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Abstract—Hyperspectral (HS) images provide dense sampling
of target spectral signatures. Thus, they can be used in a
multitemporal framework to detect and discriminate between
different kinds of fine spectral change effectively. However, due
to the complexity of the problem and the limited amount of
multitemporal images and reference data, only few works in the
literature addressed Change Detection (CD) in HS images. In this
paper we present a novel method for unsupervised multiple CD
in multitemporal HS images based on a discrete representation
of the change information. Differently from the state of the art
methods, that address the high dimensionality of the data using
band reduction or selection techniques, in this work we focus our
attention on the representation and exploitation of the change
information present in each band. After a band-by-band pixel-
based subtraction of the multitemporal images, we define the
Hyperspectral Change Vectors (HCVs). The change information
in the HCVs is then simplified. To this end, the radiometric
information of each band is separately analyzed to generate
a quantized discrete representation of the HCVs. This discrete
representation is explored by considering the hierarchical nature
of the changes in HS images. A tree representation is defined
and used to discriminate between different kinds of change. The
proposed method has been tested on a simulated dataset and two
real multitemporal datasets acquired by the Hyperion sensor over
agricultural areas. Experimental results confirm that the discrete
representation of the change information is effective when used
for unsupervised CD in multitemporal HS data.

Index Terms—Change Detection, Hyperspectral Images, Mul-
titemporal Images, Binary Codewords.

I. INTRODUCTION

The analysis of the natural or anthropogenic land-cover
dynamics is fundamental for environmental monitoring. In
this context, Earth Observation satellites provide a powerful
tool for the analysis of changes on the Earth surface due to
their point of view and their capability of regularly acquiring
multiple images over the same area at different times. Thus,
multitemporal remote sensing images can be effectively used
to perform Change Detection (CD), i.e., to identify the land
cover changes occurred between two or more images acquired
over the same area at different times [1].
In the literature, CD methods exist for multitemporal images
acquired both by passive optical and active Synthetic Aperture
Radar (SAR) systems. Here we focus on the former one.
CD methods for optical passive data can be split into two
main categories: i) binary CD [2]–[11], and ii) multiple CD
[12]–[23]. Binary CD consists in the discrimination between
changed and unchanged samples only. It can be performed

either in the spectral band domain using all the spectral
channels or by manually selecting the relevant ones [9], or by
working in a transformed feature space. The most common
approach is to apply a threshold to the magnitude of the
difference image (obtained by pixel-by-pixel subtraction of
each spectral channel of the multitemporal images). The sta-
tistical distribution of the magnitude variable can be modelled
either in parametric [2] or non parametric ways [24]. The
decision strategy can be designed in the Bayesian framework
according to minimum error [2] or minimum cost [11] rules.
Other methods are based on the use of genetic algorithms [3],
fuzzy clustering [4], data fusion techniques [5] or feature level
fusion techniques [6]. Pixel based results can be improved
by taking into account the spatial correlation. Examples of
this include Hopfield-Type neural networks [7], self-organizing
feature map neural network [8] or Markov Random Fields
[10].
Multiple CD methods allow for the discrimination between
multiple kinds of change. Existing methods can be either
supervised [12]–[19] or unsupervised [20]–[23]. Supervised
methods use training data to achieve accurate CD results.
Among them we recall: i) post classification comparison
[12]–[14]; ii) direct multidate classification [15], [16]; and
iii) compound classification [17]–[19]. A critical analysis of
these kinds of approach can be found in [25], [26]. The
key issue is that multitemporal labelled reference data are
seldom available thus making unsupervised methods poten-
tially more useful also in the more complex multiple CD
case. Some of the existing unsupervised multiple CD methods
are based on transformations such as Independent Component
Analysis (ICA) [20] or multivariate analysis techniques (e.g.,
Multivariate Alteration Detection [21]). Others are based on
image differencing and thus Change Vector Analysis (CVA)
[22], [23]. For example in [22] the authors use a 2-D polar
representation of the Hyperspectral Change Vectors (HCVs)
assuming the use of 2 bands only. In [23] the authors propose
a compressed version of the CVA (C2VA) to obtain a 2-
D compressed representation of the multidimensional HCVs
(i.e., they compress the information of more bands into a 2-D
space).
Those methods have been designed for multispectral (MS)
images where only changes inducing large spectral variations
can be observed. However, changes may induce variations
in small portions of the spectrum and there may be groups
of changes that differ significantly only in a short range of
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wavelengths [27]. Their detection and discrimination requires
an accurate representation of the change signature (i.e., the
HCV). To this end, a dense sampling of the electromagnetic
spectrum is required. HS sensors show narrow spectral interval
between adjacent bands and thus give a near-continuous rep-
resentation of the spectral signature for each pixel. Since the
availability of multitemporal HS data is limited, poor attention
has been devoted to CD in HS images. This is even more true
after the Hyperspectral Imager for the Coastal Ocean (HICO)
failure due to a solar storm in September 2014 and the NASA
EO-1 satellite (which mounted on board the first spaceborne
Hyperion HS sensor) deactivation in March 2017. However, in
the next years new satellite missions with HS sensors will be
launched thus making multitemporal HS data a promising tool
for CD applications. Among them we mention: 1) “PRecursore
IperSpettrale della Missione Applicativa” (PRISMA) which
will be launched in 2019 [28]; 2) “Hyperspectral Imager
Suite” (HISUI) planned to be launched in 2019 [29]; 3)
“Environmental Mapping and Analysis Programme” (EnMAP)
planned for launch in 2020 [30]; 4) “Hyperspectral Infrared
Imager” (HyspIRI) scheduled for launch after 2022 [31]; and
5) “Spaceborne Hyperspectral Applicative Land and Ocean
Mission” (SHALOM) scheduled for launch after 2022 [32].
The detailed spectral information in HS data comes at a cost of
an increase complexity when performing CD on HS images.
The main challenge is related to the high dimensionality of
HS data. When dealing with a high dimensional space, the
effectiveness of methods developed for a low dimensional
space decreases due to problems such as reduced efficiency of
distance metrics [33] and the Hughes phenomenon [34]. These
problems are related to the sparsity of the feature space when
the number of dimensions increases. Dimensionality reduction
approaches such as Principal Component Analysis (PCA) [35]
or C2VA [23] designed for MS data can be applied to HS
images. However, while reducing the dimensionality they fail
in preserving relevant change information. Another issue of
HS data is related to redundancy. This is due to the fact that
adjacent bands (in terms of wavelength) may contain similar
information due to the narrow sampling of the spectrum. This
makes the relevant change information more sparse [27].
To this date, the number of methods for CD in HS images is
still quite limited. CD is carried out comparing the spectral
signature of the same pixel at the two dates using spectral
comparison measures such as the Spectral Angle Mapper
(SAM) [36], the Spectral Information Divergence (SID) [37]
or a composition of the two measures [38]. Other methods are
based on transformations such as covariance equalization [39]
to perform detection of changes that typically do not occur
naturally (e.g., moving of targets). Anomaly CD has been
performed also using Cluster Kernel Reed–Xiaoli (CKRX)
algorithm [40] or by statistically modeling the problem using
a multivariate Gaussian model [41]. Another type of transfor-
mation methods are those that perform the CD in transformed
spaces. In [42] the authors use the ICA to separate the changes
in different components. In [43] the PCA is applied to the
two stacked multitemporal images to perform a Temporal PCA
(TPCA). In [44] the author proposes an iterative Multivariate
Alteration Detection (MAD) algorithm where at each iteration

