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A Local Projection based Approach to Individual
Tree Detection and 3D Crown Delineation in

Multistoried Coniferous Forests using High Density
Airborne LiDAR Data

Aravind Harikumar, Student Member, IEEE, Francesca Bovolo, Senior Member, IEEE,
and Lorenzo Bruzzone, Fellow, IEEE

Abstract—Accurate crown detection and delineation of domi-
nant and subdominant trees is crucial for accurate inventorying
of forests at the individual tree level. State-of-the-art tree de-
tection and crown delineation methods have good performance
mostly with dominant trees, whereas exhibits a reduced accuracy
when dealing with subdominant trees. In this paper, we propose a
novel approach to accurately detect and delineate both dominant
and subdominant tree crowns in conifer-dominated multistoried
forests using small footprint high density airborne LiDAR data.
Here, 3D candidate cloud segments delineated using a CHM
segmentation technique are projected onto a novel 3D space
where both dominant and subdominant tree crowns can be
accurately detected and delineated. Tree crowns are detected
using 2D features derived from the projected data. The delin-
eation of crown is performed at the voxel level with the help
of both the 2D features, and 3D texture information derived
from the cloud segment. The texture information is modeled
by using 3D Grey Level Co-occurrence Matrix (GLCM). The
performance evaluation was done on a set of six circular plots
for which reference data are available. The high detection and
delineation accuracies obtained over the state of the art prove
the performance of the proposed method.

Index Terms—Tree Top Detection, 3D Tree Crown Delineation,
Light Detection and Ranging (LiDAR), Forest, Airborne Laser
Scanner (ALS).

I. INTRODUCTION

ACcurate forest inventory and biophysical parameter esti-
mations are essential for a variety of forest characteri-

zation and management activities including forest ecosystem
modeling, forest fire models, timber and wildlife habitat man-
agement [1]. Light Detection and Ranging (LiDAR) remote
sensing is a popular technique used to capture three dimen-
sional (3D) data by using highly directed laser beams. In the
case of forests, the laser beam (or part of it) gets reflected from
different canopy layers and hence captures the 3D vertical
profile information. In multistoried forests, these properties of
laser allow LiDAR to capture information about both dominant
and subdominant trees. In this context of multistoried forests,
dominant trees are those with the tallest and often widest
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crowns in their local neighborhood, and hence have the max-
imum visibility in the canopy layer. While, the subdominant
ones are smaller trees that are found close to dominant ones,
with smaller crown size, and hence are invisible/partially
visible at the canopy layer (Fig. 1). Effective subdominant
tree detection and delineation are important as this category of
trees: a) contribute largely to the forest biomass, b) are useful
for accurate forest environment modeling, and c) represent
young trees.

Several forest inventory measures such as the tree height [2],
the crown cover, the basal area, and forest parameter estimates
such as the biomass, the leaf area index, and the Diameter
at Breast Height (DBH), can be estimated directly or indi-
rectly from the 3D data. Most operational LiDAR data based
inventories are performed using area/stand based techniques.
They use samples collected from small circular or square forest
plots to estimate forest biophysical parameters using statistical
methods. However, a single stand can contain trees from multi-
ple classes and/or species having different characteristics, and
thus prior information such as stem number and tree species
is needed for a better prediction of the stand parameters [3].
Whatsoever, the inherent coarseness in the analysis results in
a reduced accuracy of the parameter estimates. These methods
are preferred mostly when the variables to be estimated apply
to the whole range of variation in an area [4]. For forest
management practices requiring an accurate estimation of local
biophysical parameters (e.g., forest fire prediction analysis),
the Individual Tree Level (ITC) inventorying is preferred over
the area based ones, [2], [5], [6]. In general, the performance
of ITC is maximum mostly in mature forests [7]. However,
individual tree level inventorying requires accurate detection
and delineation of tree crowns, as they are critical factors
that affect the performance of forest parameter estimation [3],
and tree species classification [8]. In the framework of forest
analysis, the tree detection refers to identifying the location
of the tree, while the crown delineation refers to delineating
the tree crown in 3D. In individual tree level analysis, the
crown detection step usually precedes the crown delineation.
Both tree detection and crown delineation are challenging
in multistoried forests as: a) the crowns of shorter/smaller
(subdominant) trees are often obstructed by taller (dominant)
ones, b) the trees are often proximal to one another and hence
crowns overlap, and c) the LiDAR point density decreases
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as we move from the top of a canopy towards the bottom.
These situations often make it difficult to accurately detect
and delineate both dominant and subdominant trees [9], [10].

