1,𝑙,𝑌2,𝑙) as: 

 𝑌𝐷
𝑙 = |𝑌2,𝑙 − 𝑌1,𝑙|, 𝑙 = 1, … ,2𝐿 (3) 

where 𝑌𝐷
𝑙  is the absolute difference image and 𝑌1,𝑙 =

{𝑌1,𝑙,𝑠𝑝𝑒 , 𝑌1,𝑙,𝑡𝑥𝑡} and 𝑌2,𝑙 = {𝑌2,𝑙,𝑠𝑝𝑒 , 𝑌2,𝑙,𝑡𝑥𝑡}. The most reliable 

unchanged samples are selected as the ones showing a small 

difference value, i.e., below a certain threshold value 𝑇𝑙 (𝑙 =
1, … ,2𝐿). 

 
Fig. 7. Example of a 𝑌𝐷

𝑙  histogram with the selection of thresholds 𝑇𝑅𝑅
𝑙  and 𝑇𝑙. 

For each pair of invariant features, a different 𝑇𝑙 is 

calculated. The selection criteria for the threshold accounts for 

the greater spectral variability of the 𝜔𝑛 class. Thus, a proper 

threshold selection requires the relaxation of the criteria of the 

state-of-the-art methods. In greater detail, 𝑇𝑙 should be 

selected in order to guarantee the presence of unchanged 

pixels covering the whole spectral range of samples from the 

study area yet avoiding changed samples. To this end, a 

combination of two stages is used: i) calculation of a reliable 

threshold value by means of a state-of-the-art method, and ii) 

definition of a more relaxed threshold. First, the optimal 

decision threshold (T𝑅𝑅
𝑙 ) according to the Bayesian decision 

theory is applied, considering a Rayleigh-Rice (RR) model 

[44], for each 𝑙th most similar band in the feature space. 

Where RR model is a good approximation. Samples in 𝑌𝐷
𝑙  

close to T𝑅𝑅
𝑙  (see Fig. 7) are uncertain. Whereas pure 

unchanged pixels are needed to model the spectral relationship 

between 𝑋1,𝑎 and 𝑋2,𝑏 properly. Therefore, T𝑅𝑅
𝑙  is refined to 

limit the presence of changed samples. The refinement process 

is conducted to satisfy the tradeoff between removing 

unchanged samples (small threshold values) and preserving 

the spectral variability (large threshold values) as: 

 
𝑇𝑙 =

T𝑅𝑅
𝑙 − 𝑚𝑎𝑥

𝑌𝐷
𝑙

2
, 𝑙 = 1, … ,2𝐿 (4) 

where 𝑚𝑎𝑥
𝑌𝐷

𝑙  is the first maximum peak on the left of T𝑅𝑅
𝑙  in 

the invariant feature space. Once 𝑇𝑙 is selected, 𝑌𝐷
𝑙  is 

thresholded to get candidate unchanged samples for the 

training set. 

C. Un-changed Samples Subsampling 

In order to avoid over-fitting and overload while 

performing the non-parametric regression, detected unchanged 

samples are sub-sampled by following two guidelines: i) select 

unchanged samples common to both spectral and textural 

features, and ii) select samples by preserving their statistical 

distribution. The previous guidelines are applied separately to 

each pair of invariant features. The sets of unchanged samples 

represent the variety of spectral relationships existing among 

the L most similar bands from the spectral and textural 

viewpoint. The first guideline assures that samples are 

unchanged both from the spectral and textural point of view. 

Nevertheless, the number of training samples remains high. 

Thus, the second guideline aims at further reducing this 

number by preserving a uniform spatial distribution of the 

samples over the scene, as well as the statistical distribution of 

the original 𝑋1,𝑎 and 𝑋2,𝑏. For each pair of invariant features, 

the entire image is first divided into small blocks of size 𝑅 ×
𝑅, with 𝑅 < 𝐼 < 𝐽. Then a fraction of samples from each block 

is selected. On top of these samples, a maximum number of 

pixels (𝑄), over all possible spectral values, are selected. 

D. Nonparametric Regression 

The last step of the proposed RRN approach is the non-

parametric regression. The exact form of the nonlinear 

function 𝑓 in equation (1) does not need to be known 

explicitly prior to model training. In order to perform the non-

parametric regression, different sets of training samples 𝑇𝑟𝑙 

(𝑙 = 1, ⋯ , 𝐿) should be defined for each spectral channel to be 

predicted. Each of the 𝑇𝑟𝑙  training sets is built by considering 

the positions given by the sub-sample step (previous section), 

but in this case, and as learnt from our preliminary work [45], 

invariant features are extracted from all the channels in 𝑆1 and 

𝑆2 (remember that 𝐵 > 𝐴). This is because several bands in 

𝑋2,𝑏 may contribute to the estimation of the spectral 

information in each of the bands in 𝑋1,𝑎. Accordingly, the set 

of both spectral and spatial invariant features is defined as 

𝑋1 = {𝑋1,𝑎,𝑠𝑝𝑒 , 𝑋1,𝑎,𝑡𝑥𝑡} and 𝑋2 = {𝑋2,𝑏,𝑠𝑝𝑒 , 𝑋2,𝑏,𝑡𝑥𝑡}. 

Given the above-described sets of 𝑇𝑟𝑙 , and the sets of 

features 𝑋1 and 𝑋2, we model the temporal and spectral 

relationship between each 𝑋1,𝑎 and 𝑋2. 𝑋2 represents the input 

(source) and 𝑋1,𝑎 the output (target/reference). The method 

still works if 𝐴 > 𝐵, by reversing the role of source and target 

images. The complexity of the relationship between 𝑋1,𝑎 and 

𝑋2 is captured by estimating 𝑓(∙) with a non-parametric 
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regression method. In this study we choose two non-

parametric approaches namely ANN and SVR. However, any 

other non-parametric method can be used. Here we propose a 

novel configuration for the input and target training samples 

for predicting 𝑋̂1,𝑎 (image acquired at 𝑡2 by 𝑆1) that accounts 

for the radiometric differences in the multisensor 

multitemporal dataset. 𝑋̂1,𝑎 contains only the spectral 

channels, since our goal is only to homogenize the original 

images, though textural information is also available, but not 

predicted in the proposed architecture. A total of 𝐴 non-

parametric regression models have to be trained, as limited by 

the sensor with lower number of bands, between 𝑆1 and 𝑆2. 

The target for each regression model is one of the spectral 

bands 𝑋1,𝑎,𝑠𝑝𝑒 to be predicted. Whereas all the bands in 𝑋2,𝑏 

are used as input to the 𝐴 regression models, i.e., 𝑋2,𝑏,𝑠𝑝𝑒. As 

for the selection of training samples, the use of spectral 

information alone (𝑋2,𝑏,𝑠𝑝𝑒) is not enough to model the 

relationship among 𝑋1,𝑎 and 𝑋2,𝑏. Thus, texture features are 

also used, where 𝑋2,𝑏,𝑡𝑥𝑡 are extracted from 𝑋2,𝑏,𝑠𝑝𝑒. Thus, a 

total of 2 × 𝐵 inputs are finally used for the derivation of the 

𝐴 regression models. The inputs are always the same for all 

models, whereas the target varies on the bases of the channel 

to be estimated. 