the method focuses more on the samples for which the change
status is not clear. C2VA has been also used in HS images
both in unsupervised [27] and supervised [45] manner. In [27]
the authors mitigate the loss of information resulting from the
compression of the high dimensional data in a 2-D space by
applying the C2VA iteratively and hierarchically. In [45] the
authors follows an hierarchical approach where the changes
are manually selected at each iteration in the compressed 2-
D feature space. Other works are based on unmixing, which
considers the possibility of having different materials inside a
single pixel (due to the relatively low spatial resolution of
HS sensors) [46]–[48]. The idea is to extract the different
end-members of change to guide the change identification
and detection process. Preliminary studies preparatory to this
work already addressed unsupervised CD [49], [50]. Both
provide only a partial solution to the problem and work
on a simplified band-by-band representation of the change
information. Further they showed to be unable to: i) adapt to
the different information content of spectral channels [49] and
ii) deal with the different levels of intensity variations among
types of change (i.e., they do not allow for different levels of
sensitivity) [49], [50].
The analysis of the literature points out that most of the exist-
ing methods address the high complexity of CD in HS images
by applying transformations or feature reduction techniques.
This is done to reduce: i) the dimension of the features space
and thus the computational burden; and ii) the noise impact
and thus the number of errors. This often results in a loss
of change information. Moreover, most of the existing feature
reduction techniques are developed for single date analysis
and are often supervised thus limiting their use in a multi-
temporal framework. Indeed, in the multitemporal case change
information showing low prior probability should be preserved
and unsupervised method are preferred being multitemporal
ground truth seldom available. Little work has been done
regarding the definition of alternative effective representations
of change that focus on the relevant change information of
each band of the Hyperspectral Change Vectors (HCVs).
Accordingly, we work on the HCVs to highlight the change
information by representing the HCVs with binary codewords.
For a given HCV, each spectral channel is represented using
Q bits (where in HS images typically Q ≥ 10) to code all
the possible radiometric values. In the new representation we
can reduce the number of bits used for each band thus moving
from 2Q (e.g., 212 = 4096) to few values that represent the
essential change information in each channel. To this end, the
method first performs a binary CD to discriminate between
changed and unchanged HCVs. It then focuses only on the
changed HCVs (the ones with a high magnitude value induced
by change impact on one or more spectral channels) in order
to convert them into binary codewords working on each band
separately. The method adaptively quantizes the values of
the HCVs at the considered band so that different kinds of
change fit to different quantization intervals. In such a way,
the behaviour of each change (or group of changes) is modeled
accurately in each band and coded using binary strings. The
fusion of the band-by-band binary representations provides
a codeword that models the change information content of
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the full HCV. Thus, despite binarization is conducted on each
band separately, the correlation of the change information in
adjacent spectral bands is preserved. The binary codewords
are then compressed across bands to reduce the remaining
redundant information. Finally, the method organizes the
codewords in a dendrogram (i.e., a tree structure) by means
of an agglomerative hierarchical clustering. The hierarchical
structure allows us to obtain different results in terms of level
of detail of the CD by cutting the dendrogram at different
heights. The entire process is unsupervised.
The main novel contributions of the proposed method are:
• An adaptive band-dependent model to represent the in-

formation of multiple kinds of change in multitemporal
HS images.

• A compressed representation of the multitemporal infor-
mation associated to changes that is simple, efficient and
reduces data volume.

• An adaptive mechanism to discriminate between the kinds
of change depending on the selected sensitivity.

The method has been tested on a simulated HS dataset and on
two real multitemporal HS datasets acquired by the Hyperion
sensor over two agricultural areas in Washington state (USA)
and in the Albacete province (Spain). Experimental results
confirmed the effectiveness of the proposed method. The rest
of the paper is divided in 3 Sections. Section II describes in
detail the proposed method. Section III presents and analyzes
the experimental results. Finally Section IV draws the conclu-
sion.

II. PROPOSED METHOD FOR UNSUPERVISED CHANGE
DETECTION IN HYPERSPECTRAL DATA

Figure 1 shows the block scheme of the proposed method
that consists of three main steps: i) binary CD; ii) Hy-
perspectral Change Vectors Binary Coding; iii) Compressed
Binary Hyperspectral Change Vectors analysis. The binary
CD separates changed from unchanged samples. After that
the method focuses on the changed samples only. The coding
of the changed HCVs first adaptively quantizes the values of
the HCVs in each band to simplify the representation of the
change information. The codeword definition and compression
steps allow us to obtain binary codewords coding the change
information contained in all the spectral channels. Finally, the
Compressed Binary Hyperspectral Change Vectors (CBHCVs)
analysis separates the different kinds of change.
Let I1 and I2 be two hyperspectral images acquired at times t1
and t2, respectively with I1 = {I1,b}Bb=1 and I2 = {I2,b}Bb=1,
where I1,b and I2,b are the single band images representing
the b-th spectral channel. We define Ω = {ωu,ΩC} as the set
of classes containing both unchanged (ωu) and changed (ΩC)
pixels. ΩC = {ω1, ω2, . . . , ωJ} is the macro-class of changed
pixels that can be further divided into J classes, one for each
type of change.

