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Abstract—This paper aims to provide a compact superresolu-
tion formulation specific for multispectral (MS) multiresolution
optical data, i.e., images characterized by different scales across
different spectral bands. The proposed method, named multires-
olution sharpening approach (MuSA), relies on the solution of an
optimization problem tailored to the properties of those images.
The superresolution problem is formulated as the minimization of
an objective function containing a data-fitting term that models
the blurs and downsamplings of the different bands and a patch-
based regularizer that promotes image self-similarity guided by
the geometric details provided by the high-resolution bands.
By exploiting the approximately low-rank property of the MS
data, the ill-posedness of the inverse problem in hand is strongly
reduced, thus sharply improving its conditioning. The state-of-
the-art color block-matching and 3D filtering (C-BM3D) image
denoiser is used as a patch-based regularizer by leveraging the
“plug-and-play” framework: the denoiser is plugged into the
iterations of the alternating direction method of multipliers. The
main novelties of the proposed method are: 1) the introduction of
an observation model tailored to the specific properties of (MS)
multiresolution images and 2) the exploitation of the high-spatial-
resolution bands to guide the grouping step in the color block-
matching and 3D filtering (C-BM3D) denoiser, which constitutes a
form of regularization learned from the high-resolution channels.
The results obtained on the real and synthetic Sentinel 2 data sets
give an evidence of the effectiveness of the proposed approach.

Index Terms—Alternating direction method of multipliers
(ADMM), color block-matching and 3D filtering (C-BM3D),
dimensionality reduction, multispectral (MS) multiresolution im-
ages, plug-and-play, remote sensing, self-similarity. superresolu-
tion

I. INTRODUCTION

SATELLITE remote sensing images have been exten-
sively employed in many large-scale applications, such

as land-use/cover classification, environmental monitoring, and
changedetection. Although the multispectral (MS) sensors pro-
vide worldwide coverage with a fast revisit time, the physical
limits of the radiometric resolution of the detectors impose
tradeoffs to the achievable spatialspectral resolutions. To have
a reasonable signal-to-noise ratio (SNR), the spatial resolution
must be lower when the higher spectral resolution is required.
In contrast, high spatial resolution can be obtained at the
cost of losing spectral resolution. For these reasons, in the
last years, many sensors have been designed to acquire low-
spatial resolution MS bands together with a single high-spatial
resolution band (panchromatic image), taken in a large spectral
interval. The panchromatic image provides the high-resolution
geometric details while guaranteeing a spectral range that
spans most of the spectra of the MS bands. By fusing the
MS bands and the panchromatic image, it is possible to
generate spatially enhanced MS data, which provides a better
understanding of the observed scene. To this end, a number

of fusion methods have been introduced in the literature,
namely, those collectively called pansharpening algorithm [1],
[2] formulated under different frameworks, such as compo-
nent substitution (CS), Multiresolution analysis (MRA), model
based Variational Regularization, and Bayesian inference.

CS methods aim to detect a transformation that separates
the spatial and the spectral information of the original data
into different components. In the projected space, the spatial
component can be substituted with the panchromatic image,
thus leading to an enhanced MS product. To reduce the
distortion introduced by the fusion step, it is necessary to
identify a projected space where the panchromatic image and
the replaced component are strongly correlated. Among the
different projection methods employed, the principal com-
ponent analysis (PCA) [3], [4], the intensity hue saturation
transform (IHS) technique [5]–[7], and the GramSchmidt (GS)
transformation [8], [9] have been widely used. In spite of
the large amount CS-based pansharpening works developed
and published in the last decade, this research direction is sill
attracting the attention of the research community [10]–[12].

MRA is another class of pansharpening methods. Here,
the spatial details are extracted through a multiresolution
decomposition of the panchromatic image and injected into
the interpolated MS bands. MRA methods do a better job
in preserving the spectral characteristics of the MS data
than CS ones, since no transformation is involved. Several
modalities have been introduced to extract the spatial details,
such as the discrete wavelet transform [13]–[16] or other
kinds of pyramidal representations [1], [17], [18]. High-pass
filtering (HPF) fusion methods [19], [20] inject high frequency
details into the resampled MS data. The geometric details
are typically obtained by taking the difference between the
panchromatic image and its blurred version.

Bayesian and variational regularization methods are model-
based [21]; they rely on an observation model, that accounts
for blur, dowsampling, and noise, and on regularization (prior
information in Bayesian terms), which mitigates the usual
ill-posedness of the pansharpening inverse problems. The
high resolution image is usually obtained by solving an
optimization problem that superresolves all the spectral bands
simultaneously. Studies in [22], [23] are two paradigmatic
examples of this line of attack: the former is based on spectral
and spatial sparsity inducing priors and the latter on total
variation regularization.

Although pansharpening algorithms successfully deal with
the fusion of MS images acquired together with a panchro-
matic band, a growing number of sensors are started to ac-
quire MS multiresolution images having more than one high-
spatial-resolution channel [e.g., Moderate Resolution Imaging
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Spectroradiometer (MODIS), Sentinel-2 (S2), and Advanced
Spaceborne Thermal Emission and Reflection Radiometer
(ASTER)]. Typically, the high-spatial-resolution bands cover
the visible range, while the narrow-spectral-resolution bands
are provided at lower spatial resolution. In the literature, only
a few papers have addressed the superresolution of MS mul-
tiresolution images. Most of them focus on the superresolution
of specific spectral channels of the MS multiresolution data by
using pansharpening approaches [24]–[26]. In [24] the authors
sharpen the ASTER thermal infrared (TIR) bands by injecting
the geometric information present in the VNIR channels using
the Generalized Laplacian Pyramid algorithm. To achieve the
same goal, in [25] the authors propose a general Bayesian data
fusion (BDF) approach that exploits the 15m visible or near-
infrared (VNIR) bands to sharpen the 90m TIR bands of the
ASTER data. Similarly, in [26] the authors employ wavelet-
based multiresolution analysis to fuse the spatial resolution
of 250m MODIS bands into the 500m MODIS bands for
snow mapping in mountainous environments. The work in
[27] presents a superresolution method that enhances the
500m MODIS bands by taking advantage from the correlation
between the spectral channels. The method defines a non-linear
regression model that uses the 250m MODIS channels and the
NDVI as predictors. Moreover, a normalization step is applied
to increase the spatial resolution of the 500m bands while
preserving the radiometric consistency of the superresolved
channels. The regression modeling is also exploited in [28],
[29], where the 250m MODIS high spatial resolution bands
are fused into the 500m bands by considering geostatistical
approaches based on kriging.