For ANN, a backpropagation architecture is considered. 

Equation (5) shows the non-parametric regression model for 

the training process. In (5), H and O stand for hidden and 

output layers, respectively; 𝜑𝐻(∙) and 𝜑𝑂(∙) represent the 

activation functions (e.g., linear, log-sigmoid, tan-sigmoid); 

and 𝑤𝑏𝑗  and 𝑤𝑗𝑘  represent the weights of the network 

connection in the hidden and output layers, respectively. 𝛽𝐻 

and 𝛽𝑂 represent the bias introduced to the transfer functions. 

Once the model has been obtained, all the channels in 𝑋̂1,𝑎 are 

predicted. 

 
𝑋1,𝑎 = 𝜑𝑂(𝛽𝑂 + ∑ 𝑤𝑗𝑘

𝐽

𝑗=1

(𝜑𝐻(𝛽𝐻 + ∑ 𝑤𝑏𝑗𝑋2

2𝐵

𝑏=1

))𝑗). (5) 

For SVR, a 𝜖-SVR with a Radial Basis Function (RBF) 

kernel is used. Equation (6) shows the non-parametric 

regression model for the training process, where 𝛼𝑖 and 𝛼𝑖
∗ 

represent the Lagrange multipliers of a quadratic estimation 

problem and 𝑘(. , . ) is a kernel function (e.g., homogeneous 

polynomial, RBF). Here RBF kernel is selected. Therefore, the 

hyper-parameter 𝑔𝑎𝑚𝑚𝑎 = (2𝜎2)−1 needs to be defined that 

corresponds to the width or scale of the kernel. Apart from the 

kernel parameters, 𝜖-SVR requires the definition of two 

parameters: i) 𝜖 (epsilon), the minimal required precision; and 

ii) C, the penalty associated with errors larger than 𝜖. 

 

𝑋1,𝑎 = ∑(𝛼𝑖 − 𝛼𝑖
∗)𝑘(|𝑇𝑟𝑙|𝑖 , 𝑋2)

|𝑇𝑟𝑙|

𝑖=1

 (6) 

The extension of the proposed method for the time series 

longer than two images is straightforward by selecting one 

image with the lowest number of spectral bands as 

reference/target. 

VI. MULTITEMPORAL INFORMATION EXTRACTION 

Several methods for MT information extraction can be 

found in the literature that may benefit of the proposed 

approach for the generation of homogeneous TS from MT 

multisensor VHR images. The selection of the method to 

derive MT information depends on the application itself. Here 

we consider CD as an option to demonstrate the effectiveness 

of the proposed approach. According to the-state-of-the-art, 

the CVA technique in a polar domain framework as proposed 

in [39] is used. To this end, the multispectral difference 

images 𝑋𝐷 is computed as: 

 𝑋𝐷 = 𝑋̂1,𝑎 − 𝑋1,𝑎 (7) 

where 𝑋𝐷 is the magnitude of the change vectors. 𝜌 ∈
[0, 𝜌𝑚𝑎𝑥] (eq. (8)) carries information about presence/absence 

of changes. Small magnitude values are associated to no 

changes, whereas large values are associated to change. A 

threshold 𝑇 is commonly applied to separate changed from 

unchanged samples [39]. Here, the optimal 𝑇 is obtained 

according to the Bayesian decision theory by considering a 

Rayleigh-Rice (RR) model [44]. 

 

𝜌 = √∑(𝑋𝐷,𝑎)2

𝐴

𝑎=1

 (8) 

VII. EXPERIMENTAL RESULTS 

A. Dataset Description and Multisensor Normalization 

In order to validate the proposed approach, pairs of VHR 

optical images acquired over an area located in the Trentino 

region in the north of Italy (Fig. 8) were selected. This area 

shows interesting properties from the orographic conformation 

and environmental variety point of view. Over a relatively 

small area it is possible to find: i) precious apple and vineyard 

fields; and ii) urban, sub-urban and industrial areas with 

different density and structure. Two multitemporal data sets 

were built over the sample area (yellow boxes in Fig. 8). 

Details are given in Table I. Dataset 2 is larger than dataset 1, 

and 𝑡1 and 𝑡2 images are acquired in the same year, but in 

different months. Whereas images in dataset 1 were acquired 4 

years apart. Both datasets include an image with 4 spectral 

bands only. The dataset selection allows to test the robustness 

of the method when: i) poor spectral information is available, 

since this increases the complexity in modelling the 

relationship between 𝑡1 and 𝑡2; ii) the images are acquired in 

different seasons, which increases the spectral variability 

among images; iii) 𝐴 > 𝐵, to show the capacity of the method 

to be extended to TS analysis; and iv) different kinds of land 

covers and land-cover changes exist. Therefore, the datasets 

show transitions among different phenological states in crop 

areas and transitions from vegetation to bare soil and/or to 

new man-made objects (i.e., construction of a new road and 

building). 

Dataset 1 includes a QB image with four multispectral 

bands (𝐴 = 4), and a WV-2 one with eight (𝐵 = 8) bands. The 

spatial resolution of the QB image is 0.6m for the 

panchromatic band and 2.4m for multispectral bands, whereas 

WV-2 offers a higher spatial resolution in both panchromatic  
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Fig. 8. Area of interest, Trentino region in the North of Italy. 

and multispectral bands that is approximated to 0.5m and 2m 

by image providers, respectively. Dataset 2 𝑡1 image is a WV-

2 image with 8 multispectral bands (𝐴 = 8), whereas 𝑡2 is a 

GE-1 image with four bands (𝐵 = 4). The spatial resolution of 

the WV-2 and GE-1 images is 0.5m for the panchromatic band 

and 2.0m for multispectral bands (as approximated by image 

providers). Table II summarizes the characteristics of QB, 

WV-2 and GE-1 images from the spectral and spatial point of 

view. The spatial resolution differences in dataset 1 imply that 

the sizes 𝐼1 × 𝐽1 and 𝐼2 × 𝐽2 of the two images are different 

despite they cover the same surface. Thus, pixel-by-pixel 

comparison cannot be directly applied since the same pixel 

coordinates in the two images do not correspond to the same 

position on the ground. Concerning spectral domain, we 

canobserve that the four primary multi-spectral bands of QB, 

WV-2 and GE-1 are acquired over similar spectral ranges 

(e.g., red), but not identical (e.g., NIR). Similar considerations 

hold for blue and green bands. Given that bands for the three 

sensors fall into the same ranges, they can be compared and 

used to perform the regression. For both dataset the reference 

image is the one with the smaller number of bands (i.e.,  𝑡1 for 

dataset 1 and 𝑡2 for dataset 2). This is because from the 

physical viewpoint, it is not possible to predict 𝐴 bands from 

just 𝐵 if 𝐴 > 𝐵. In order to apply the proposed method for 

generation of homogeneous VHR TS, multisensory 
 

TABLE I. DATASETS DESCRIPTION. 