A. Binary Change Detection

The first step of the method is the binary CD that discrim-
inates between changed and unchanged pixels. To this end,
we follow a state of the art approach based on the statistical

analysis of the magnitude of the difference image which has
been extensively used in the literature [2], [11], [22], [51].
However, note that other binary CD strategies could be used.
First we compute the HS difference image as ID = I2 − I1

and its magnitude Iρ as:

Iρ =

√√√√ B∑
b=1

(ID,b)
2
. (1)

It is expected that unchanged pixels show a small magnitude
value whereas changed one show large magnitude. Thus we
analyze the Probability Density Function (PDF) of Iρ in
order to discriminate between ωu and ΩC . According to the
literature, we approximate the PDF of the magnitude as a
mixture of two parametric distributions. Unchanged pixels are
approximated as Rayleigh distributed whereas the changed
ones are approximated as Rice distributed [52]. After esti-
mating the parameters of the two models using an Estimation
Maximization algorithm, according to Bayes theory it is pos-
sible to determine a threshold Tρ such that pixels below Tρ
belong to class ωu, whereas pixels above Tρ belong to class
ΩC . From here on we focus on the set {sn}Nn=1 of N changed
HCVs (sn ∈ Ωc, ∀n = 1, . . . , N ), where sn = {sn,b}Bb=1 is
the n-th HCV and sn,b the b-th spectral channel of sn.

B. Hyperspectral Change Vectors Binary Coding

In the second step we move from the real valued represen-
tation of the HCVs usually employed in the literature to the
novel binary codeword based one. The aim is to provide a
simpler yet effective representation of the HCVs focused on
the information associated with different kinds of change and
thus able to improve their separability. Figure 2a shows that
kinds of change in the original HCV space (i.e., the real valued
space) can be discriminated more or less effectively depending
on the considered band. As an example, in band by (Figure
2a) it is possible to separate between two groups of changes
(ω1, ω2 and ω3, ω4) whereas in band bz the four changes are
indistinguishable from each other. This illustrates that bands
may contain significantly different change information with
some of them (e.g., bands bx and by) being more relevant
for the CD problem with respect to others (e.g., band bz)
where all the changes show similar values and cannot be
separated. Therefore, we adaptively analyze each band to
detect the information that can be useful for the change
discrimination. At the same time we represent each HCV in a
more efficient and compact way. In particular, we move from
the common real valued representation to the proposed binary
representation by assigning to each HCV sn a binary code-
word referred to as Compressed Binary Hyperspectral Change
Vector (CBHCV) cpn. This is achieved by: 1) Quantization;
2) Binary Codeword Definition; 3) Compression.

1) Quantization: It identifies, by working separately on
each band, the information that allows us to separate the
different changes. We consider the content of a band relevant
for solving the CD problem if we can identify more than
one cluster of pixels, where each cluster contains the samples
related to a given kind of change or a group of kinds of change.
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HS Change Vectors Binary Coding

Binary CD Map
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Fig. 1: Block scheme of the proposed method.

HCVs

(a) (b)

Fig. 2: Qualitative illustration of the quantization step of the proposed technique: (a) HCVs of 4 pixels belonging to 4 different
kinds of change (ω1−4). (b) Probability Density Functions of the values of the changed pixels for the 3 bands. The dashed
lines identify the boundaries of the quantization intervals with the corresponding binary strings.

This is reflected in the PDF of the values of sb = {sn,b}Nn=1

(i.e., values of the b-th component of the HCVs which are
associated with band b) since samples that fall inside the
same mode are likely to belong either to the same kind of
change or different changes that in turn are indistinguishable
using the informative content of the considered band. In
contrast, samples that fall inside different modes are likely to
belong to different kinds of change. Thus, we are interested
in identifying these modes. Figure 2b shows the PDFs of the
values in sb for the 3 different bands bx, by, bz . In band bz
only one mode exists whereas for bands bx and by more modes
can be identified. Therefore, we can simplify the radiometric
information related to changes of each band by quantizing the
sn,b in the same mode into one single quantization interval.
Since different bands contain different change information, the
proposed quantization step has to be performed adaptively in
order to properly preserve and capture the change information.
A uniform band-by-band quantization [49] would lead to split
samples belonging to the same change class into different
quantization levels and thus to a poor representation.

To apply the quantization, we identify and separate the modes
so that each one corresponds to a quantization interval. To
this end, first we estimate the PDF psb(sb) of sb using a
Kernel Density Estimator (KDE) [24] (however, any other
estimation methods can be used). Then we search for the Mb

modes of psb(sb) by identifying the local maxima and we
define Mb quantization intervals. Note that Mb can vary for
different spectral channels. If only one mode is identified (i.e.,
Mb = 1), the band is discarded (e.g., band bz in Figure 2b).
The boundaries of each quantization interval are positioned
at the minimum between two modes with the corresponding
interval as large as the distance between the two minima.
Each sn,b ∈ sb is assigned to the corresponding quantization
interval thus obtaining Mb sets {smb }

Mb
m=1 (see Figure 2b). The

PDF estimation is intrinsically subject to errors. Moreover,
typically the modes of the PDF are overlapped. Therefore, it
is likely that the quantization leads to errors such as that pixels
belonging to the same kind of change are split by a wrongly
positioned boundary. Quantization errors mitigation will be
addressed in the following. The proposed strategy results in
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better performance than other approaches like those based on
clustering.

2) Codeword Definition: After the quantization step, we
move to the binary representation of the quantized intervals.
For a given band, we assign a different binary string to
each quantization interval and thus to all the pixels in the
corresponding set smb . For each band b, the length Qb of
the corresponding binary string depends on the number of
quantization intervals Mb. We compute the number of bits
as Qb = dlog2 Mbe. Note that since 2Qb−1 < Mb ≤ 2Qb

some combinations of binary strings may remain unused. The
binary strings are coded according to the Gray code such that
adjacent quantization intervals (i.e., modes) differ by only
one bit at the considered band. This reduces the impact of
the errors introduced in the quantization step in the binary
codeword representation. Figure 2b shows an example of the
binary string assigned to each quantization interval for the two
bands bands bx, by .
Concatenating the binary strings assigned to a pixel in the B
bands, we obtain its codeword which codes the change infor-
mation of the corresponding HCV. By applying the codeword
definition for each band to each sn ∈ {sn}Nn=1 we obtain a set
of codewords {pn}Nn=1 called Binary Hyperspectral Change
Vectors (BHCVs). Each pn = {pn,k}Kk=1, (pn,k ∈ {0, 1})
is a binary string of length K =

∑B
b=1 Qb. In the ID the

number Q of bits used for each band is constant and thus the
total number of bits required to code a HCV is Q×B. Since
typically Q ≥ 10 whereas Qb is much smaller (we expect
Qb ≤ 3 in most of the cases), then K << Q×B.