Canopy Height Model (CHM) [11] based approaches are
conventionality and widely used for crown detection and delin-
eation mainly due to their simplicity. Crown delineation is per-
formed by segmenting CHM, based on tree tops detected using
local maxima [11] or level set [12] method. The rasterization
artefacts in the CHM combined with the irregularities in crown
shape, affects the crown detection and delineation accuracies,
and hence are smoothened out using a Gaussian low-pass filter
[13], [14]. Thus, optimal smoothing parameters are critical
for accurate tree detection and delineation. These parameters
are often estimated by modeling topological relation of crown
segments with one another [15], rule based splitting and
merging of crown segments [16], or methods based on local
extrema calculated from combinations of normalised scale
invariant CHM derivatives [13]. In case of mixed/multilayered
forests with variable crown size (and thus no single optimal
resolution), adaptively varying filter window size improved
crown detection accuracy [17], [11]. Alternatively, multistage
object-based approach to tree delineation using region grow-
ing approaches are also developed [18], [19]. However, the
approach demands an overhead of fine tuning of the search-
radius/merge-conditions for optimal results, due to the effect
of CHM smoothing and poor window size selection. CHM
based treetop detection techniques when used singlehandedly
can detect and delineate most of the dominant crowns, but
often fail to detect subdominant tree crowns since they are: a)
partially (or completely) obstructed by dominant tree crowns,
and b) less prominent in the CHM (see Fig. 1). Subdominant
trees are often misdetected as a part of a dominant tree
crown resulting in an under-/over-estimation of parameters like
biomass.

Considering the limited ability of CHM in accurately rep-
resenting tree crowns, in particular the subdominant ones, an
increasing trend of exploiting 3D information along the height
profile is observed in the literature. Exploiting the full potential
of LiDAR data, several studies delineate tree crowns directly
in the point cloud space. The simple k-means clustering
applied to normalized point cloud, with seed points identified
through CHM segmentation, highlighted the possibility of an
accurate 3D crown delineation [20]. In an attempt to improve
delineation of trees with irregular canopy size, Lee et al.
applied region growing for generating initial 3D segments,
and performed agglomerative clustering to accurately segment
individual tree crowns [21]. In some studies, the horizontal
spacing between tree crowns [22] and the variation in vertical
density profiles of CHM segments [23] have been exploited
to delineate tree crowns. Methods performing 3D layerwise
analysis on tree point cloud to mitigate the problem of reduced
point density in the understory also exist in the literature [24].
For example, layer-wise segments derived through clustering
of the point cloud segments in every layer are stacked together
and inspected for overlap to detect potential tree crowns
[25]. Voxel-based approaches also exist in the literature. For
example, Wang et al. delineated tree crowns using cluster
features derived at every horizontal layer along the tree height.

Each layer is divided into cells, and the points within the each
study cell are resampled into the local voxel space (within), to
derive the projection images [26]. In a more recently proposed
voxel-based approach, the complementary information derived
from the tree top and the stem location is exploited for 3D tree
crown delineation [27]. In a comparison on crown delineation
methods performed on the same dataset, the accuracy varied
from study to study from 25% to 90% [28]. The results prove
that the accuracy is highly influenced by the crown delineation
method. Forest type also impacts on delineation accuracy [29].
It has been inferred that high stand density and large forest
heterogeneity have adverse effects on delineation accuracy
[28]. In any case, many studies agree that state-of-the-art
methods are lacking in the ability to detect and delineate
subdominant trees [25]. [28], [30], [29].