 
Dataset 1 Dataset 2 

𝒕𝟏 𝒕𝟐 𝒕𝟏 𝒕𝟐 

Sensor QB WV-2 WV-2 GE-1 

Acquisition 

date 

July 

2006 

August 

2010 

May 

2011 

September 

2011 

Off-nadir 

angle 
14.1° 19.3° 7.8° 14.4° 

Dimensions 1024 x 1024 pixels 1800 x 1800 pixels 

TABLE II. MAIN CHARACTERISTICS OF QUICKBIRD, WORLDVIEW-2 AND 

GEOEYE-1 OPTICAL SENSORS [14]. 

Satellite QuickBird WorldView-2 GeoEye-1 

Bands 

(nm) 

445-900 (pan) 450-800 (pan) 450-800 (pan) 

 400-450 (coastal) 

450-520 (blue) 450-510 (blue) 450-510 (blue) 

520-600 (green) 510-580 (green) 510-580 (green) 

 585-626 (yellow)  

630-690 (red) 630-690 (red) 655-690 (red) 

 705-745 (red edge)  

760-900 (NIR) 
770-895 (NIR 1) 

780-920 (NIR) 
860-1040 (NIR 2) 

Spatial 

Resolution  

0.61 m 
2.44 m 

0.46 m 
1.84 m 

0.41 m 
1.65 m 

homogenization and RRN were applied. 

Multisensor homogenization was performed by: i) absolute 

radiometric normalization and ii) geometric normalization. For 

ARN step, all images were provided by DigitalGlobe 

Foundation in the context of the “MS-TS – Analysis of 

Multisensor VHR image Time Series” project [46]. Here, the 

ARN consists on the conversion from DNs to TOA, which 

was conducted before delivery by means of the Atmospheric 

Compensation (AComp) algorithm, which corrects for the 

scattering and absorption effects in the atmosphere [3], [47], 

[48]. Given the orography of the study area and the possible 

distortions, we applied orthorectification by using a DEM 

(1m) obtained from LiDAR data [49]. Additional pixel-to-

pixel problems are also observed due to differences in the 

view angle, and co-registration should be applied. In order to 

achieve a better co-registration, PanSharpening (PS) was 

applied by means of the Gram-Schmidt method [50]. Here 

ENVI software package was employed [51]. 

Co-registration of the two-dataset pairs, covering the study 

area in Fig. 8, was conducted by using a polynomial function 

of second order. For Dataset 1, 79 uniformly distributed 

Ground Control Points (GCP) were selected. Whereas 68 

uniformly distributed GCP were selected for Dataset 2. For 

Dataset 1, the WV-2 image was resampled during co-

registration in order to be able to pansharpen multisensor VHR 

QB and WV-2 images after preliminary normalization. 

Dataset 1 has a spatial resolution of 0.6m and a size of 

1024x1024, whereas Dataset 2 has a spatial resolution of 0.5m 

and a size of 1800x1800. In order to perform quantitative 

analysis, a reference map for dataset 1 was defined by 

photointerpretation and a priori knowledge on the scene (Fig. 

9 third column), showing 706364 unchanged pixels (black 

color) and 334469 changed pixels (white color). For dataset 2, 

considering the extent of the area and the fact that we have no 

complete knowledge of the changes occurred on the ground, it 

was not possible to derive an exhaustive reference map. Thus, 

quantitative analysis was based on 121357 samples marked as 

changed, and 120445 as unchanged, selected by 

photointerpretation. For comparison purposes, a multitemporal 

false color composition of the dataset is provided in Fig. 9.f, 

where green and magenta colors represent changes. 

TABLE III. PAIR OF MOST SIMILAR BANDS FOR QB, WV-2 AND GE-1; AND 

HISTOGRAM COMPENSATION VALUE (𝑃) FOR (A) DATASET 1 AND (B) 2. 

(A) 

QB (nm) WV-2 (nm) P 

450-520 (B1) 450-510 (B2) 0.020 

520-600 (B2) 510-580 (B3) 0.016 

630-690 (B3) 630-690 (B5) 0.023 
760-900 (B4) 770-895 (B7) 0.145 

(B) 

WV-2 (nm) GE-1 (nm) P 
450-510 (B2) 450-510 (B1) 0.024 

510-580 (B3) 510-580 (B2) 0.020 

630-690 (B5) 655-690 (B3) 0.015 
770-895 (B7) 780-920 (B4) 0.043 

B. Relative Radiometric Normalization and Design of 

Experiments 

Once the preliminary multisensor normalization is achieved, 

we move to the proposed RRN. The first step is to select 

invariant features among the two sensors. To this end, a total  
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 (a) (b)  (c) 

 

   
 (d) (e) (f) 

Fig. 9. True color composition of the pansharpened (a) QB image acquired in July 2006 and (b) WV-2 image acquired in August 2010, and (c) reference map 

(data set 1). True color composition of the pansharpened (d) WV-2 image acquired in May 2011, (e) GE-1 image acquired in September 2011, and (f) 

multitemporal false color composition (red: red band WV2 2011 image, green: green GE1 2011 image, and blue: blue WV2 2011 image) (data set 2). 

TABLE IV. THRESHOLD (𝑇𝑙) AND NUMBER OF TRAINING SAMPLES BEFORE 

(|𝑌𝐷
𝑙 < 𝑇𝑙|) AND AFTER (|𝑇𝑟𝑙|) SUB-SAMPLING FOR DATASETS (A) 1 AND (B) 2. 

(A) 

Band Feature 𝑻𝒍 |𝒀𝑫
𝒍 < 𝑻𝒍| |𝑻𝒓𝒍| 

Blue 
Spectral 0.012 616739 

4998 
Texture 0.040 242034 

Green 
Spectral 0.013 560094 

5436 
Texture 0.030 158496 

Red 
Spectral 0.014 528475 

6155 
Texture 0.030 161157 

NIR 
Spectral 0.025 265267 

8980 
Texture 0.030 157491 

(B) 

Band Feature 𝑻𝒍 |𝒀𝑫
𝒍 < 𝑻𝒍| |𝑻𝒓𝒍| 

Blue 
Spectral 0.023 1927967 

12401 
Texture 0.030 640193 

Green 
Spectral 0.023 1822823 

11897 
Texture 0.030 632969 

Red 
Spectral 0.030 1474649 

12221 
Texture 0.031 634457 

NIR 
Spectral 0.034 1457945 

13458 
Texture 0.032 629672 

 

of 𝐿 = 4 most similar bands among 𝑆1 and 𝑆2 were first 

identified (see Table III). Then, spectral and textural features 

were extracted. For spectral features, the 𝐿=4 pairs of most 

similar bands were compensated based on histogram shift 

value 𝑃 (see Table III). WV-2 image is homogenized to QB 

and GE-1, respectively. In the case of textural features, well-

known state-of-the-art features, such as Gray Level Co-

occurrence Matrix (GLCM) [52] and Gabor ones [53], were 

tested under different configurations. GLCM-contrast showed 

the best results in terms of normalization and CD results and 

was thus selected as the invariant feature. 

The next steps are the selection of unchanged samples and 

their sub-sampling. The first step applies the absolute UID 

asin (3), and then 𝑇𝑙 is calculated as in (4). The 𝑇𝑙 values for 

each invariant features (spectral and textural), as well as the 

number of training samples before (|𝑌𝐷
𝑙 < 𝑇𝑙|) and after (|𝑇𝑟𝑙|) 

the sub-sampling step are given in Table IV for both datasets. 