3) Compression: The last step of the coding of the HCVs
is the compression of the codewords in {pn}Nn=1. Typically
HS data are highly redundant due to the narrow sampling of
the spectrum. This means having large number of samples
showing very similar values at multiple bands. When moving
to the codeword based representation, redundancy still exists.
In this domain, there is redundancy when a large portion of
the samples in set sb is quantized identically (i.e., the same
samples are split into the same groups) at multiple bands. In
terms of binary representation, this translates in large number
of samples that share the same value for more than one bit of
the codeword. Thus, we propose to analyze the redundancy in
terms of groups of bits (i.e., redundant bits) that have equal
values for large number of samples.
In order to search for the redundant bits, first we sort them
along the k index (i.e., we swap the position k of the bits) in
such a way that groups of bits showing the same value for a
large number of samples are positioned near each other. The
sorting algorithm [53] first produces a tree structure with K
leafs where the k-th leaf represents the binary vector of length
N containing the values of the k-th bit of all the codewords in
{pn}Nn=1. It then applies an efficient leaf ordering method that
aims at maximizing the sum of the similarities of the elements
of adjacent leafs (note that others sorting algorithm could be
used). We obtain a new set {p′n}Nn=1 (with p′n = {p′n,k}Kk=1)
of BHCVs that contains exactly the same change information
of the set {pn}Nn=1 with the bits sorted according to similarity.
Tables Ia and Ib show an example with a set of 5 BHCVs
before and after the ordering, respectively. The ordering allows

us to simplify the identification of redundant bits since set
{p′n}Nn=1 is defined so that they are positioned near each
other. We can now identify these groups by evaluating the
redundancy of adjacent bits. To this end, we compute the sum
of all the N pairwise Hamming distances of two bits k and
k + 1 as:

r(k, k + 1) =

N∑
n=1

|p′n,k+1 − p′n,k|. (2)

Distance r will show small values when the pair of adjacent
bits (k, k + 1) contains redundant information whereas it will
show large values when the change information of the two bits
is not redundant. The last rows of both Table Ia and Table Ib
show the Hamming distances computed between each adjacent
pair of bits. Note that in Table Ia the values of r are much
larger and distributed with respect to Table Ib. This highlights
how the bit ordering effectively positions near each other bits
with similar information.
We analyze the vector r to find sequences of small values
(i.e., groups of redundant bits) surrounded by large r values
(i.e., adjacent pairs not redundant). We consider two adjacent
bits k and k + 1 redundant if r(k, k + 1) ≤ Tr, (Tr > 0)
and not redundant if r(k, k + 1) > Tr. By applying the
threshold to the distances we identify the groups of redundant
bits (i.e., groups of adjacent bits for which r ≤ Tr) and
those that are likely to be not redundant an thus that contain
relevant and unique change information. The dashed lines in
Table Ib separates the different groups of bits that have been
identified as redundant, the ones that can be compressed.
Here we propose to work separately on each BHCV and
compress each group of redundant bits into one bit using a
majority rule. This allows us not only to reduce the redundant
information, but also the number of errors thus reducing
the number of outliers. Indeed, the majority rule can filter
out outliers (e.g., a bit that in very few samples shows a
different value with respect to the other bits of the redundant
group). The new set {cpn}Nn=1 is composed by binary strings
defined as Compressed Binary Hyperspectral Change Vectors
(CBHCVs) where each cpn = {cpn,i}Ii=1, (I << K). Note
that the compression rate K/I is strongly dependent on the set
{p′n}Nn=1 and the amount of redundant information it contains.
Table Ic shows the CBHCVs of the corresponding sorted
BHCVs of Table Ib. Note that unlike existing dimensionality
reduction methods (e.g., [54]–[57]), the proposed compression
of BHCVs is specifically designed to exploit the simplified
binary representation of the change information.

C. Compressed Binary Hyperspectral Change Vectors Analy-
sis

In the last phase we exploit the simplified binarized rep-
resentation of the change information (i.e., the codewords)
to discriminate between the different kinds of change. HS
data allow us to discriminate between both major land cover
changes and more subtle changes [27]. The sensitivity required
in the discrimination between the kinds of change may vary
depending on the considered application. Indeed, whereas in
some cases one may want to discriminate between all the
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TABLE I: Compression of the codewords of five pixels: (a)
BHCVs before the bit sorting showing the Hamming distance r
between adjacent pairs of bits. (b) BHCVs after the bit sorting.
(c) Codewords after the compression (i.e., CBHCVs).

(a)

B
H

C
V

s

p1 1 1 1 0 1 1 1 1 1
p2 1 1 1 0 1 1 1 1 1
p3 0 1 1 0 0 0 1 0 0
p4 0 1 0 1 0 0 1 0 0
p5 0 1 0 1 0 0 1 0 0

r 3 2 5 4 0 3 3 0

(b)

So
rt

ed
B

H
C

V
s p′

1 1 1 1 1 1 1 1 1 0
p′
2 1 1 1 1 1 1 1 1 0

p′
3 1 0 0 0 0 0 1 1 0

p′
4 0 0 0 0 0 0 1 1 1

p′
5 0 0 0 0 0 0 1 1 1

r 1 0 0 0 0 3 0 3

(c)

C
B

H
C

V
s

cp1 1 1 0
cp2 1 1 0
cp3 0 1 0
cp4 0 1 1
cp5 0 1 1

possible kinds of change, this may not be the case for other ap-
plications in which the main aim is to detect specific land cover
changes only. For this reason, we propose to represent the set
of changed samples in a hierarchical tree structure defined
using an agglomerative hierarchical clustering approach. This
representation allows us to analyze the tree at different depths
which correspond to different sensitivities in the discrimination
of the kinds of change.
The HCVs coding phase resulted in a simplified representation
of the change information. Thus, we expect to have a large
number of changed pixels that share the same CBHCVs.
First, we select only the unique CBHCVs {ucpu}Uu=1 and
we compute the corresponding prior probabilities as:

Pu =
|{n ∈ {1, . . . , N} : cpn = ucpu}|

N
. (3)

We can assume that, if the prior probability Pu of an unique
CBHCVs is low, the corresponding samples are non interesting
outliers or are related to errors in the HCVs coding step (which
have been reduced by the compression step). Therefore, we
discard the ucpu for which Pu ≤ Tp, where Tp is a threshold
on the prior probability. However, it may happen that CBHCVs
with very low prior probabilities actually correspond to a real
change which occurred only in a very small area. Thus, the
value of threshold Tp has to be selected considering the trade-
off between the capability of removing noisy samples and
outliers and the risk of losing true changes. The hierarchical
clustering is then applied only to the ucpu for which Pu > Tp,
which is a set {ucp′u}U