Wang et al. proposed a hierarchical morphological approach
to 2D crown data, derived from voxel layers analysis along the
forest vertical profile, to delineate dominant and subdominant
crowns in the 3D space [31]. Vega et al., proposed a multi-
scale segmentation at the point level followed by a multi-
criteria analysis of the segments for accurate crown localiza-
tion and delineation. However, the accuracy associated with
the subdominant tree detection is low mainly due to poor point
density below the canopy layer [32]. In a bottom-up approach
to detect and delineate tree crowns, Lu et al., first extracted
tree trunks by exploiting the intensity difference between trunk
and other parts of the tree, and assigning the remaining points
to the trunk clusters based on a set of proximity rules (with
respect to stem) [33]. Among studies using full waveform
LiDAR data, [34], the ones based on ellipsoidal k-means
clustering proved to provide good accuracies in multilayered
forest. Here, the cluster centers of dominant trees are obtained
from the CHM segments, while that of the subdominant
trees are obtained in an iterative way using uniform seed
placement which however often causes inaccuracies [35]. In
a more recent attempt, Paris et al. delineated dominant and
subdominant tree crowns by a radial-sector-wise analysis of
crown vertical profile [36]. However, the method relies only
on the crown boundary at the canopy layer to delineate crown,
and hence does not fully exploit the 3D information in the data.
Statistical approaches to estimate tree count are also proposed.
For example, Maltamo et al. used a theoretical distribution to
predict the stem number and the stem diameter of subdominant
trees which are not visible in the canopy layer. The parameters
of the distribution were calculated from a truncated diameter
distribution of dominant trees [37]. With a similar objective,
but under the assumption that the relative height of trees in
a homogeneous Poisson stand determines the probability of
observing them from the air, some authors estimated the sub-
dominant stem count [38],[39], and predicted stem-diameter
distribution without the knowledge of tree position [40]. Prior
information of tree shape when used in the MAP estimation
of the position, the size, and the crown shape also improves
tree detection accuracy [41]. Nonetheless, statistical modeling
of tree level parameters can be useful for: a) estimating the
understory biophysical parameter in case of low point density,
and b) correcting errors in the crown level parameters derived
from the pure ITC technique.
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Most of the state-of-the-art 2D and 3D single tree detection
and delineation algorithms work efficiently mostly in the
case of dominant trees, but show reduced performance with
subdominant trees, especially in dense multistoried forests
[32], [36]. It is also worth noting that the errors in detecting
tree crowns are very likely to affect the accuracy of any down-
stream operation like crown delineation. However, methods
that can accurately detect both dominant and subdominant
trees using high density airborne LiDAR data are lacking in
the literature. Thus, the major objectives of the paper are: a) to
develop an automatic technique for dominant and subdominant
tree crown detection in multistoried coniferous forest with
minimal omission and commission errors, and b) to accurately
delineate the detected dominant and subdominant tree crowns.

Fig. 1: CHM based tree detection and crown delineation. The
dominant trees and Subdominant trees are shown in green and
red, respectively.

II. PROPOSED TREE DETECTION AND DELINEATION
METHOD

In this paper, we propose a novel method for detecting and
delineating both dominant and subdominant trees in a multisto-
ried coniferous forest by combining 2D and 3D information
derived from LiDAR data. Here, the focus is on coniferous
forests as: 1) they constitute close to 80% of the European
forest, and 2) they are important from both economic and eco-
logical point of view. 3D candidiate tree crowns are extracted
from the point cloud based on CHM segment boundaries
extracted using a state-of-the-art technique. We reasonably
assume that each 3D segment (which is henceforth referred
as the 3D candidate segment) contains one dominant tree
crown only, however, may contain a number of subdominant
tree crowns. All LiDAR points in a 3D candidate segment
are then projected onto a novel 3D Euclidean space, where
detection and delineation of dominant and subdominant tree
crowns are performed. The high level block scheme of the
proposed method is shown in Fig. 2.

A. CHM segmentation

Let P = {pi ∈ R3, i = 1, 2, ..., N} be the set of N
LiDAR points in the input point cloud. TCHM = {tj ∈
R3, j = 1, 2, ..., T} is the set of 3D tree top locations,
where T is the total number of tree tops detected by the

level set method [12] applied to the CHM. Segmentation
is performed on the CHM by using the marker-controlled
compact watershed algorithm [42] with TCHM as seeds. The
compactness of segments is controlled using q ∈ [0, inf]
[42]. Each CHM segment Ci(i = 1, 2, 3..., T ) corresponds
to the 2D boundaries of a 3D candidate segment with one
dominant tree and Si(i = 0, 1, 2, 3..., S) possible subdominant
trees. The section of the 3D point cloud corresponding to
individual CHM segments (i.e., 3D candidate segment) is
extracted and analysed for: a) detecting the Si subdominant
tree crowns, and b) accurately delineating the dominant, and
the Si subdominant tree crowns.