After some trials the size of the blocks for the spatial reduction 

was set to 𝑅 = 64 and 𝑅 = 128, for datasets 1 and 2, 

respectively. The fraction of training samples for dataset 1 was 

of 30%, whereas for dataset 2 the fraction was of 10%. When 

no samples are found in the block, no operation is performed. 

A maximum of 𝑄 = 100 samples per reflectance value (with a 

precision of 3) over the whole spectral range were selected for 

each dataset. The selection of these parameters is related to: i) 

the computational power and ii) the conservation of spectral 

variability to model the relationship between 𝑆1 and 𝑆2. Large 

numbers result in the selection of more samples, which in turn 

results in a higher computational requirement and a higher 

probability of overfitting while applying the non-parametric 

regression. Lower numbers result in the selection of less 

samples, which in turn results in lower computational 

requirements and poorer spectral representation to model the 

𝑆1 and 𝑆2 relationship. 

The last step of the proposed RRN is the non-parametric 

regression. Here we choose two methods (ANN and SVR) to 

demonstrate the robustness of the proposed approach against 

the non-linear regression algorithm. However, any other non-

parametric method can be used. A total of 4 regression models 

were derived, one for each couple of most similar bands. The 

input data corresponded to the spectral and textural features of 

the WV-2 images, for a total of 16 input variables, whereas the 

target corresponded to the specific spectral band to be 

predicted in QB or GE-1. Final configuration for ANN and 

SVR were the same for both datasets. 

1. For the ANN, i) one input layer with 16 neurons (one for 

each WV-2 spectral and textural bands), ii) three hidden 

layers with 15, 8 and 10 neurons having tan-sigmoid, log-

sigmoid and pure-line activation functions, respectively, 

and iii) one output layer with one neuron having a linear  
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TABLE V. FINAL MSE AND COMPUTATIONAL TIME OF ANN AND SVR FOR DATASETS 1 AND 2. 

Spectral 
Band 

Dataset 1 Dataset 2 

ANN SVR ANN SVR 

MSE (10-5) Time MSE (10-5) Time MSE (10-5) Time MSE (10-5) Time 

Blue 2.2190 

0.01-0.2h 

3.6822 0.073 h 9.0272 

0.1-0.2h 

9.1273 25.284 h 

Green 3.2567 4.5511 0.452 h 10.709 11.410 21.149 h 

Red 4.9059 6.0398 1.446 h 19.176 18.034 24.250 h 

NIR 15.192 16.721 9.006 h 28.709 30.689 40.435 h 

 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Fig. 10. Histograms for blue, green, red, and NIR bands of unchanged areas for X1,l, X2,l and X̂1,aANN
: (Top) data set 1 and (Bottom) data set 2. 

 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Fig. 11. Histograms for blue, green, red, and NIR bands of unchanged areas for 𝑋1,𝑙, 𝑋2,𝑙 and 𝑋̂1,𝑎𝑆𝑉𝑅
: (Top) data set 1 and (Bottom) data set 2. 

activation function, were used. The number of neurons in 

the input and output layers are the same as the number of 

input and output features. The best configuration for the 

number of hidden layers and their neurons was selected by 

cross-validation based on the Mean Squared Error (MSE). 

Ranges for the parameters were: number of hidden layers = 

[1,3] and number of neurons = [8,20]. 

2. For the SVR, a similar configuration as for ANN was held, 

with 16 variables for the input and one variable for the 

target. An RBF kernel was used and the corresponding 

parameters for the training process were obtained by cross-

validation process. Ranges for the parameters were: 𝐶 =
[10,500], 𝑔𝑎𝑚𝑚𝑎 = [0.1,3.0] and 𝜖 = [0.01,0.1]. 

The MSE calculated between the QB image 𝑋1,𝑎(𝑡1) and the 

predicted QB 𝑋̂1,𝑎(𝑡2) (Dataset 1) and the GE-1 image 

𝑋2,𝑏(𝑡2) and the predicted GE-1 𝑋̂2,𝑏(𝑡1) (Dataset 2) by the 4 

ANNs and the 4 SVRs are provided in Table V together with 

computational time. In both cases, the training time includes 

both training and cross-validation. The computational time is 

the one obtained by using MATLAB® on a standard 

workstation with Intel(R) Xeon(R) CPU @3.40 GHz, 16.00 
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GB RAM. The MSE is quite similar for the two non-

parametric regression methods, but the time required for the 

training process differs significantly. In the case of SVR, it 

depends on the number of training samples. Comparing |𝑇𝑟𝑙| 
shown in Table IV with the training times in Table V, we can 

easily conclude that the training time increases with |𝑇𝑟𝑙| in a 

nonlinear way. 

The performance of the proposed approach was evaluated 

by qualitative and quantitative analysis. In the qualitative case, 

histograms were extracted over unchanged areas to assess the 

similarity of original and predicted images. In the quantitative 

case, two approaches are used: i) calculation of Kullback-

Leibler (KL) distance between the histograms of unchanged 

areas [54] and; ii) MT information extraction, change 

detection by means of CVA-magnitude thresholding. In the 

KL distance, we expect histograms from the predicted images 

to be closer to those of the reference ones. For the CD based 

validation, three experiments were designed: i) experiment 1 

(exp. 1) applies CVA to the ARN images (𝑋1,𝑎 and 𝑋2,𝑏), ii) 

experiment 2 (exp. 2) applies CVA to the original image (𝑋1,𝑎) 

and predicted image obtained with ANN (𝑋̂1,𝑎𝐴𝑁𝑁
); and iii) 

experiment 3 (exp. 3) applies CVA to the original image (𝑋1,𝑎) 

and predicted image obtained with SVR (𝑋̂1,𝑎𝑆𝑉𝑅
). In exp. 2 

and 3, the four spectral bands are used for computing the 

magnitude variable (see eq. (8)). Whereas in the case of exp. 1 

the most similar bands are used. Other experiments with 

standard RRN methods were also performed, but the results 

are not reported in the paper given their poor performance. 

C. MT information extraction and experimental results 

For the qualitative assessment, histograms of unchanged areas 

were compared. It is expected that after prediction, 𝑋̂1,𝑎 

histograms become closer to 𝑋1,𝑎 than to 𝑋2,𝑏, both in shape 

and position for dataset 1, and 𝑋̂2,𝑏 histograms become closer 

to 𝑋2,𝑏 than to 𝑋1,𝑎 for dataset 2. We also expect to have 

higher similarity in the case of dataset 1, since it shows less 

seasonal differences. The histograms in Fig. 10 and Fig. 11 

confirm these expectations. For each most similar spectral 

pair, the histograms of the spectral bands predicted from the 

WV-2 image by ANN and SVR (dashed black lines in Fig. 10 

and Fig. 11) have behaviors more similar to the original 

reference images rather than to the WV-2 ones. In the specific 

case of ANN histograms, they are more similar to the original 

reference images, both in shape and position, though less 

obvious for the NIR band in dataset 2. In the case of SVR 

histograms, one can see that the predicted images have 

changed their histogram in shape and position, but not as 

much as in the ANN case. The problem with NIR band in 

dataset 2 remains as for ANN case. The main difference 

between ANN and SVR results relies in the fact that SVR is 

not able to completely model the shape of the histogram, 

which remains still more similar to that of the original WV-2 

image. Even though the proposed approach mitigates most of 

the intrinsic differences arising from the complexity of 

working with MT multisensor VHR images, some differences 

in shape and position still remain. 