′

u=1 where U ′ ≤ U .
The agglomerative hierarchical clustering is based on the

Unweighted Pair Group Method with Arithmetic Mean (UP-
GMA). The algorithm starts with U ′ clusters, each correspond-
ing to an unique ucp′u and at each iteration it merges the two
most similar clusters. Merging is conducted according to the
pairwise normalized Hamming distance. Since the compres-
sion involves groups of redundant bits with different sizes the
Hamming distance is computed in a weighted manner, where
the weight of each bit of the CBHCVs is directly proportional
to the number of bits that were compressed to generate it.
The pairwise distance computation is the most computationally
demanding part of the clustering algorithm since it requires the
computation of U ′(U ′ − 1)/2 distances (O(n2) complexity).
However, since U ′ << N the computational time is signifi-
cantly smaller with respect to computing the pairwise distances
in the original domain which means computing N(N − 1)/2
distances (U ′(U ′− 1)/2 << N(N − 1)/2). At each iteration,
after merging the two most similar clusters, the algorithm
recomputes the distance between the newly formed one and all
the others. Let us consider the first iteration of the algorithm
and three generic clusters ucp′a,ucp

′
b,ucp

′
c with prior prob-

abilities Pa, Pb, Pc, respectively. Let d(ucp′a,ucp
′
b) be the

pairwise distance between ucp′a and ucp′b. Let us suppose
that we merge clusters ucp′a and ucp′b (i.e., [ucp′a,ucp

′
b] =

ucp′a ∪ucp′b and Pa,b = Pa +Pb). The distance between the
new cluster [ucp′a,ucp

′
b] and ucp′c can be computed using

the linkage criterion defined as:

d([ucp′a,ucp
′
b],ucp

′
c) =

=
Pad(ucp′a,ucp

′
c) + Pbd(ucp′b,ucp

′
c)

Pa,b

(4)

This equation is general and applies to each iteration consider-
ing as inputs the distance values computed at the previous it-
eration. By weighting the distance using as weights Pa and Pb
we preserve the information regarding the prior probabilities
of each unique CBHCVs. The algorithm iterates until all of the
unique CBHCVs are merged into one single group and the tree
structure (called dendrogram) is constructed. The length of the
branches of the dendrogram is related to the distance between
the clusters/ucp′u (i.e., a long branch indicates a significant
difference between the samples contained in the two clusters).
To separate the samples into different kinds of change ωj ,
the dendrogram can be cut at a given depth defined by a
threshold Th. Figure 3 shows two examples of dendrogram
cut that highlights how by cutting the tree at different depths
we separate the changed samples into different numbers of
clusters (3 and 6 in the example). By varying Th we vary
the sensitivity of the method to the different kinds of change.
Lowering Th corresponds to increasing the sensitivity of
the method to the different kinds of change. Indeed, it is
equivalent to a decrease of the threshold on the Hamming
distance above which two CBHCVs are considered to belong
to different kinds of change. Instead, increasing Th decreases
the sensitivity of the method. Small values of Th may allow
for the discrimination of very similar (in terms of spectral
signature) kinds of change, but at the cost of an increased
vulnerability to noise and outliers. A large value of Th may
result in the grouping of different changes into the same
cluster. Thus, the choice of Th has to be done taking into
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Hamming
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Cluster

Fig. 3: Example of a dendrogram. Red dots represent leafs
and correspond to unique ucp′u. Orange squares represent the
clusters. The green (T∆

h ) and blue (T ∗h ) dashed lines show two
examples of cut of the dendrogram.

account the trade-off between sensitivity to the changes and
robustness to noise. Moreover, note that the selection of Th
can be easily done also in an iterative way by changing the
threshold depending on the required level of detail of the CD
map.
When Th is selected and thus the kinds of change are identi-
fied, the samples for which the corresponding ucpu shows a
Pu ≤ Tp have to be assigned to one of the identified changes.
To this end, we move back to the HCV representation and, for
each sample that has to be assigned, we search for the nearest
50 samples (that have already been assigned to one change).
We analyze the 50 nearest samples instead of considering
only the nearest one in order to be more robust to outliers
such as samples assigned to the wrong change. Finally, we
assign the sample to the change that has the highest number
of occurrences within the 50 samples.

III. EXPERIMENTAL RESULTS

A. Dataset Description

We tested the proposed method on one simulated dataset
and two real multitemporal Hyperspectral datasets.
The simulated dataset is based on a real HS image available
in the Real-World Hyperspectral Images Database [58]. The
image (Figure 4a) represents a wall in an outdoor area and was
acquired by a Nuance FX camera that has a spectral resolution
of approximately 10 nm with 31 bands ranging from 420 to
720 nm. To simulate changes, 7 tiles (colored tiles in Figure
4a) were extracted from the original image and inserted in
different areas of the same image (Figure 4b). The selected
tiles represent different materials and illumination condition
thus simulating different changes. Additive White Gaussian
noise was added to the simulated images (SNR 15 dB). Figure
4c shows the reference map of the 7 simulated changes.
The two real multitemporal Hyperspectral datasets were ac-
quired by the Hyperion sensor mounted on board the EO-
1 satellite. The data used to generate these two datasets can
be downloaded at [59]. The Hyperion data are characterized
by 242 spectral bands ranging from 350 to 2580 nm, with a
spectral resolution of 10 nm and a spatial resolution of 30 m.
The second dataset represents an agricultural area in the Ben-
ton County, Washington, USA. The first image was acquired

on May 1st, 2004 while the second image was acquired
on May 8th, 2007. Figures 5a and 5b show the true color
composition of the two HS images characterized by circular
agricultural fields (due to the pivot irrigation system). Almost
all the changes in this area are related to variations of the
crop, soil or water content (caused by different amount of
irrigated water) in the fields. The false color compositions of
the HS difference image in Figure 5c highlights how the study
area is characterized by different kinds of change and that one
single field can be affected by more than one type of change.
Figure 5c gives only a partial representation of the change
information present in the data since only 3 spectral channel
are exploited. The blue dashed circle in Figure 5d shows that
two changes can be distinguished at band 34 but not at band
103 (Figure 5e). Conversely, the violet circle highlights a field
that has uniform behaviour at band 34 while it shows two
uniform regions at band 103. This highlights how the different
spectral channels can contain significantly different change
information. For this dataset a reference map (Figure 6) was
defined by photointerpretation from experts for a portion of the
image (dataset box in Figure 5). We will refer to the portion
of the Benton dataset with reference map as BentonRM.
The third dataset was acquired over an agricultural area in the
Albacete province, Spain. The two images were acquired on
May 22th 2012 (Figure 7a) and May 14th 2014 (Figure 7b).
This area is characterized by agricultural fields with various
shapes. The false color composition of the difference image
(Figure 7c) shows that the area has been affected by different
kinds of changes. Also for this dataset, most of the changes
are related to variation of the crop, soil or water content and
the presence of some clouds in the 2014 acquisition. The
blue dashed circles and violet circles in Figures 7d and 7e
confirm that for a given kind of change one or more bands
may contain more relevant information with respect to other
spectral channels.
Both the Hyperion datasets were first co-registered with a
residual error of 0.5 pixels. Then, we applied a radiometric
calibration followed by an atmospheric correction carried out
using the Fast Line-of-sight Atmospheric Analysis of Spectral
Hypercubes (FLAASH) algorithm [60], [61]. We applied the
FLAASH algorithm only to the calibrated non overlapping
bands, i.e., channels 8-57 and 79-224 [62]. Bands related to
water absorption, i.e., bands 121-126, 167-180 and 222-224
[63] were removed as well as noisy bands with wavelength
close to the water vapor absorption ones thus obtaining the
final set of channels 8-57, 82-119, 131-164, 182-184, and 187-
220. In the second dataset we removed also bands 117, 141,
146, 188, 198 due to bad stripes (band 117) and noise (bands
141, 146, 188, 198). It is worth noting that the selected bands
still contain also noisy bands thus preserving the complexity
of the two datasets.
We used the simulated dataset and the BentonRM dataset
to perform a quantitative evaluation and we compared the
numerical accuracy with the one obtained by the S2CVA [45],
which is based on the manual identification of th different
kinds of change. In order to have a fair comparison, we used
the same binary CD map both for the proposed method and for
the S2CVA. For the BentonRM dataset, multiple CD results
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(a) (b) (c)