Several methods adapt pansharpening algorithms to the
multiresolution case [30]–[32]. In [30], the authors propose
a method to increase the spatial resolution of the SWIR and
TIR of ASTER images at the 15m resolution of the VNIR
bands. The main idea is to exploit the spectral similarity
to superresolve the spectral bands. The use of the spectral
similarity for superresolving MS multiresolution images was
conceptualized in [33], where the authors defined a new
paradigm for hypersharpening. Two schemes were proposed to
extend the pansharpening algorithms to the case of MS images
having multiple high resolution bands, namely, the “synthe-
sized band scheme” and the “selected band scheme”. The
“selected band scheme” selects for each coarse resolution band
the high resolution one having the largest correlation, while the
“synthesized band scheme” synthesizes a panchromatic image
from the high resolution band set. In [31], the “synthesized
band scheme” is employed to enhance the 20m S2 bands by
using the 10m S2 bands considering the ATPRK (area-to-point
regression kriging) pansharpening method. For each coarse
band, the panchromatic image is determined adaptively as a
linear combination of the four high spatial resolution bands.
In [32], 21 different pansharpening algorithms have been
compared to increase the spatial resolution of the 20m bands of
S2 by selecting a suitable 10m band as a panchromatic image.
In [34] the authors formulate a convex inverse problem tailored
to the superresolution of S2 data. The discontinuities, learned
from the high resolution bands, are encoded into a regularizer
used to sharpen the 20m and the 60m bands. In [35], the

author presents a method to superresolve MS multiresolution
data and tests it on real S2 images. Assuming that the
proportion of objects within a pixel area is the same for all the
bands, the high resolution channels are used to separate band-
independent information. The obtained geometric information
is then employed to unmix the low-resolution pixels, while
preserving their overall reflectance. Although, this is one of
the few superresolution works which enhance all the lower
spatial channels of S2, the results obtained are not competitive
with the state-of-the-art.

Recent studies started to use denoisers to superresolve
natural images [36] or for image restoration [37]. In this
context, one of the most employed denoiser is BM3D, namely
block-matching and 3D filtering, which is particularly effective
due to its capability of promoting nonlocal patch self-similarity
properties of the images based on sparse representations [36].
This denoiser stacks together similar 2D image patches in
3D arrays (groups), the so-called grouping step, to perform
non-local image modelling, thus leading to effective noise
attenuation. The recently presented color version of the BM3D
[39], extends the denoising algorithm to the case of color
images corrupted by additive white Gaussian noise. First, the
RGB image is converted into the luminance-chrominance color
space (YCbCr). Then, the grouping step is applied only to
the luminance band, which typically shows higher signal-to-
noise-ratio (SNR) with respect to the chrominances. Finally,
the color image is denoised by imposing a grouping constraint
on both chrominances, i.e., reusing the same grouping obtained
on the luminance. In [40], the authors use the C-BM3D to
superresolve natural images. The study demonstrates the im-
portance of having high resolution data to accurately estimate
groups of similar patches to obtain accurate superresolution
results. In the framework of superresolving MS multiresolution
images, the use of these denoisers as regularizers can be
extremely useful to promote non-local image self-similarity,
while exploiting the geometric details provided by the high
resolution channels to detect groups of similar patches.

A. Contribution
This paper is built around the superresolution of a single

MS multiresolution image, with the aim of employing the
geometric details present in the high resolution bands to
sharpen the low resolution ones. The proposed approach: (i)
defines a quadratic fitting term that accounts for the blur and
downsampling degradation mechanisms, (ii) takes advantage
from the low-rank nature of the MS image to formulate the
problem in the latent space defined by the representation
coefficients, (iii) adopts the “plug-and-play” framework to plug
the C-BM3D denoiser [39] into the iterations of an ADMM
algorithm, in order to exploit the self-similarity property of the
MS images, and (iv) learns a patch-based spatial prior from the
high spatial resolution channels to sharpen the lower spatial
resolution bands. The optimization is performed by using the
SALSA solver [41], [42], which is an efficient and flexible
instance of ADMM tailored to multiple convex terms.

In the literature, the sharpening of MS multiresolution
images has been addressed by adapting pansharperning tech-
niques to infer a spatially enhanced MS product. In practice,
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however, the pansharpening paradigm requires (a) only one
high spatial resolution channel, and (b) the spectral overlap
between the high spatial resolution bands and the low resolu-
tion ones. In this work, we relax those constrains by providing
a compact formulation tailored to the specific properties of
the MS multiresolution images. Differently from recent works
that use denoisers to superresolve natural images (i.e, images
characterized by three bands, RGB, having the same spatial
resolution), the proposed method exploits the geometric detail
provided by the high resolution channels to guide the grouping
step of the C-BM3D to detect similar patches within the image.
This strongly improves the robustness of the method and the
quality of the results with respect to the standard use of a
denoiser, which operates on the noisy low resolution data.

To assess the effectiveness of the proposed method, ex-
periments have been carried out on real and simulated MS
multiresolution S2 images containing bands at 10m, 20m and
60m. Results have been evaluated qualitative and quantitatively
by investigating the spectral distortions on the synthetic data
set.

B. Outline

The remainder of this paper is organized as follow. Section
II describes the notation and the problem formulation used
in the paper. Section III presents the proposed superresolu-
tion method in terms of observation model, dimensionality
reduction, and regularization and the algorithm to solve it.
Section IV describes the considered data set, while Section
V illustrates and discusses the experimental results. Finally,
Section VI draws the conclusions.