The above is quantitatively corroborated by the KL distance 

shown in Table VI. As expected, the predicted image is 

always closer to the target/reference image one rather than to 

the original one. Furthermore, ANN generates, in general, 

smaller distances than SVR. Since it results in a better 

prediction, from the histogram perspective. In the specific case 

of dataset 2, Table VI further corroborates the robustness of 

the method to: i) the use of images acquired in different 

seasons, ii) the availability of less spectral information (due to 

acquisitions in the same year); and iii) the capability of the 

method to operate under the condition where 𝐴 > 𝐵. 

For the quantitative analysis, CD maps are derived by 

means of CVA and as defined in exp. 1, 2 and 3, by means of 

equation (8). Areas corresponding to radiometric changes 

were extracted by thresholding the magnitude variable. T was 

automatically selected by applying the method in [44]. The T 

values for exp. 1, 2 and 3 for dataset 1 were 0.135, 0.094 and 

0.126; and 0.090, 0.067 and 0.074 for dataset 2. A comparison 

of the CD maps with the reference maps (see Fig. 12 and Fig. 

13) pointed out the improvement achieved when working with 

the proposed approach, both in ANN and SVR regression 

cases, specifically on the reduction of False Alarms (FA) and 

Missed Alarms (MA) for both datasets. In the case of dataset 

1, improvements are related to the identification of the two 

specific changes located in the central part of the study area, 

which were not identified before applying the proposed 

homogenization. Whereas in the case of dataset 2, the 

improvements are related to the reduction of FA coming from 

the river (which did not change) and to a better detection of 

the changes from-to bare soil-vegetation and from buildings. 

  
(a) (b) 

  
(c) (d) 

Fig. 12. Binary CD maps obtained by CVA for a) exp. 1, b) exp. 2 and c) exp. 

3. d) Reference map (dataset 1). 

Table VII shows the quantitative results, where for dataset 1 

the number of FA identified by exp. 1 decreased almost of 

67% with ANN homogenization and 61% with SVR one. 

These results are reflected in the OA, where exp. 2 gained 

about 11% over exp. 1 and 1% over exp. 3; and exp. 3 gained 

about 10% over exp. 1. For dataset 2 the number of FA 

decreased of about 65% in exp. 2 and 42% in exp. 3. This 

results in the increase of the OA for both experiments  
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TABLE VI. KL DISTANCE BETWEEN THE HISTOGRAMS OF UNCHANGED AREAS FOR DATASETS 1 AND 2. 

Spectral 

Band 

Dataset 1 Dataset 2 

𝑋̂1,𝑎𝐴𝑁𝑁
 𝑋̂1,𝑎𝑆𝑉𝑅

 𝑋̂1,𝑎𝐴𝑁𝑁
 𝑋̂1,𝑎𝑆𝑉𝑅

 

𝑋1,𝑙 𝑋2,𝑙 𝑋1,𝑙 𝑋2,𝑙 𝑋1,𝑙 𝑋2,𝑙 𝑋1,𝑙 𝑋2,𝑙 

Blue 2.65 83.43 11.87 69.05 1.90 0.86 2.77 1.62 

Green 3.73 79.76 9.55 55.20 2.34 0.87 2.88 0.96 

Red 3.36 81.66 3.44 77.94 2.03 0.35 2.02 0.51 

NIR 3.78 63.26 5.16 62.50 2.87 3.68 3.30 3.52 

 

  
(a) (b) 

  
(c) (d) 

Fig. 13. Binary CD maps obtained by CVA for a) exp. 1, b) exp. 2 and c) exp. 3. d) Reference map (dataset 2). 

TABLE VII. FALSE ALARMS (FA), MISSED ALARMS (MA), OVERALL ERROR (OE) AND OVERALL ACCURACY (OA) FOR THE PROPOSED APPROACH OVER THE THREE 

EXPERIMENTS (DATASETS 1 AND 2). 

Exp. 
Dataset 1 Dataset 2 

FA MA OE OA (%) FA MA OE OA (%) 

1 145477 68659 214136 79.58 3344 32662 36006 85.11 

2 47210 52046 99256 90.53 965 11388 12353 94.89 

3 56383 57454 113837 89.14 1638 18903 20541 91.50 

 

involving the proposed homogenization procedure for 

multisensor multitemporal images. Exp. 2 gained about 9% 

over exp. 1 and 3% over exp. 3; and exp. 3 gained about 6% 

over exp. 1. As expected, the OA increase from exp.1 to exp. 2 

and 3 is lower than in dataset 1 due to differences in the 

seasonal acquisition. Yet the proposed approach is able to 

improve the CD results. In overall, the results prove the 

effectiveness of the proposed homogenization approach of 

multisensor MT VHR images. Furthermore, based on the 

qualitative and quantitative analysis, as well as in terms of 

computational time, for the considered images ANN is slightly 

better than SVR. However, other regression methods can be 

considered. 

VIII. CONCLUSION 

In this paper, a novel method for generating homogenous 

VHR TS based on non-parametric regression of multisensor 

bitemporal optical images has been proposed. The proposed 

method effectively normalizes the multisensor multitemporal 

images by combining a preliminary normalization (based on 

ARN) and a RRN method. The proposed RRN method is 

based on a novel CD-driven approach for RCSS selection and 

a non-parametric regression model. In RRN, a prediction is 

achieved by deriving single band models with non-parametric 

regressions (ANN and SVR) that allows to capture the 

spatial/spectral variability of VHR multisensor multitemporal 

images which is usually not guaranteed in the state-of-the-art 

approaches for both radiometric normalization and/or change 
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detection. The models allowed us to predict all the spectral 

bands for the 𝑋1,𝑎 image, as they would be acquired at 𝑡2 by 

𝑆1, based on the original 𝑋2,𝑏 image bands and the reference 

un-changed pixels. The proposed CD-driven approach for 

training samples selection showed to be effective from the 

MSE view point, as well as from the MT information 

extraction one. Experimental results on real datasets, made-up 

of VHR bi-temporal and multisensor optical images, 

confirmed the effectiveness of the proposed approach and the 

improvement in multitemporal analysis that can be achieved 

by using the predicted images over the preliminary normalized 

ones. A major improvement is observed when ANN predicted 

image is used, but a good improvement is visible while using 

SVR predicted one as well. The selection of other spectral 

and/or textural features for the training stage could be 

considered to further improve the current CD OA. A further 

analysis can be carried on by using Deep Neural Network non-

parametric regression to achieve both the normalization and 

CD processes at the same time. 

ACKNOWLEDGMENT 

This research is being developed under the project “MS-TS 

– Analysis of Multisensor VHR image Time Series” with 

DigitalGlobe Foundation. Authors would like to thank 

DigitalGlobe Foundation for data crosscheck and images 

provided for the research development. 