Fig. 4: Simulated dataset: (a-b) true color composites (R: 710 nm; G: 620 nm; B: 510 nm) of the original (a) and simulated
image (b) . (c) Reference change map where each color represents one of the 7 changes and white represent the no changed
class.

(a) (b) (c) (d) (e)
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Fig. 5: Benton County agricultural area dataset: true color composites (R: 640.5 nm, G: 569.27 nm, B: 467.52 nm) of the HS
data acquired at times (a) t1 (2004) and (b) t2 (2008), respectively. (c) False color composite (R: 1729.7 nm, G: 1023.4 nm,
B: 447.17 nm) of the difference image (i.e., HCV image). Single bands (d) 34 (691.37 nm) and (e) 103 (1174.77 nm) of the
HCV image, respectively, with the corresponding color bar. The green dashed lines in (a-c) identify the portion of the dataset
for which a reference map is available (BentonRM).

(a)

Fig. 6: Reference map of the 6 classes of change (BentonRM
dataset delineated by the dashed line in Figure 5).

are available for the method proposed in [64]. This method
is based on a supervised Band Selection (BS) followed by
a supervised classification of the difference image using a
Support Vector Machine (SVM). In the BS-SVM the binary
CD was performed in the classification step and thus it was
not possible to use the same binary CD map. However, note
that the two binary maps are very similar. The datasets with
reference maps were also used for a sensitivity analysis of the
method parameters. To perform this quantitative analysis, for
both datasets we set the sensitivity (i.e., threshold Th) such
that the number of identified change classes J is equal to the
one of the reference map. Quantitative results are presented
for the pixels correctly identified as changed in the binary
CD map. This allows us to asses the effectiveness of the
proposed method in distinguishing types of change without
error propagation from the binary CD step (which in turn
is common with the S2CVA). Since no reference map is
available for most of the second and the third datasets, we
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Fig. 7: Albacete Province agricultural area dataset: true color composites (R: 640.5 nm, G: 569.27 nm, B: 467.52 nm) of the
HS data acquired at times (a) t1 (2012) and (b) t2 (2014), respectively. (c) False color composite (R: 1275.66 nm, G: 732.07
nm, B: 548.92 nm) of the difference image (i.e., HCV image). Single bands (d) 38 (732.07 nm) and (e) 100 (1144.48 nm) of
the HCV image, respectively, with the corresponding color bar.

also validated the results by photointerpretation using different
false color composites of the HCV images. For each of the two
real datasets we analyzed the effectiveness of the method in
detecting changes with different levels of sensitivity by setting
the number of changes to J = 4 and J = 15. Moreover,
we used the S2CVA method to extract the changes and then
we compared the resulting map with the one obtained by the
proposed method setting J to the same number of changes as
the S2CVA map.
We set the threshold Tr on the Hamming distance between
adjacent bits (of the BHCVs) to 0.1N . The threshold Tp on the
prior probability of each CBHCV was set to 0.001. Since our
aim is to analyze the different CD maps obtained by varying
the depth Th at which the dendrogram is cut, we did not set
a fixed threshold Th, but we set a lower bound. In particular,
we set the lower bound of Th such that the maximum number
of changes in which the samples can be separated is 15.

B. Experimental Results: Sensitivity Analysis

Sensitivity analysis was conducted on the simulated dataset
and on the BentonRM dataset by running the proposed method
with different values of Tr and Tp (Tr ∈ [0.05N, 0.25N ]
and Tp ∈ [0.001, 0.005]). For each combination of the two
parameters we computed the Kc (Cohen’s Kappa) coefficient
for the multiple CD result. Figure 8 shows a visual repre-
sentation of the values of Kc coefficient for different settings
for the simulated dataset (Figure 8a) and for the BentonRM
dataset (Figure 8b). In the simulated dataset, the proposed
method reached a Kc coefficient of 0.99 for a 44.4% of the
combinations of the parameters, Kc = 0.81 for another 44.4%.
The remaining few cases are the ones corresponding to the
combinations with Tr = 0.25N which is at the very end of
the considered interval. For the BentonRM dataset (Figure 8b),
44.4% of the combinations reached a Kc coefficient larger than

(a)

(b)

Fig. 8: Sensitivity analysis results showing the values of the
Kc coefficient for different combinations of Tr and Tp: (a)
simulated dataset and (b) BentonRM dataset. The red dot
identifies the optimal settings.
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(a) (b)

(c) (d)

Fig. 9: CD results for the portion of the BentonRM dataset:
(a) reference binary CD map, (b) proposed method binary CD
map, (c) reference multiple CD map, (d) proposed method
multiple CD map.

TABLE II: Quantitative results comparison among the pro-
posed method, the S2CVA and the BS-SVM for the simulated
and BentonRM datasets.

OA[%] Kc

Dataset Simulated BentonRM Simulated BentonRM

Proposed Method 99.88 94.55 0.99 0.91

S2CVA [45] 99.99 94.37 0.99 0.91

BS-SVM [64] – 96.92 – 0.95

0.9, while 48.1% of the combinations reached a value between
0.8 and 0.9. By analyzing these results we can conclude that
the algorithm is robust to the variation of the threshold Tr and
Tp.