II. NOTATION AND PROBLEM FORMULATION

MS images are usually represented as 3-D arrays. However,
when the bands have different sizes, this representation is
no more adequate. In this paper, the spectral bands are
represented as column vectors where the pixels are arranged
in lexicographic order. The bands are then concatenated to
represent the observed data. Let us define the columnwise
concatenation of I column vectors ai ∈ Rmi , for i = 1, . . . , I,
as (a1;a2; . . . ;aI) := [aT

1 ;a
T
2 ; . . . ;a

T
I ]

T ∈ Rm1+m2+···+mI .
When all vectors have the same size, (a1; . . . ;aI) is the
so-called vec operator acting on the columns of the matrix
A = [a1,a2, . . . ,aI ].

Let us assume to have an image characterized by Lb spectral
bands having dk, for k = 1, . . . ,K, ground sampling distances
(GSDs), such that Lb = L1 + L2 + . . . , LK , and Lk denotes
the number of bands with the same GSD dk. Of course,
the resolution of the spectral bands decreases as the GSD
increases. Without loss of generality, we assume that d1 = 1.

Let yj be the column vector representing the jth observed
spectral band, with j = 1, . . . , Lb. The observed image is
represented as y = (y1; y2; . . . ; yLb

) ∈ Rno , where no = n ·
(L1 + L2/d

2
2 + · · ·+ LK/d

2
K) and n is the number of pixels

of the bands with highest resolution.
The enhanced MS image x = (x1, x2, . . . , xLb

) ∈ Rnu is the
vertical concatenation of the Lb spectral bands having size n
(i.e., all bands at the highest spatial resolution), with a number

of unknowns nu = n·Lb. Since the target image x has the same
spatial resolution for all the bands, it can be also represented as
a 2-D matrix, where each line corresponds to a spectral band,
containing the lexicographically ordered pixels of that band,
i.e. X = [x1; x2; . . . ; xLb

]T ∈ RLb×n, with x = vec(XT).

III. SUPERRESOLUTION METHOD

Fig. 1 presents the flow chart of the proposed method,
which embodies four main steps: (i) the formulation of an
observation model tailored to the specific properties of the
MS multiresolution image, (ii) a dimensionality reduction
step performed to reduce the number of unknowns, (iii) the
use of the C-BM3D denoiser as regularizer based on the
geometric details provided by the high resolution bands, and
(iv) the optimization performed using the SALSA solver to
deal with non-smooth convex regularization terms with low
computational burden.

A. Observation Model

Assuming linear operation of the imaging sensor, the ob-
served model may be written as

y = MBx + n, (1)

where B = bkdiag(B1, . . . ,BLb
) ∈ RLbn×Lbn is a block-

circulant-circulant-block (BCCB) matrix whose block diago-
nal elements bkdiag(·1, . . . , ·Lb

) represent 2D spatial blurring
matrices modelling the point spread functions (PSFs) of the
different spectral channels with respect to the highest spatial
resolution. Note that, because each sub-block acts separately
on each spectral channel, we can accurately model the PSFs
that affect the different bands according to the specific prop-
erties of the considered sensor. The blur is assumed to be
a cyclic convolution. Although the assumption of having
periodic boundary is not realistic, it does not lead to significant
artefacts in the superresolved image, while strongly reducing
the computational effort [43].

The block diagonal matrix M = bkdiag(M1, ..,MLb
) ∈

RLbn×Lbn represents subsampling, where the blocks are ap-
plied to x in order to obtain y. While for the high resolu-
tion bands the blocks are identity matrices I, for the other
channels they are subsets of the rows of the identity matrix,
accounting for the uniform subsampling of each individual
band. Finally, n denotes zero-mean Gaussian additive noise.
For sake of simplicity, the noise is assumed to be identically
and independently distributed (i.i.d.) across bands and pixels.

B. Dimensionality Reduction

The considered superresolution problem is extremely ill-
posed, since the number of unknowns is much greater than
the number of observations (i.e., nu � no). To cope with this
issue, we took advantage from the fact that MS images live in
a subspace of low dimensionality: due to the strong correlation
between the spectral bands, the original data X have low-rank,
namely the spectral vectors associated to the image pixels live,
with very good approximation, in a low dimensional subspace.
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Fig. 1: Flow chart of the proposed approach for superresolving MS multiresolution images (MuSA).

Thus, the matrix X can be accurately approximated by linear
combinations of a small number of basis vectors, i.e.,

X = EZ, (2)

where the columns of matrix E ∈ RLb×p, with p < Lb,
holds the subspace basis vectors and Z ∈ Rp×n holds the
representation coefficients. Noting that x = vec(XT), and by
using the properties of the vec operator, we may write

x = vec((EZ)T) = vec(IZTET)

= (E⊗ I)vec(ZT) = (E⊗ I)z,
(3)

where z = vec(ZT) ∈ Rpn are the representation coefficients
of x with respect to E.

However, X is the image we aim to estimate, while the
observed data y is the blurred and subsampled version of it.
Although we do not have X, we can estimate the subspace by
considering its smoothed version XK, where K is a matrix
acting on all bands and representing the strongest convolution
of the considered MS multiresolution data. Even tough XK
provides less information with respect to the original image,
due to large number of pixels and spectral variability of
the corresponding spectra, it is very likely that span(X)=
span(XK), i.e., the subspaces spanned by the columns X and
of XK are equal.

To generate an approximation of XK, first we upsample
all the low resolution observed MS spectral channels (i.e. the
observed channels yi such that di > 1 for i = 1, . . . , Lb) to
the highest resolution of the considered MS data by means of
cubic interpolation. Then, for each spectral channel we tailor
the amount of blur to apply in order to have the same blur
(the strongest of the considered MS data) for all the bands.