REFERENCES 

[1] Y. T. Solano-Correa, F. Bovolo, and L. Bruzzone, “Change 

detection in very high resolution multisensor optical images,” 

2014, vol. 9244, pp. 924410-924410–13. 

[2] Y. T. Solano-Correa, F. Bovolo, and L. Bruzzone, “An Approach 

for Unsupervised Change Detection in Multitemporal VHR 

Images Acquired by Different Multispectral Sensors,” Remote 

Sens., vol. 10, no. 4, p. 533, Mar. 2018. 

[3] L. Bruzzone and F. Bovolo, “A Novel Framework for the Design 

of Change-Detection Systems for Very-High-Resolution Remote 

Sensing Images,” Proc. IEEE, vol. 101, no. 3, pp. 609–630, Mar. 

2013. 

[4] F. Pacifici, N. Longbotham, and W. J. Emery, “The Importance 

of Physical Quantities for the Analysis of Multitemporal and 

Multiangular Optical Very High Spatial Resolution Images,” 

IEEE Trans. Geosci. Remote Sens., vol. 52, no. 10, pp. 6241–

6256, Oct. 2014. 

[5] F. Bovolo, L. Bruzzone, and Y. T. Solano-Correa, 

“Multitemporal Analysis of Remotely Sensed Image Data,” in 

Comprehensive Remote Sensing, S. Liang, Ed. Oxford: Elsevier, 

2018, pp. 156–185. 

[6] M. N. Klaric et al., “GeoCDX: An Automated Change Detection 

and Exploitation System for High-Resolution Satellite Imagery,” 

IEEE Trans. Geosci. Remote Sens., vol. 51, no. 4, pp. 2067–2086, 

Apr. 2013. 

[7] G. Hong and Y. Zhang, “A comparative study on radiometric 

normalization using high resolution satellite images,” Int. J. 

Remote Sens., vol. 29, no. 2, pp. 425–438, Jan. 2008. 

[8] B. Zitová and J. Flusser, “Image registration methods: a survey,” 

Image Vis. Comput., vol. 21, no. 11, pp. 977–1000, Oct. 2003. 

[9] J. Inglada and A. Giros, “On the possibility of automatic 

multisensor image registration,” IEEE Trans. Geosci. Remote 

Sens., vol. 42, no. 10, pp. 2104–2120, Oct. 2004. 

[10] Y. Han, F. Bovolo, and L. Bruzzone, “An Approach to Fine 

Coregistration Between Very High Resolution Multispectral 

Images Based on Registration Noise Distribution,” IEEE Trans. 

Geosci. Remote Sens., vol. 53, no. 12, pp. 6650–6662, Dec. 2015. 

[11] Y. Han, F. Bovolo, and L. Bruzzone, “Edge-Based 

Registration-Noise Estimation in VHR Multitemporal and 

Multisensor Images,” IEEE Geosci. Remote Sens. Lett., vol. 13, 

no. 9, pp. 1231–1235, Sep. 2016. 

[12] A. Wong and D. A. Clausi, “ARRSI: Automatic Registration of 

Remote-Sensing Images,” IEEE Trans. Geosci. Remote Sens., 

vol. 45, no. 5, pp. 1483–1493, May 2007. 

[13] Y. Han, J. Choi, Y. Byun, and Y. Kim, “Parameter 

Optimization for the Extraction of Matching Points Between 

High-Resolution Multisensor Images in Urban Areas,” IEEE 

Trans. Geosci. Remote Sens., vol. 52, no. 9, pp. 5612–5621, Sep. 

2014. 

[14] C. Persello, “Advanced Techniques for the Classification of 

Very High Resolution and Hyperspectral Remote Sensing 

Images,” PhD, University of Trento, Trento, 2010. 

[15] A. A. Nielsen, “The Regularized Iteratively Reweighted MAD 

Method for Change Detection in Multi- and Hyperspectral Data,” 

IEEE Trans. Image Process., vol. 16, no. 2, pp. 463–478, Feb. 

2007. 

[16] M. J. Canty, A. A. Nielsen, and M. Schmidt, “Automatic 

radiometric normalization of multitemporal satellite imagery,” 

Remote Sens. Environ., vol. 91, no. 3, pp. 441–451, Jun. 2004. 

[17] M. J. Canty and A. A. Nielsen, “Automatic radiometric 

normalization of multitemporal satellite imagery with the 

iteratively re-weighted MAD transformation,” Remote Sens. 

Environ., vol. 112, no. 3, pp. 1025–1036, Mar. 2008. 

[18] Y. J. Kaufman, “Atmospheric effect on spectral signature-

measurements and corrections,” IEEE Trans. Geosci. Remote 

Sens., vol. 26, no. 4, pp. 441–450, Jul. 1988. 

[19] V. CASELLES and M. J. L. GARCÍA, “An alternative simple 

approach to estimate atmospheric correction in multitemporal 

studies,” Int. J. Remote Sens., vol. 10, no. 6, pp. 1127–1134, Jun. 

1989. 

[20] Y. Du, P. M. Teillet, and J. Cihlar, “Radiometric normalization 

of multitemporal high-resolution satellite images with quality 

control for land cover change detection,” Remote Sens. Environ., 

vol. 82, no. 1, pp. 123–134, Sep. 2002. 

[21] A. Baraldi, “Impact of Radiometric Calibration and 

Specifications of Spaceborne Optical Imaging Sensors on the 

Development of Operational Automatic Remote Sensing Image 

Understanding Systems,” IEEE J. Sel. Top. Appl. Earth Obs. 

Remote Sens., vol. 2, no. 2, pp. 104–134, Jun. 2009. 

[22] G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. 

Dangel, and J. V. Martonchik, “Reflectance quantities in optical 

remote sensing—definitions and case studies,” Remote Sens. 

Environ., vol. 103, no. 1, pp. 27–42, Jul. 2006. 

[23] F. G. Hall, D. E. Strebel, J. E. Nickeson, and S. J. Goetz, 

“Radiometric rectification: Toward a common radiometric 

response among multidate, multisensor images,” Remote Sens. 

Environ., vol. 35, no. 1, pp. 11–27, Jan. 1991. 

[24] J. E. CONEL, “Determination of surface reflectance and 

estimates of atmospheric optical depth and single scattering 

albedo from Landsat Thematic Mapper data,” Int. J. Remote 

Sens., vol. 11, no. 5, pp. 783–828, May 1990. 

[25] P. R. Coppin and M. E. Bauer, “Processing of multitemporal 

Landsat TM imagery to optimize extraction of forest cover 

change features,” IEEE Trans. Geosci. Remote Sens., vol. 32, no. 

4, pp. 918–927, Jul. 1994. 

[26] P. S. Chavez and D. J. Mackinnon, “Automatic Detection of 

Vegetation Changes in the Southwestern United States Using 

Remotely Sensed Images,” Photogramm. Eng. Remote Sens., vol. 

60, no. 5, May 1994. 