Fig. 2: Block scheme of the proposed crown detection and
delineation approach.

B. Data projection

Analyzing the 3D candidate segments to accurately detect
and delineate tree crowns in the original 3D Euclidean space is
challenging as: a) the subdominant trees have smaller crowns,
and are often close to the dominant ones, thus making it
difficult to identify and delineate them; b) there is no or
minimal difference in the crown-structural/volumetric-textural
properties of a dominant tree and any proximal subdominant
one; This makes it difficult to directly distinguish them using
structural information in LiDAR data. Thus, we develop a
technique that transforms the 3D candidate segment such that:
a) smaller trees in it can be detected independently on their
size and/or proximity to the dominant one; and b) a volumetric
structure/textural modification is induced on the dominant tree
crown without affecting its local branch structure, and any
subdominant tree structure.
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For each 3D candidate segment, we consider the neighbor-
hood spanned by a cylinder with the axis along the dominant
tree stem direction, and the radius r as the distance of the
point farthest from the stem axis, and measured in a direction
perpendicular to it. Here, the dominant tree stem is assumed
to be vertically below the highest point pv = [xv, yv, zv] in
the 3D candidate segment. Any LiDAR point pi = [xi, yi, zi]
within the cylinder can then be uniquely projected into the
novel space, spanned by the basis variables d, l, and z, using
the projection equations (1), (2), and (3), which are designed
to satisfy the transformation requirements.

d =
√
(xv − xi)2 + (yv − yi)2 (1)

l = 2πrθ (2)

z = z (3)

where, {xv,yv} and {xi,yi} are the set of horizontal spatial
coordinates of pv and pi, respectively. Here, d is the shortest
distance between a LiDAR point pi and the stem, l is the
length of the arc with radius r, θ is the smallest angle
between the pi and the reference plane Lr, and z is the
height of a point from the X-Y plane [43]. Interestingly, the
transformation is equivalent to rolling out the space inside
a solid cylinder into a cuboidal space (Fig. 3). It is worth
noting that the transformation increases the distance between
a pair of points (i.e., stretches the space) nearer to the axis
of the cylinder, than to those located farther away from the
axis. The amount of stretching is controlled by r; a larger
r causes more stretching than a smaller r. In the case of
conifers, branches grow outward from the central stem in
directions nearly perpendicular to it. Thus, when the opening
is performed along the stem of the dominant conifer, the
section of every branch closer to the stem are pulled apart
more than the section further away (see Fig. 3a-3c). It is worth
mentioning that, in the projected space, the branches seem to
emerge from a plane rather than a line (i.e., stem). This adds
up as an advantage of the projection, allowing the entire 3D
candidate segment to be visualized and analyzed from a single
point perspective (Fig. 3c).

In the proposed transformation, the negative direction of Lr

decides the vertical section where the cylinder is opened. Lr

is selected such that it does not cross any subdominant tree
crown. This is because, any subdominant tree, with part of
the crown falling on either side of Lr (in the original space)
is ripped apart to the either side of the rectangular cuboid
(in the projected space). This undesirable situation leads to
overestimation of subdominant tree count, hence reducing the
crown delineation performance. Accordingly, we propose a
Principal Component Analysis (PCA) based method which
uses only the x and y components of the data for identifying
the optimal reference plane direction. The assumption here is
that conifers have a near-symmetrical crown, i.e., the spread
of crown around the stem is near-symmetrical. However, the
presence of subdominant trees disrupts this symmetry, and
results in: a) data points further away from the main crown;

and b) localized increase of point density (due to greater
biomass per unit volume). In both the symmetry disrupting
situations, the first principal component (PC1) is directed
towards the subdominant trees, while the second principal
component (PC2) points in an orthogonal direction. We
choose Lr to be in the direction opposite to the resultant
of PC1 and PC2, as it is very unlikely for that plane to
pass through any of the subdominant tree point cloud even
in complex situations where more than one subdominant tree
exists in a 3D candidate segment. Fig. 4a shows an ideal 3D
candidate segment containing one subdominant tree while Fig.
4e shows four subdominant trees near the dominant one. It can
be observed that opening the point cloud along Lr derived as
above, does not divide/rip apart the subdominant tree, in both
the situations.