To learn span(XK), we compute the eigen-decomposition
span((XK)(KX)T), of size Lb×Lb, which is very light, since
the matrix is very small. Let

(XK)(KX)T = UΣUT, (4)

be the eigen-decomposition of (XK)(KX)T, where the
columns of U holds the eigenvectors and the diagonal of
Σ holds the corresponding eigenvalues, which are non-
negative and ordered by non-increasing values. We set E =
[u1, . . . ,up], where ui, for i = 1, . . . , Lb is the ith column

of U. The value of p is set such that more than 99% of the
image energy is preserved.

C. Regularization

The low-rank representation (2) allows to formulate the
superresolution imaging inverse problem in hand with respect
to the coefficients Z instead of X, thus reducing the number of
unknowns from Lbn to pn (keep in mind that p < Lb). From a
conditioning point of view, computing Z should then be easier
than computing X. In particular, if the number of unknowns
is now lower than the number of observed variables, i.e., if
pn < n · (L1+L2/d

2
2+ · · ·+LK/d2K), the inverse problem is

no longer ill-posed. However, owing to the lowpass PSFs and
noise, the estimation of Z is still ill-conditioned, thus calling
for regularization.

In order to select a suitable regularizer for Z, we point
out that a) the bands of X, as images from the real world,
are self-similar, and that b) the structure of self-similarity is
the same across all bands of X, as the bands are relectances
(or radiances) from the same surface. Since the bands of Z,
herein termed eigen-images, are linear combinations of the
bands of X, they are also self-similar having the structure of
self-similarity of X.

In our approach, we selected the C-BM3D denoiser [39], as
it is one of the fastest state-of-the-art patch-based denoisers for
color images, promotes self-similar solutions, allows to build
the self-similarity structure from an external image, and, in
spite of being conceived for color images, it may be easily
adapted to our p eigen-images.

D. Optimization Problem

Let us suppose for a while that we have a regularizer
ϕ which promotes self-similar eigen-images. Based on the
observation model (1) and on ϕ, the estimation of the Z is
formulated as the optimization

minz
1

2
||MB(E⊗ I)z− y||22+λϕ(z), (5)

where the quadratic term is the data misfit, which promotes
solutions compatible with the observed data, and λ ≥ 0 is the
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regularization parameter that tunes the relative weight between
the two terms.

To solve the optimization (5), we use the split augmented
Lagrangian shrinkage algorithm (SALSA) [42], which is an
instance of ADMM. Following SALSA steps, we rewrote the
original optimization (5) in the equivalent form

minz,v1,v2

1

2
||MBv1 − y||22+λϕ(v2)

subject to: v1 = (E⊗ I)z
v2 = z.

(6)

The augmented Lagrangian for (6) is

L(z, v1,v2,d1,d2) =

1

2
||MBv1 − y||22+

µ

2
||(E⊗ I)z− v1 − d1||22+

λϕ(v2) +
µ

2
||z− v2 − d2||22,

(7)

where d1 and d2 are the scaled Lagrange multipliers for v1

and v2 and µ > 0 is a penalty parameter. SALSA is an iterative
procedure that, in each iteration, implements sequentially the
following steps:

z := argmin
z
L(z, v1, v2,d1,d2) (8)

v1 := argmin
v1

L(z, v1, v2,d1,d2) (9)

v2 := argmin
v2

L(z, v1, v2,d1,d2) (10)

d1 := d1 − ((E⊗ I)z− v1) (11)
d2 := d2 − (z− v2). (12)

Minimization (8), with respect to z, is quadratic and, having
into consideration that ETE = I, its solution is

z = (E⊗ I)(v1 + d1 + v2 + d2)/2. (13)

Minimization (9), with respect to v1, is also quadratic and
has the solution

v1 = (BTMTMB + µI)−1(BTMTy + µ(E⊗ I)z− µd1). (14)

Given that B represents cyclic convolutions and M uniform
subsampling, v1 may be computed efficiently in frequency
domain [44].

Minimization (10), with respect to v2 is

v2 := argmin
v2

λϕ(v2) +
µ

2
||z− v2 − d2|22, (15)

whose solution is the so-called proximity operator [45] of
ϕλ/µ, denoted as proxϕλ/µ, computed at (z− d2). We may
then write

v2 := proxϕλ/µ(z− d2).

At this point we adopt the “plug-and-play” scheme [46],
which consists in replacing proxϕλ/µ with a state-of-the-art
denoiser, the C-BM3D in our approach. C-BM3D version [39]
accepts the variance of the additive noise and a reference
image to compute the patch similarity and therefore computing
the groups of similar patches. By noting that (15) may be

interpretable as a pure denoising problem where the noise is
i.i.d with standard deviation σ =

√
λ/µ, we set

v2 := CBM3D(z− d2,yh, σ).

where yh denotes a linear combination of the four fine bands.
A regression model built between the pth coarse band and the
four high resolution bands is applied to estimate the weights
to generate y.

SALSA, as an ADMM instance, is guaranteed to converge
provided that the terms of the objective function are convex
and the null space of linear operator between z and (v1,v2)
contains only the zero vector [42]. The second condition is
satisfied in our setup due to the constraint v2 = z. However,
the first condition cannot be directly assessed, since we do not
have ϕ. In the plug-and-play framework, a sufficient condition
for convergence is that the denoiser plugued into the ADMM
iterations is the proximity operator of some convex function.
This is true if and only if the denoiser is non-expansive and a
sub-gradient of some convex function (see [47]). This is not
the case for most state-of-the-art denoisers (see [48] for an
exception), which has fostered active research in this topic.

Fortunately, the convergence of our plug-and-play instance
is guaranteed, since the denoiser is a proximity operator. This
is the case of C-BM3D when the grouping step is fixed, as
it is our case. Details about the properties of BM3D using
fixed grouping are provided in [36]. The pseudocode for the
proposed algorithm, called MuSA, is shown in Algorithm 1.