[27] X. J. Yang and C. P. Lo, “Relative radiometric normalization 

performance for change detection from multi-date satellite 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 

14 

images,” Photogramm. Eng. Remote Sens., vol. 66, no. 8, pp. 

967–980, Aug. 2000. 

[28] J. R. Schott, C. Salvaggio, and W. J. Volchok, “Radiometric 

scene normalization using pseudoinvariant features,” Remote 

Sens. Environ., vol. 26, no. 1, pp. 1–16, Oct. 1988. 

[29] G. S. Burns and A. T. Joyce, “Evaluation of Land Cover 

Change Detection Techniques Using Landsat Mss Data,” in 

Proceeding of the 7th Pecora Symposium, Sioux Falls, SD, USA, 

1981, pp. 252–260. 

[30] A. Sinch, Change detection in the tropical forest environment of 

northeastern India using Landsat. In: “Remote Sensing and 

Tropical Land Management. London: John Wiley and Sons, 

1986. 

[31] J. Heo and T. W. FitzHugh, “A standardized radiometric 

normalization method for change detection using remotely sensed 

imagery,” Photogramm. Eng. Remote Sens., vol. 66, no. 2, pp. 

173–181, Feb. 2000. 

[32] K. Tan, X. Jin, A. Plaza, X. Wang, L. Xiao, and P. Du, 

“Automatic Change Detection in High-Resolution Remote 

Sensing Images by Using a Multiple Classifier System and 

Spectral–Spatial Features,” IEEE J. Sel. Top. Appl. Earth Obs. 

Remote Sens., vol. 9, no. 8, pp. 3439–3451, Aug. 2016. 

[33] P. Zhang, M. Gong, L. Su, J. Liu, and Z. Li, “Change detection 

based on deep feature representation and mapping transformation 

for multi-spatial-resolution remote sensing images,” ISPRS J. 

Photogramm. Remote Sens., vol. 116, pp. 24–41, Jun. 2016. 

[34] D. G. Lowe, “Distinctive Image Features from Scale-Invariant 

Keypoints,” Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, Nov. 

2004. 

[35] H. Zhang, J. Chen, and Z. Mao, “The research on relative 

radiometric normalization for change detection of multitemporal 

images,” presented at the Image and Signal Processing for 

Remote Sensing XV, 2009, vol. 7477, p. 747714. 

[36] F. Dellinger, J. Delon, Y. Gousseau, J. Michel, and F. Tupin, 

“Change detection for high resolution satellite images, based on 

SIFT descriptors and an a contrario approach,” in 2014 IEEE 

Geoscience and Remote Sensing Symposium, 2014, pp. 1281–

1284. 

[37] A. Sedaghat, M. Mokhtarzade, and H. Ebadi, “Uniform Robust 

Scale-Invariant Feature Matching for Optical Remote Sensing 

Images,” IEEE Trans. Geosci. Remote Sens., vol. 49, no. 11, pp. 

4516–4527, Nov. 2011. 

[38] V. Sadeghi, H. Ebadi, and F. Farnood-Ahmadi, “A new model 

for automatic normalization of multitemporal satellite images 

using Artificial Neural Network and mathematical methods,” 

Appl. Math. Model., vol. 37, no. 9, pp. 6437–6445, May 2013. 

[39] F. Bovolo and L. Bruzzone, “A Theoretical Framework for 

Unsupervised Change Detection Based on Change Vector 

Analysis in the Polar Domain,” IEEE Trans. Geosci. Remote 

Sens., vol. 45, no. 1, pp. 218–236, Jan. 2007. 

[40] D. R. Insua and P. Müller, “Feedforward Neural Networks for 

Nonparametric Regression,” in Practical Nonparametric and 

Semiparametric Bayesian Statistics, Springer, New York, NY, 

1998, pp. 181–193. 

[41] H. Drucker, C. J. C. Burges, L. Kaufman, A. J. Smola, and V. 

Vapnik, “Support Vector Regression Machines,” in Advances in 

Neural Information Processing Systems 9, M. C. Mozer, M. I. 

Jordan, and T. Petsche, Eds. MIT Press, 1997, pp. 155–161. 

[42] J. R. Jensen, “Urban/Suburban Land Use Analysis,” in Manual 

of Remote Sensing, 2nd ed., Falls Church, VA: American Society 

of Photogrammetry, 1983, pp. 1571–1666. 

[43] C. D. Elvidge, D. Yuan, R. D. Werackoon, and R. S. Lunetta, 

“Relative Radiometric Normalization of Landsat Multispectral 

Scanner (MSS) Data Using an Automated Scattergram Controlled 

Regression,” Photogramm. Eng. Remote Sens., vol. 61, no. 10, 

pp. 1255–1260, Oct. 1995. 

[44] M. Zanetti, F. Bovolo, and L. Bruzzone, “Rayleigh-Rice 

Mixture Parameter Estimation via EM Algorithm for Change 

Detection in Multispectral Images,” IEEE Trans. Image Process., 

vol. 24, no. 12, pp. 5004–5016, Dec. 2015. 

[45] Y. T. Solano-Correa, F. Bovolo, and L. Bruzzone, “VHR time-

series generation by prediction and fusion of multi-sensor 

images,” in 2015 IEEE International Geoscience and Remote 

Sensing Symposium (IGARSS), 2015, pp. 3298–3301. 

[46] “DigitalGlobe Foundation.” [Online]. Available: 

http://foundation.digitalglobe.com/. [Accessed: 15-Jan-2018]. 

[47] “DigitalGlobe Atmospheric Compensation.” [Online]. 

Available: 

http://explore.digitalglobe.com/AComp.html?utm_source=blog&

utm_medium=website&utm_campaign=AComp. [Accessed: 15-

Jan-2018]. 

[48] F. Pacifici, “Atmospheric compensation in satellite imagery,” 

US9396528 B2, 19-Jul-2016. 

[49] C. Paris and L. Bruzzone, “A Three-Dimensional Model-Based 

Approach to the Estimation of the Tree Top Height by Fusing 

Low-Density LiDAR Data and Very High Resolution Optical 

Images,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 1, pp. 

467–480, Jan. 2015. 

[50] C. A. Laben and B. V. Brower, “Process for enhancing the 

spatial resolution of multispectral imagery using pan-

sharpening,” US6011875A, 04-Jan-2000. 

[51] “ENVI - The Leading Geospatial Analytics Software | Harris 

Geospatial.” [Online]. Available: 

http://www.harrisgeospatial.com/SoftwareTechnology/ENVI.asp

x. [Accessed: 15-Jan-2018]. 

[52] R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural 

Features for Image Classification,” IEEE Trans. Syst. Man 

Cybern., vol. SMC-3, no. 6, pp. 610–621, Nov. 1973. 

[53] S. E. Grigorescu, N. Petkov, and P. Kruizinga, “Comparison of 

texture features based on Gabor filters,” IEEE Trans. Image 

Process., vol. 11, no. 10, pp. 1160–1167, Oct. 2002. 

[54] S. Kullback and R. A. Leiber, “On Information and 

Sufficiency,” Ann. Math. Stat., vol. 22, no. 1, pp. 79–86, Mar. 

1951. 