We also use the PCA analysis for detecting the presence
of subdominant trees in a 3D candidate segment (as some
3D candidate segments may not have subdominant trees.) Let
dmin and dmax be the distance of the points in the cloud
that is maximally away from the stem in the direction of Lr

and PC1, respectively. We identify these points by: a) fitting a
maximally compact 2D convex hull on the x and y coordinate
data of the point cloud, and b) finding the boundary points
that are closest to, the line connecting the treetop point and
its intersection in the convex hull boundary (in the respective
direction). We consider the ratio of dmin

dmax
as an indicator of the

presence of subdominant trees. A ratio close to 1 means that
the distances in the two directions are similar, and hence the
absence of a subdominant tree is assumed. Smaller ratios mean
that the distances in the two directions are highly unequal,
and hence refers to the presence of subdominant trees in the
direction of PC1. Further analysis using data transformation is
performed on 3D candidate segments for which the presence of
subdominant trees is detected. The data transformation is ad-
vantageous for differentiating the dominant from subdominant
tree crowns as it: a) deforms mostly the shape of the dominant
tree crown, while maintaining the local crown structure; b)
does not (or minimally) deforms the subdominant tree crowns;
and c) allows observing the points associated with all the
dominant tree branches from a single-point perspective. Fig. 4
shows the original and projected 3D data corresponding to an
example candidate tree CHM segment, for simple (i.e., with 1
subdominant tree) and complex (i.e., with 4 subdominant trees)
situations. The red boundary line in Fig. 4a,4e represents the
CHM segment boundaries.

C. Candidate Segment 3D Feature Extraction

We perform the texture analysis in the transformed space
at the voxel level, where the optimal voxel size is obtained
by using a semivariogram analysis. The sill location in a
semivariogram corresponds to the distance beyond which the
correlation is minimum, and hence the distance at the sill is
taken as the optimal voxel dimension. It is worth recalling
here that the projection operation is equivalent to rolling out
the space inside a solid cylinder (enclosing the 3D candidate
segment data) placed along the stem of the dominant tree
(Fig. 3). It should be noted that the intermediate stage (Fig.
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(a) (b) (c)

(d) (e) (f)

Fig. 3: Perspective and top view of solid cylinder placement on the original point cloud space (a,d), cylinder roll-out (b,e),
and projected space (c,f).

3b,3e) is shown only to help visualize the spatial relationship
between the initial and final states of the data. The rolling
out affects mostly the dominant tree data, while the structure
of subdominant trees is preserved. In the projected space, the
branches of the dominant tree appear to grown straight up
from the background plane, while the subdominant trees have
their branches growing out from the respective stem locations.
This induces a change in volumetric texture properties of the
dominant tree crown, while maintaining the texture of the
subdominant tree crowns. We exploit this variation in texture
properties to delineate dominant and subdominant trees in the
projected point cloud data.

In this paper, we use the Grey Level Co-occurrence Matrix
(GLCM) texture features calculated on the number of points
in each voxel. By considering the number of voxel-pairs with
similar point count in a particular direction and within a
fixed neighborhood, 3D GLCM is derived and used to extract
voxel level texture information. Hence, for every voxel cell
and a direction, a GLCM matrix is generated. Branches in
the projected space often have slightly different vertical and
horizontal tilts, resulting in directional variation in the local
structure/texture. Thus, we derive GLCM matrices for 13
different directions, and averaged element-wise to get a single
GLCM matrix [44]. In order to quantify texture variations from

each averaged GLCM matrix, four Haralick texture features
including energy, correlation, contrast, and homogeneity are
calculated [45]. Although the feature extraction can also be
performed on GLCM matrices generated with different neigh-
borhood size and voxel distance, we restrict our analysis to
the first order neighborhood and unit distance, respectively.