Algorithm 1: Multireso. Sharpe. Approach (MuSA)
Input: y - observed image

B - blur matrix
M - decimation matrix
E - estimated subspace matrix
µ - penalty parameter
λ - regularization parameter
N - number of iterations

Init: v
(0)
1 = 0, v

(0)
2 = 0, d

(0)
1 = 0, d

(0)
2 = 0

for k = 0 : N do
zk+1 := (E⊗ I)(vk1 + dk1 + vk2 + dk2)/2
vk+1
1 := (BTMTMB + µI)−1

(BTMTy + µ(E⊗ I)zk+1 − µdk1)
vk+1
2 := CBM3D(z− d2,yh,

√
λ/µ)

dk+1
1 = dk1 − ((E⊗ I)zk+1 − vk+1

1 )
dk+1
2 := dk2 − (zk − vk2)

end
Output: x = (E⊗ I)z

IV. DATA SETS AND DESIGN OF THE EXPERIMENTS

In this section, we present the real and simulated data sets
used for the experimental tests. The procedure to generate the
simulated data set is described in detail. Then, we present
the experimental setup in terms of implementation parameters
and quality indexes used to evaluate the effectiveness of the
proposed method.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2: Simulated S2 images (a)-(d) and real S2 images (e)-(h). True color composition of the simulated S2 images for: (a)
urban data set, (b) coastal data set, (c) crop data set, and (d) mountainous data set. True color composition of the real S2 data
for: (e) urban data set, (f) coastal data set, (g) crop data set, and (h) mountainous data set.
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TABLE I: Spectral properties of the S2 data.

B1 B2 B3 B4 B5 B6 B7 B8 B8a B9 B10 B11 B12

Central wavelength (nm) 443 490 560 665 705 740 783 842 865 945 1380 1610 2190

Spectral Width (nm) 20 65 35 30 15 15 20 115 20 20 30 90 180

Spatial Resolution (m) 60m 10m 10m 10m 20m 20m 20m 10m 20m 60m 60m 20m 20m

A. Data Set Description

The proposed method is tested on real and simulated
S2 images, which have 13 spectral bands acquired at three
different spatial resolutions (see Table I), i.e., L1 = 10m,
L2 = 20m and L3 = 60m. In the presented experiments we do
not consider the 60m band containing the cirrus information
(B10), which is used to perform the atmospheric correction
[49].

To simulate the S2 images we employed hyperspectral im-
ages acquired by the NASA Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) sensor, which provides 224 narrow
contiguous spectral bands from 0.4 to 2.5 µm [50]. Four
different AVIRIS images where considered to test the proposed
approach in different environmental scenarios, thus generating:
i) the coastal data set, ii) the mountainous data set, iii) the
urban data set, and iv) the crop data set. The first two data
sets were acquired at a spatial resolution of 5m, while the
urban data set and the crop data set were acquired at a spatial
resolution of 3.5m and 3.2m, respectively.

First, we created the groundtruth images (i.e., the superre-
solved S2 data having all bands at 10m) which are used for
quantitative evaluation according to the Walds protocol [20].
To this end, we lowpass filtered all the bands of the AVIRIS
images and then subsampled the blurred images by a factor of
2 for the coastal and urban data sets and a factor of 3 for the
other data sets, obtaining a spatial resolution of approximately
10m. Gaussian lowpass filters with support of size 15×15 and
σ = 1.2, for the mountainous and coastal data sets, σ = 1.5,
for the urban data set, and σ = 1.6, for the crop data set,
were used. The spectral properties of S2 were simulated by
applying its spectral response to the AVIRIS images. Finally,
we added identically independent distributed (i.i.d.) Gaussian
noise with a Signal to Noise Ratio (SNR) of 40dB, where
SNR = ‖x‖22/(σ2 nLb).

To generate the simulated multiresolution S2 data, the bands
of the groundtruth images were further smoothed and subsam-
pled. To have a realistic simulation of the S2 sensor, the Point
Spread Functions (PSF) of the Gaussian smoothing were set
equal to the ones estimated in the data quality report provided
by the European Space Agency (ESA) on S2 products [51].
Subsampling factors of 2 and 6 were applied to generate the
20m and 60m spectral bands, respectively.

Complementary to the simulated data, we tested the pro-
posed method on real S2 data acquired on the same ge-
ographical area of the AVIRIS data. Fig. 2 shows a true
color representation of the simulated S2 images and the
corresponding real S2 data for each data sets. Note that there
are some changes on the ground between the simulated and
the real images due to the different temporal acquisition. The

AVIRIS data were acquired on 03rd of August 2013 for the
crop data set, on 09th of November 2011 for the coastal and
mountainous data sets, and on 10th of May 2006 for the urban
data set. The real S2 data were acquired on 11th of March 2017
(Tile T10SEH) for the crop data set and on 11th of September
2017 for all the other data sets (Tile T11SMS).

B. Experimental Setup

For all the experiments, both on real and simulated data sets,
we used the same experimental setup: augmented Lagrange
parameter µ = 0.6, regularization parameter λ = 0.005,
and SALSA iterations N = 130. This value of N yielded
systematical negligible values of the primal and dual residuals,
which is a valid stopping criteria [52].

The subspace E was estimated by considering the five
singular vectors corresponding to the largest singular values,
which ensure the preservation of more than 99% of the energy
of the original images. Since the energy per band varies
considerably across the spectrum, we normalize the spectral
bands before applying MuSA, such that their mean squared
intensities are equal to 1.

To quantitatively assess the performances of MuSA and
of the competitors, we calculate the following performance
indexes:

SRE: Signal to Reconstruction Error, in dB, per band:

SREi = 10 log10
‖xi‖2

||xi − x̂i||22
. (16)

where xi and x̂i are, respectively, the groundtruth spectral band
i and the corresponding superresolved spectral band.

SAM: Spectral Angle Mapper [53], in degrees:

SAM(X, X̂) =
1

n

∑
i

arccos
(

XT
:,iX̂:,i

||X:,i||2||X̂:,i||2

)
(17)

where X:,i and X̂:,i are the spectra of the ith pixel for the
groundtruth and the estimated S2 image, respectively.