 

Yady Tatiana Solano-Correa (S’13-M’18) 

received the Bachelor (B.S.) degree in Physics 

Engineering (honorable mention) from the 

University of Cauca, Cauca, Colombia, in 

2011; and the Ph.D. degree (magna cum laude) 

in communication and information 

technologies from the Department of 

Information Engineering and Computer 

Science, University of Trento, Trento, Italy, in 

2018.  

From 2009 to 2013, she was a Researcher for the research groups: 

Optics and Laser Group (GOL) and Environmental Studies Group 

(GEA), University of Cauca. She is currently a Post-Doctoral 

Researcher with the Remote Sensing for Digital Earth Unit, 

Fondazione Bruno Kessler, Trento. She is a member of the RSLab, 

University of Trento. She works, and has worked, within the context 

of several projects with a focus on analyzing information for climate 

change and developing advanced change detection techniques for 

optical satellite time series data, among them: 1) RICCLISA—

Interinstitutional network of climate change and food security, 

Colombia. Founded by the Colombian administrative department of 

Science, Technology and Innovation—COLCIENCIAS; 2) MS-TS—

Analysis of MultiSensor VHR image Time Series, in collaboration 

with Digital Globe Foundation; and 3) SEOM—Scientific 

Exploitation of Operational Missions—S2-4Sci Land and Water—

Multitemporal Analysis. Founded by European Space Agency (ESA). 

Her research interests include remote sensing environmental 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 

15 

applications, change detection, both on medium resolution 

multispectral images (e.g., Landsat and Sentinel-2) and very high-

resolution (VHR) images, multitemporal analysis of short- and long-

time series, multisensor multitemporal image preprocessing and 

information extraction, pattern recognition and image classification. 

Dr. Solano-Correa was a recipient of the Best Student Oral 

Presentation Award at the MultiTemp 2017 Conference, Bruges, 

Belgium, in 2017. She is a referee for the IEEE TRANSACTIONS 

ON GEOSCIENCE AND REMOTE SENSING, the IEEE Journal of 

Selected Topics in Applied Earth Observations and Remote Sensing, 

and the IEEE GEOSCIENCE AND REMOTE SENSING LETTERS. 

 

 

Francesca Bovolo (S’05–M’07–SM’13) 

received the Laurea (B.S.) degree, the Laurea 

Specialistica (M.S.) degree (summa cum laude) 

in telecommunication engineering, and the 

Ph.D. degree in communication and 

information technologies from the University 

of Trento, Trento, Italy, in 2001, 2003, and 

2006, respectively. 

She was a Research Fellow with the University 

of Trento, until 2013. She is currently the 

Founder and the Head of Remote Sensing for Digital Earth Unit, 

Fondazione Bruno Kessler, Trento, and a member of the Remote 

Sensing Laboratory, Trento. She is one of the co-investigators of the 

Radar for Icy Moon Exploration instrument of the European Space 

Agency Jupiter Icy Moons Explorer. Her research interests include 

remote-sensing image processing, multitemporal remote sensing 

image analysis, change detection in multispectral, hyperspectral, and 

synthetic aperture radar images, and very high-resolution images, 

time series analysis, content-based time series retrieval, domain 

adaptation, and Light Detection and Ranging (LiDAR) and radar 

sounders. She conducts research on these topics within the context of 

several national and international projects. 

Dr. Bovolo is a member of the program and scientific committee of 

several international conferences and workshops. She was a recipient 

of the First Place in the Student Prize Paper Competition of the 2006 

IEEE International Geoscience and Remote Sensing Symposium 

(Denver, 2006). She was the Technical Chair of the Sixth 

International Workshop on the Analysis of Multitemporal Remote-

Sensing Images (MultiTemp 2011). She has been a Co-Chair of the 

SPIE International Conference on Signal and Image Processing for 

Remote Sensing since 2014. She is the Publication Chair of the 

International Geoscience and Remote Sensing Symposium in 2015. 

She has been an Associate Editor of the IEEE JOURNAL OF 

SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS 

AND REMOTE SENSING since 2011 and the Guest Editor of the 

Special Issue on Analysis of Multitemporal Remote Sensing Data of 

the IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE 

SENSING. She is a referee for several international journals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lorenzo Bruzzone (S’95–M’98–SM’03–

F’10) received the Laurea (M.S.) degree 

(summa cum laude) in electronic engineering 

and the Ph.D. degree in telecommunications 

from the University of Genoa, Genoa, Italy, in 

1993 and 1998, respectively. 

He is currently a Full Professor of 

telecommunications with the University of 

Trento, Trento, Italy, where he teaches remote 

sensing, radar, and digital communications. He is the Founder and the 

Director of the Remote Sensing Laboratory, Department of 

Information Engineering and Computer Science, University of 

Trento. He is the Principal Investigator of many research projects, 

including the Radar for Icy Moon Exploration instrument in the 

framework of the Jupiter Icy Moons Explorer mission of the 

European Space Agency (ESA), and the Science Lead for the High-

Resolution Land Cover Project in the framework of the Climate 

Change Initiative of ESA. He has authored or co-authored 236 

scientific publications in refereed international journals (172 in IEEE 

journals), more than 310 papers in conference proceedings, and 21 

book chapters. He has edited or co-edited 18 books/conference 

proceedings and 1 scientific book. His papers are highly cited, as 

proven from the total number of citations (more than 27000) and the 

value of the h-index (74) (source: Google Scholar). His research 

interests include remote sensing, radar and synthetic aperture radar, 

signal processing, machine learning, and pattern recognition. He 

promotes and supervises research on these topics within the 

frameworks of many national and international projects.  

Dr. Bruzzone has been a member of the Administrative Committee of 

the IEEE Geoscience and Remote Sensing Society (GRSS) since 

2009, where he is currently a Vice-President for Professional 

Activities. He is currently a member of the Permanent Steering 

Committee of the IEEE International Workshop on the Analysis of 

Multitemporal Remote-Sensing Images (Multi Temp) series. He was 

a recipient of the First Place in the Student Prize Paper Competition 

of the 1998 IEEE International Geoscience and Remote Sensing 

Symposium (IGARSS), Seattle, in 1998, and many international and 

national honors and awards, including the recent IEEE GRSS 2015 

Outstanding Service Award, the 2017 IEEE IGARSS Symposium 

Prize Paper Award, and the 2018 IEEE IGARSS Symposium Prize 

Paper Award. He has been the Chair of the SPIE Conference on 

Image and Signal Processing for Remote Sensing since 2003. He was 

a Guest Co-Editor of many special issues of international journals. 

He is currently an Associate Editor of the IEEE TRANSACTIONS 

ON GEOSCIENCE AND REMOTE SENSING. He was the Editor-

in-Chief of IEEE Geoscience and Remote Sensing Magazine from 

2013 to 2017. He is the Co-Founder of the IEEE International 

Workshop on the Analysis of Multitemporal Remote-Sensing Images 

(Multi Temp) series. He has been the Founder of IEEE Geoscience 

and Remote Sensing Magazine. He was invited as a Keynote Speaker 

in more than 32 international conferences and workshops. He has 

been a Distinguished Speaker of the IEEE Geoscience and Remote 

Sensing Society from 2012 to 2016. 

 