C. Experimental Results: Quantitative and Qualitative Com-
parison

For the simulated dataset (the reference map was used to
eliminate unchanged samples), the quantization and codeword
definition steps converted the N = 113937 changed HCVs
into BHCVs composed by K = 82 bits. The compression
step led to the CBHCVs obtaining codewords having a length
of I = 9 bits. The CBHCVs analysis identified U = 65
unique CBHCVs with U ′ = 28 unique compressed codewords
having a corresponding prior probability Pu > Tp. Therefore,
the hierarchical clustering algorithm was applied only to

TABLE III: Confusion matrix for the multiple CD results
of the portion of the BentonRM dataset. The dashed box
identifies the samples correctly identified as changed by the
binary CD.

Ground Truth

ωu ω1 ω2 ω3 ω4 ω5 ω6

Pr
op

os
ed

M
et

ho
d

ωu 30564 502 829 455 178 29 55

ω1 0 532 0 0 0 0 0

ω2 1 0 218 0 11 0 1

ω3 5 0 0 4509 0 5 0

ω4 1 0 1 0 1029 0 221

ω5 4 0 0 147 0 445 0

ω6 4 0 0 0 43 0 711

28 codewords. The U ′ = 28 unique CBHCVs represent
the 99.3% of the total number of changed samples, thus
showing that the coding step effectively represents the change
information. The analysis of the CD map showed that the
method can discriminate between all the kinds of change
in an unsupervised and automatic way with an Overall
Accuracy (OA) of 99.98% and a Kc = 0.99. The S2CVA
provided similar performances but relying on a supervised
and non-automatic analysis. Table II shows the numerical
results for the simulated dataset. The very high accuracy
is motivated by the fact that the simulation does not fully
captures all the challenges that have to be addressed when
dealing with real HS data.
In the BentonRM dataset, the binary CD achieved an OA
of 94.91% and a Kc coefficient of 0.85 with a commission
error of 0.05% and an omission error of 5.06%. The method
converted the N = 7888 HCVs into BHCVs composed by
K = 393 bits, which were then compressed into CBHCVs
having a length I = 25 bits. U = 574 unique CBHCVs
were identified and the hierarchical clustering was applied
to U ′ = 107 CBHCVs. The U ′ = 107 CBHCVs represent
the 87.2% of the changed samples. This confirms that the
coding step effectively represents in an efficient way the
change information. Indeed, we are representing most of the
changed samples with few binary codewords. The remaining
samples (i.e., 12.8%) are not used in the construction of the
dendrogram, since they are likely to be noisy samples. They
are nevertheless assigned to one of the kinds of change after
the change classes are identified.
Figure 9 shows the results in terms of binary and multiple
CD obtained by the proposed method compared with the
reference map. Table III shows the confusion matrix of the
multiple CD for the proposed approach. Most of the samples
correctly identified as changed have been assigned to the
correct change class. The multiple CD achieved an OA
of 94.55% and a Kc coefficient of 0.91. Table II shows a
quantitative comparison between the proposed method, the
S2CVA [45] and the BS-SVM [64]. The proposed method
achieved a slightly higher accuracy compared to the S2CVA
despite being completely automatic. The BS-SVM reached a
modestly higher accuracy (+2.4%). However, note that this
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Fig. 10: Change Detection results for the Benton County dataset: CD maps obtained by cutting the dendrogram at a depth to
obtain (a) J = 4, (b) J = 8, (c) J = 15. (d) S2CVA map with 8 identified changes. 2-D scatter plots representing the first two
components of the Principal Component Analysis of the HCVs (in the original representation) of the changed samples: the
plots represent the (e) 4, (f) 8, (g) 15 (g), (h) 8 (S2CVA) clusters. Each color represents a kind of change ωj , whereas white
identifies the no changed areas.

method is supervised and requires multitemporal reference
samples to train the SVM. Thus the proposed unsupervised
method is competitive with state of the art supervised
methods.
Let us consider the entire Benton County dataset. The
visual analysis of the binary Change Detection map shows
that changes are identified with high accuracy with only
few false alarms due to outliers in the HCV and residual
registration errors. Also some missed alarms are present
but they correspond to changes with low magnitude. The
quantization and codeword definition steps converted the
N = 11965 changed HCVs into BHCVs composed by
K = 375 bits and the compression generated CBHCVs with
I = 27 bits. U = 681 unique CBHCVs were identified with
only U ′ = 106 compressed codewords with a prior probability
Pu > Tp. The selected 106 unique CBHCVs represent 10544
of the 11965 samples (i.e., 88%).
Figure 10 shows the CD results for the second dataset.
Figures 10a-10c show the CD maps obtained by cutting the
dendrogram at different depths. The figures show that by

decreasing (moving from Figure 10a to 10c) the depth value
Th, it is possible to discriminate among an increasing number
of changes. The scatter plots (Figures 10e-10g) point out that
the discrimination into different kinds of change is made
consistently for almost all the changes since most of the
clusters show little overlapping between each other. Figure
10d shows the CD map obtained by the manual identification
of the S2CVA, which identified 8 changes. The change maps
obtained by the proposed automatic method (Figure 10b) and
the manual S2CVA (Figure 10d) are very similar, with large
portion of the data showing the same kinds of change in both
images.
Figure 11 shows three details (d1, d2, d3) of the CD maps
of Figure 10 together with false color composition of the HS
difference image. The images show that when the dendrogram
is cut to obtain 4 clusters we identify one kind of change
in each field. The false color compositions of the difference
image in Figure 11 highlight that more than one kind of
change is present in the selected fields. The Figures related
to details d1 and d3 show that by increasing the sensitivity
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Fig. 11: Details of the CD maps of the Benton dataset (Figures
10a-10c): (a-c) detail d1. (f-h) Detail d2. (k-m) Detail d3. False
color composites of the HCV image representing detail (d) d1

(R: 823.65 nm, G: 972.99 nm, B: 1053.69 nm), (i) d2 (R:
844 nm, G: 1225.17 nm, B: 1689.3 nm), (n) d3 (R: 1053.69
nm, G: 1336.15 nm, B: 548.92 nm), respectively. Details of
the S2CVA map (Figure 10d): (e) detail d1, (j) detail d2, (o)
detail d3.