RMSE: root mean square error:

RMSE(X, X̂) =
‖X− X̂‖

n
(18)

UIQI: Universal Image Quality Index proposed in [54]

Q(xi, x̂i) =
1

W

W∑
j=1

σxi,j x̂i,j

σxi,jσx̂i,j

×
2µxi,j

µx̂i,j

µ2
xi,j

+ µ2
x̂i,j

×
2σxi,j

σx̂i,j

σ2
xi,j

+ σ2
x̂i,j
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where xi and x̂i denote the groundtruth and the superresolved
band irespectively, xi,j and x̂i,j denote the values of xi and
x̂i in a sliding window of size 32×32 pixels centered at pixel
j, respectively, σxi,j x̂i,j

is the covariance between xi,j and
x̂i,j , σxi,j

and µxi,j
are the standard deviation and the mean

value of xi,j , while σx̂i,j
and µx̂i,j

are the standard deviation
and the mean value of x̂i,j .

To extend the UIQI index to the multiband case, we simply
average the band indexes obtained as follows:

Q(X, X̂) =
1

n

∑
i

Q(xi, x̂i), (19)

V. EXPERIMENTAL RESULTS

In this section, first we present the quantitative results
obtained on the simulated data sets by comparing the proposed
approach with five state-of-the-art pansharpening algorithms
adapted to the multiresolution case. Then, qualitative results
are presented on real S2 data for each data set.

A. Experiments on Simulated Data Sets

To assess the effectiveness of the proposed approach, the
method was compared to five different baselines. The first
and the second baselines are the simple bicubic upsampling
(Bicubic) and the Area-to-point regression kriging (ATPRK)
presented in [31], which achieved the best numerical results
on real S2 images compared to several pansharpening meth-
ods. The third baseline is the MRA pansharpening algorithm
High-Pass Filtering (HPF) [1], while the last two baselines
are the CS pansharpening algorithms Partial Replacement
Adaptive Component Substitution (PRACS) [55] and Principal
Component Analysis (PCA) [19]. To apply those methods
to the considered MS multiresolution data, we extracted a
single panchromatic band from the four high resolution bands
available in the S2 images by considering the “selected” and
the “synthesized” strategies conceptualized in [33]. While the
“selected” scheme identifies the panchromatic band with the
high resolution band having the largest correlation with the
considered coarse one, the “synthesized” band is determined
adaptively as a linear combination of the four high-resolution
bands as presented in [31].

Tab. II shows the quantitative results obtained by comparing
the superresolved S2 images with the groundtruth images
on the different simulated data sets by using: i) Bicubic, ii)
ATPRK, iii) MuSA, iv) HPF, v) PRACS, and vi) PCA. The
best results are marked in bold font. For each pansharpening
algorithm we tested both the “selected” and the “synthesized”
strategies, reporting the best result per band. From the results
obtained, it turned out that MuSA and ATPRK achieved the
best SRE per band, while among the standard pansharpening
methods the MRA HPF achieved better results compared to
the CS algorithms.

MuSA outperformed all the other methods in bands B6 B7
B8a and B9 for all the data sets and achieved the best results
for almost all the data sets in bands B1 and B5. The most
challenging bands are B11 and B12, belonging to the SWIR
range, which is far away from the spectral view point from the

high resolution bands. However, the minimum SRE achieved
by MuSA is 20.69 dB (for B12 in the urban data set) with
an average SRE over the data sets of 25.30 dB and 25.56 dB
for B11 and B12, respectively. Similar results are achieved
by ATPRK and HPF, while PRACS and PCA resulted in an
average SRE lower than 19 dB for both the bands.

Moreover, MuSA achieved accurate SRE for both the 60m
and the 20m bands regardless of the initial spatial resolution.
Thus, for all the data sets the method obtained an SRE on
the 60m bands that ranges from a minimum of 27.81 dB (B9
coastal data set) to a maximum of 35.36 dB (B9 crop data
set). In contrast, the HPF, the PRACS and the PCA methods
resulted in poor SRE for B9 in some data sets, i.e., HPF
obtained 20.05 dB, PRACS 18.03 dB and PCA 18.62 dB in
the urban data set.

The capability of MuSA of delivering more balanced results
across the bands with respect to the baselines is confirmed by
the results obtained in terms of Average SRE, SAM, RMSE
and UIQI. Here the proposed method achieved the best results
for almost all the data sets, with an average SAM, RMSE and
UIQI across the data sets of 1.07, 32.99 and 0.95, respectively.
Note that achieving balanced results across the bands can
be extremely important for applications where the spectral
contribution of all the bands is employed such as image
classification or spectral unmixing.

B. Experiments on Real Data Sets

Complementary to simulated data, we tested the proposed
approach on real S2 data acquired in the same geographical
areas to provide qualitative results. Fig. 3, Fig. 4, Fig. 5 and
Fig. 6 visually compare the results of all baselines to the
one obtained with MuSA for crops, coastal, mountainous and
urban data sets, respectively. To evaluate the results obtained
for both the 60m and the 20m spectral bands, a false color
composite of bands B1-B9-B1, B5-B6-B7 and B8a-B11-B12
are provided together with a true color composite of the 10m
resolution bands, which shows the geometric detail present in
the scene. The results obtained on real S2 data confirm what
we observed on the simulated data from the quantitative view
point. The 60m bands are accurately superresolved only by
MuSA and ATRPK, whereas all the other methods provide
blurred results for all data sets (see Fig. 3 - Fig. 6). This is
clearly visible in the urban data sets (see Fig. 6) characterized
by many high-frequency details, which are properly recovered
by MuSA while smoothed by the other pansharpening algo-
rithms. From the false color composites of bands B8a-B11-
B12, the low SRE results achieved by PRACS and PCA on
the simulated data sets are confirmed in the real data sets since
the superresolved images present many artefacts. The presence
of artefacts is visible also in the images obtained with ATPRK
and HPF for the coastal and the urban data sets (see Fig. 4 and
Fig. 6). In contrast, MuSA reproduces accurate spatial textures
while preserving the spectral properties of the low resolution
S2 bands.

Tab. III reports the computation times obtained using MAT-
LAB on an Intel(r) Core(TM) i7-7700 CPU running at 3.60
GHz, with 32 GB of RAM per image (456 x 108 pixels,
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TABLE II: Relative SRE (dB), SAM (in degree), RMSE and UIQI between the superresolution image and the groundtruth
(simulated images) per band for: i) Bicubic, ii) ATPRK, iii) MuSA, iv) HPF, v) PRACS, and vi) PCA.

SNR 40 dB

Method
SRE

SAM RMSE UIQI
B1 B5 B6 B7 B8a B9 B11 B12 Average

Crop Data Set

Bicubic 18.25 32.64 29.76 28.97 28.46 22.61 28.33 24.56 26.70 1.54 142.35 0.89

ATPRK 30.16 32.13 32.90 32.91 32.91 31.70 30.31 29.39 31.55 1.24 72.27 0.93

MuSA 33.67 34.37 36.79 38.15 40.15 35.36 29.80 29.33 34.70 0.80 53.33 0.98

HPF 26.35 36.29 35.84 35.58 34.58 29.75 32.68 29.89 32.62 0.95 67.71 0.96

PRACS 28.46 25.60 34.91 34.75 37.24 30.80 20.61 19.75 29.01 1.94 129.15 0.93

PCA 26.41 24.31 33.96 33.64 35.94 29.68 19.03 18.43 27.68 2.32 151.68 0.91

Coastal Data Set

Bicubic 25.68 24.03 22.93 22.71 21.85 15.56 20.86 19.41 21.63 2.29 52.27 0.75

ATPRK 32.28 30.49 31.85 32.40 31.08 25.67 24.45 23.72 28.99 1.85 20.55 0.77

MuSA 32.40 30.63 31.96 34.79 36.08 27.81 24.07 24.15 30.23 1.13 18.35 0.85

HPF 32.96 28.16 31.51 31.99 30.12 21.44 20.91 19.38 27.06 1.76 26.12 0.78

PRACS 31.36 17.84 27.02 31.80 35.41 24.53 13.82 12.75 24.32 3.19 47.42 0.76

PCA 32.53 16.32 26.52 30.40 32.48 22.46 12.09 10.46 22.91 4.37 56.70 0.73

Mountainous Data Set

Bicubic 22.92 23.67 22.66 22.41 21.81 16.85 21.28 20.50 21.51 2.40 61.74 0.87

ATPRK 31.67 30.86 30.91 31.31 31.77 28.00 23.16 24.39 29.01 1.79 25.39 0.98

MuSA 34.08 32.84 33.69 34.90 35.68 32.30 26.15 28.07 32.21 1.08 17.91 0.99

HPF 29.86 30.11 31.33 31.27 29.53 23.58 24.58 25.26 28.19 1.52 27.58 0.98

PRACS 30.62 31.92 30.02 30.31 30.03 22.57 19.08 20.35 26.86 2.03 34.20 0.97

PCA 29.24 29.81 28.41 28.57 28.15 21.88 17.29 18.58 25.24 2.46 41.19 0.96

Urban Data Set

Bicubic 17.29 20.71 19.89 19.15 18.11 14.31 18.18 16.33 18.00 3.44 177.67 0.79

ATPRK 30.83 30.15 31.38 31.67 30.76 27.90 23.73 22.36 28.60 1.60 46.73 0.99

MuSA 31.32 30.91 32.51 35.42 35.79 30.27 21.18 20.69 29.76 1.27 42.38 0.98

HPF 24.00 29.73 28.07 27.59 25.45 20.05 22.54 20.64 24.76 1.76 76.02 0.96

PRACS 23.07 28.62 27.24 26.83 25.38 18.03 19.66 17.75 23.32 2.01 85.38 0.94

PCA 23.06 26.46 25.39 25.08 23.91 18.62 16.65 15.28 21.81 2.32 100.10 0.92

Average Results across all Data Sets

Bicubic 21.03 25.26 23.81 23.31 22.56 17.33 22.16 20.20 21.96 2.42 108.51 0.83

ATRPK 31.24 30.91 31.76 32.07 31.63 28.32 25.41 24.97 29.54 1.62 41.24 0.92

MuSA 32.87 32.19 33.74 35.81 36.92 31.44 25.30 25.56 31.73 1.07 32.99 0.95

HPF 28.29 31.07 31.69 31.61 29.92 23.71 25.18 23.79 28.16 1.50 49.36 0.92

PRACS 28.38 26.00 29.80 30.92 32.01 23.98 18.29 17.65 25.88 2.30 74.04 0.90

PCA 27.81 24.23 28.57 29.42 30.12 23.16 16.27 15.68 24.41 2.87 87.42 0.88

Ideal Values - - - - - - - - - 0 0 1
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TABLE III: Runtimes for superresolving the eight bands of
S2 image (456 x 108 pixels ≈ 4.92 Km2).

Method Time (s)

Bicubic 0.08 s

ATPRK 24.16 s

MuSA 353.22 s

PRACS 0.28 s

HPF 0.25 s

PCA 0.31 s

representing an area of 4.92 Km2). The optimization problem
is solved using salsa solver which guarantees a low computa-
tional burden. CBM3D requires on the considered image 3.5
s per iteration. In the considered implementation we used the
regularizer in the last 100 iterations, thus leading to a total
time of 353.22 s per image. As expected, MuSA takes a higher
computational time than non-iterative methods. However, this
increased time results in a significant improvement of all the
other quality metrics. It is worth noting that the MuSA imple-
mentation can be made faster by first detecting homogeneous
portions of the image for calculating the subspace and then
using different parallel tasks for superresolving each portion.