of the method we increase the sensitivity to the different
kinds of change and we can separate subtle changes in
uniform areas. In contrast, the Figures regarding detail d2

show that when the sensitivity of the method goes above a
given threshold, the noise in the CD map becomes significant
(J = 15). However, note that the false color composition of
the difference image of d2 shows that in the considered field
there is a high probability of having more than 2 changes.
The S2CVA CD map show similar results to the proposed
method for details d2 and d3. However, note that for detail d1

the S2CVA identifies only two different changes, whereas the
proposed method identifies all the changes of the considered
field (as confirmed also by the false color composition).
This analysis pointed out that while increasing the sensitivity
allows us to discriminates between more kinds of change,
this comes at the cost of an increase in the vulnerability of
the method to noise and outliers. In other words, after a given
value of Th, as expected the method starts to identify the
noisy samples as different changes.
In the Albacete dataset, a visual analysis of the binary CD
map shows a slightly higher percentage of missed and false
alarms with respect to the second dataset. This is due to the
overlapping of changed and unchanged statistical distributions
in the magnitude of the difference image. The N = 33693
samples were converted into BHCVs composed by K = 372
bits, which were then compressed into I = 28 bits to obtain
the CBHCVs. The CBHCVs analysis selected U = 2382
unique CBHCVs and U ′ = 150 codewords with a prior
probability grater than Tp. The U ′ represented 25150 of the
33693 samples (i.e., 74.6%). This confirms the results of the

Benton dataset regarding the efficient representation of the
change information.
Figure 12 shows the CD maps and the corresponding scatter
plots for the Albacete dataset. The maps (Figures 12a-12c)
show that the proposed method discriminates consistently
among the different kinds of change since most of the
changed areas show homogeneous spatial behaviour. This
is also confirmed by the scatter plots (12e-12h) with the
identified cluster showing little overlapping between each
other. Figure 12d shows the CD map obtained with the
manual iterative S2CVA which identified 11 changes. By
comparing it with the map of the proposed method with
J = 11 (Figure 12b), it is possible to see that there is a
large number of fields that show the same change pattern in
the two maps. However, there are also some fields that show
different change patterns. In some cases, this is due to the fact
that the selected sensitivity does not allow to identify some
changes. This is the case of detail d3 in Figure 13. The false
color composition of the difference image points out that the
lower portion of the field shows two different changes. These
changes are correctly identified by the S2CVA. Note that
by increasing the sensitivity, the proposed method correctly
identifies the considered changes (Figure 13m). A similar
analysis can be done for the detail d1. Another cause of these
differences is related to the complexity of this multitemporal
dataset. Compared to the Benton dataset, the Albacete dataset
is a much more complex dataset since the changes are much
less separable. This can lead to errors in the CD maps of
the proposed method but also in that of the S2CVA since
the manual selection of the changes can not be performed
accurately due to the difficulties in identifying the boundaries
of the different changes. As an example, let us consider
detail d2 shown in Figure 13. The false color composition
of the HCV image shows a complex spatial pattern. The CD
maps of the proposed method separates correctly the different
changes when the sensitivity of the method is increased. In
contrast, the S2CVA map shows only one kind of change.

IV. CONCLUSION

In this work we proposed a method for change detection
in hyperspectral images. HS data are characterized by a rich
information content due to the dense sampling of the spectrum.
This comes at a cost of having to deal with much more
complex data, due to the high dimensionality and redundancy.
These factors make the extraction of the change information
more complex with respect to MS data, thus increasing the
difficulty in discriminating between different kinds of change.
In this work we developed a technique that aims at extracting
from the individual spectral channels the relevant information
for the CD problem. In greater detail, after a binary CD,
we focus on the changed samples to move from the real
valued representation of the HCVs to a codeword based
representation. After the coding of the HCVs, we select only
the unique CBHCVs with a prior probability higher than
a given threshold thus reducing the number of elements to
be processed in the following steps. Finally, we apply the
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Fig. 12: Change Detection results for the Albacete province dataset: CD maps obtained by cutting the dendrogram at a depth
to obtain (a) J = 4, (b) J = 11, (c) J = 15. (d) S2CVA map with 11 identified changes. 2-D scatter plots representing the first
two components of the Principal Component Analysis of the HCVs (in the original representation) of the changed samples:
the plots represent the (e) 4, (f) 11, (g) 15 (g), (h) 11 (S2CVA) clusters. Each color represents a kind of change ωj , whereas
white identifies the no changed areas.

agglomerative hierarchical clustering to the selected unique
CBHCVs thus obtaining a dendrogram. The dendrogram can
be cut to discriminate between the different kinds of change.
The sensitivity analysis on the selection of the values of Tr
and Tp showed that the method reaches similar accuracies for
a wide range of combinations thus proving that is robust to
the variation of these parameters. The HCVs coding proved
to be an effective way of simplifying the CD problem by
highlighting the relevant change information. This was con-
firmed by the fact that, for all the datasets, a small set of
unique CBHCVs represented most of the changed samples.
This allowed us to construct the dendrogram using a very small
number of samples while preserving almost all the relevant
change information. The numerical results obtained on the
simulated dataset (Kc = 0.99) and on the BentonRM dataset
(Kc = 0.91) showed that the proposed binary codewords
representation can be used to discriminate between different
changes. Compared to the S2CVA, the proposed method ob-

tained a slightly lower value of OA for the simulated dataset,
whereas for the BentonRM it slightly increased the OA and
Kc. The BS-SVM yielded a higher accuracy compared to
the proposed method. However, note that unlike the pro-
posed approach, the S2CVA is not an automatic method and
requires the manual identification of the changes while the
BS-SVM requires the availability of multitemporal training
samples which are seldom available. The numerical results
proved that the proposed unsupervised and automatic approach
is competitive with supervised methods and methods based
on the manual identification of the changes. The qualitative
analysis of the CD maps of the Benton and Albacete datasets
confirmed that the proposed method identifies the different
changes with a high accuracy. Moreover, the tree structure
representation allows us to produce multiple CD maps with
different levels of details. The possibility of changing the
sensitivity to the different kinds of change showed that the
proposed approach can produce different CD maps depending
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Fig. 13: Details of the CD maps of the Albacete dataset
(Figures 12a-12c): (a-c) detail d1. (f-h) Detail d2. (k-m) Detail
d3. False color composites of the HCV image representing
detail (d) d1 (R: 660.85 nm, G: 833.83 nm, B: 2183.63 nm),
(i) d2 (R: 833.83 nm, G: 538.74 nm, B: 1669.1 nm), (n) d3

(R: 833.83 nm, G: 1235.27 nm, B: 1669.1 nm), respectively.
Details of the S2CVA map (Figure 12d): (e) detail d1, (j) detail
d2, (o) detail d3.

on the selected sensitivity. It is worth noting that a trade-off
between sensitivity to changes and sensitivity to noise, outliers
and errors generated in the coding step should be obtained.
When the depth of the cut Th is too small, outliers may be
identified as a separate kind of change.
As future developments we plan to: 1) integrate the Binary
CD in the coding process in order to reduce missed and
false alarms; 2) use advanced information theory techniques to
optimize the compression of the binary codewords to reduce
the redundant information; and 3) test the proposed method on
other multitemporal HS data and also on more real datasets
for which a reliable multitemporal reference map is available
(still difficult to obtain).
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