VI. CONCLUSION

In this paper, a novel method for the superresolution of MS
multiresolution images has been presented. Instead of adapting
a pansharpening algorithm present in the literature to the
solution of the superresolution problem, the proposed approach
is tailored to the specific properties of the multiresolution
data both in terms of problem formulation and regularized
employed. From the analysis of the experimental results, we
can draw the following conclusions. Although the proposed
MuSA approach requires a higher computational burden com-
pared to noniterative methods, it outperformed the state-of-the-
art methods for almost all the data sets in terms of average
SRE, SAM, and UIQI. The quantitative results obtained on
the simulated S2 data are confirmed by the qualitative analysis
performed on the real S2 data. The MuSA was able to accu-
rately reproduce the geometric structures present in the scene
on completely different environmental scenarios: the proposed
method sharpened all the low-resolution spectral channels
without introducing significant distortions and artifacts.

As final remark, we would like to point out that the MuSA
was able to obtain accurate results on both 60- and 20-m
resolution images regardless of the initial spatial resolution,
thus delivering very balanced results across the bands. This
result is extremely important from the operational view point
in order to fully take advantage from the spectral information
provided by the MS data.

As future developments of this paper, we aim to explore
the possibility of estimating the subspace in homogeneous
portion of the images. This analysis can be interesting to
extend the application of MuSA at large scale in order to deal
with extremely heterogeneous scenes. Although the proposed

method has been tested on the S 2 data, we plan to apply the
proposed method to different MS multiresolution data.
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(a) True Color (b) Bicubic (B1-B9-B1) (c) ATPRK (B1-B9-B1) (d) MuSA (B1-B9-B1)

(e) HPF (B1-B9-B1) (f) PRACS (B1-B9-B1) (g) PCA (B1-B9-B1) (h) Bicubic (B5-B6-B7)

(i) ATPRK (B5-B6-B7) (j) MuSA (B5-B6-B7) (k) HPF (B5-B6-B7) (l) PRACS (B5-B6-B7)

(m) PCA (B5-B6-B7) (n) Bicubic (B8a-B11-B12) (o) ATPRK (B8a-B11-B12) (p) MuSA (B8a-B11-B12)

(q) HPF (B8a-B11-B12) (r) PRACS (B8a-B11-B12) (s) PCA (B8a-B11-B12)

Fig. 3: Qualitative results on real S2 images for the crop data set: (a) true color composite that represents the geometric detail
of the scene, (b)-(g) false color composition of band 1 and 9 (60m), (h)-(m) false color composite of band 5, 6 and 7 (20m),
and (n)-(s) false color composite of band 8a, 11 and 12 (20m).
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(a) True Color (b) Bicubic (B1-B9-B1) (c) ATPRK (B1-B9-B1) (d) MuSA (B1-B9-B1)

(e) HPF (B1-B9-B1) (f) PRACS (B1-B9-B1) (g) PCA (B1-B9-B1) (h) Bicubic (B5-B6-B7)

(i) ATPRK (B5-B6-B7) (j) MuSA (B5-B6-B7) (k) HPF (B5-B6-B7) (l) PRACS (B5-B6-B7)

(m) PCA (B5-B6-B7) (n) Bicubic (B8a-B11-B12) (o) ATPRK (B8a-B11-B12) (p) MuSA (B8a-B11-B12)

(q) HPF (B8a-B11-B12) (r) PRACS (B8a-B11-B12) (s) PCA (B8a-B11-B12)

Fig. 4: Qualitative results on real S2 images for the coastal data set: (a) true color composite that represents the geometric
detail of the scene, (b)-(g) false color composite of band 1 and 9 (60m), (h)-(m) false color composite of band 5, 6 and 7
(20m), and (n)-(s) false color composite of band 8a, 11 and 12 (20m).
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(a) True Color (b) Bicubic (B1-B9-B1) (c) ATPRK (B1-B9-B1) (d) MuSA (B1-B9-B1)

(e) HPF (B1-B9-B1) (f) PRACS (B1-B9-B1) (g) PCA (B1-B9-B1) (h) Bicubic (B5-B6-B7)

(i) ATPRK (B5-B6-B7) (j) MuSA (B5-B6-B7) (k) HPF (B5-B6-B7) (l) PRACS (B5-B6-B7)

(m) PCA (B5-B6-B7) (n) Bicubic (B8a-B11-B12) (o) ATPRK (B8a-B11-B12) (p) MuSA (B8a-B11-B12)

(q) HPF (B8a-B11-B12) (r) PRACS (B8a-B11-B12) (s) PCA (B8a-B11-B12)

Fig. 5: Qualitative results on real S2 images for the mountainous data set: (a) true color composite that represents the geometric
detail of the scene, (b)-(g) false color composite of band 1 and 9 (60m), (h)-(m) false color composite of band 5, 6 and 7
(20m), and (n)-(s) false color composite of band 8a, 11 and 12 (20m).
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(a) True Color (b) Bicubic (B1-B9-B1) (c) ATPRK (B1-B9-B1) (d) MuSA (B1-B9-B1)

(e) HPF (B1-B9-B1) (f) PRACS (B1-B9-B1) (g) PCA (B1-B9-B1) (h) Bicubic (B5-B6-B7)

(i) ATPRK (B5-B6-B7) (j) MuSA (B5-B6-B7) (k) HPF (B5-B6-B7) (l) PRACS (B5-B6-B7)

(m) PCA (B5-B6-B7) (n) Bicubic (B8a-B11-B12) (o) ATPRK (B8a-B11-B12) (p) MuSA (B8a-B11-B12)

(q) HPF (B8a-B11-B12) (r) PRACS (B8a-B11-B12) (s) PCA (B8a-B11-B12)

Fig. 6: Qualitative results on real S2 images for the urban data set: (a) true color composite that represents the geometric detail
of the scene, (b)-(g) false color composite of band 1 and 9 (60m), (h)-(m) false color composite of band 5, 6 and 7 (20m),
and (n)-(s) false color composite of band 8a, 11 and 12 (20m).
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