D. Candidate Segment 2D Feature Extraction and Boundary
Detection

The l and z dimensions of each data point provide infor-
mation about its position with respect to Lr, while d gives
information about the distance of a point from the dominant
tree stem. A 2D representation of the spatial variation in d
on the l− z plane helps to detect and delineate dominant and
subdominant trees. The 3D data can be converted to a 2D
representation by forming a square grid which spans the l− z
plane, and assigning values to each grid cell by selecting the
largest d value falling within the respective cell. The grid size
is chosen to be the same as that of the semivariogram. We refer
to the 2D representation as the Candidate Segment Surface
Model (CSSM), as it essentially models the spatial variation
of the maximum d values in the projected data. It is worth
noting that the CSSM generation process is similar to that of
the forest CHM in the original point cloud space, where the
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4: Subdominant tree growth scenarios: (a,e) the top view, (b,f) the side view, (c,g) the reference plane direction estimation,
and (d,h) the projected point cloud. Cases with one (simple case), and four (complex case) subdominant trees are illustrated.

points with the maximum d values in each grid determine the
exterior crown boundary instead. In general subdominant tree
crowns, and thus the corresponding data points, exist farther
from the stem of the dominant tree. As a result, the sections
of CSSM representing the subdominant tree crowns have
relatively larger d values compared to the dominant crown
sections. The presence of subdominant trees often results in an
increase in biomass volume (due to leaves, branches, and stem)
and in turn causes a local increase in LiDAR point density. It is
worth recollecting here that the subdominant tree point cloud
within the 3D candidate segment mostly remains unaffected
by the projection, while the dominant tree point cloud (within
the 3D candidate segment) is rolled out along its stem axis. As
a result, the point density of the region spanned by dominant
tree crown in the (l-z) plane is lowered by approximately half,
while the density of the subdominant tree remains unaffected
(Fig. 4b,4d). By using the number of LiDAR points (rather
than the largest d within a grid) as the selected parameter, one
can generate the Candidate Segment Density Model (CSDM).

We detect subdominant trees crown boundary by performing
the simple k-means segmentation on the Gaussian smoothed
candidate segment features. The number of clusters is set
to 2 to extract the dominant, and the subdominant crown
segments. We identify the foreground cluster (which represents
the subdominant crowns) based on the mean values of pixels
belonging to the cluster in the CSSM and CDSM. A larger

mean value is found in the cluster containing the subdom-
inant tree(s), and is selected as the foreground cluster. Each
foreground segment boundary closely follows the subdominant
tree crown boundary in the l − z plane. For each segment
boundary the local maximum in its upper half corresponds
to the subdominant tree top, while the maximum extent of
the segment along the l axis represents the maximum crown
radius. Sometimes the segments of multiple subdominant trees
merge due to crown proximity, creating a merged segment.
However, in any case, the merge happens mostly below a
certain crown height (due to the tapered-top characteristic
shape of conifers), hence creating a local minimum between
two local maxima. In these situations, the position of the local
minima on either side of the local maximum determines the
crown span. We implement this analysis by: a) identifying the
upper half (along z) of the boundary segment, and assigning
minimum values to remaining sections along l not spanned by
the segment boundary; b) fitting a curve passing through all
the upper envelope points; and c) detecting the local maxi-
mum/maxima and local minimum/minima of the fitted curve.
This information about the position of the local maximum
combined with the two local minima on its both sides, is used
to create an approximate shape of the subdominant tree. In our
case, we use an elliptical shape, as it can model tree crowns
effectively. The major axis length (ae) and minor axis length
(be) of the ellipse are assumed to be the local maximum height
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(i.e., the subdominant tree height), and the horizontal distance
between the local minima on either sides of the local maximum
(i.e., the subdominant tree crown width). The center of the
ellipse is placed at half the height of a local maximum. The
ellipse is used as an input to accurate detection and delineation
of the 3D tree crown.

E. Dominant and Subdominant Tree Crown Detection and
Delineation

We achieve crown delineation in the projected 3D space by
performing segmentation of the voxels based on the texture
properties. The segmentation is performed on the so-called
multispectral scalar image which is obtained by pixel by pixel
averaging of the gradient image obtained against the individual
texture features [46]. Whatsoever, the point density within the
tree crown in the original space decreases from the exterior of
the crown towards the stem, and also from the top of the crown
towards the bottom. Consequently, in the projected space, the
point density decreases in the direction of the positive d axis
and decreases in the direction of decreasing z axis. In other
words, the point density varies within a tree crown. This
can affect the performance of most volumetric segmentation
(i.e., 3D segmentation) techniques. However, the point density
variation within a horizontal layer along d is small. Thus, we
perform segmentation on the interpolated image of the layer-
wise texture data. The number of layers along d is defined by
the voxel size.

All voxels whose centers are located below a threshold
dt = dmin∗r

dmax
belong to the dominant crown, While the

remaining voxels contain the subdominant crown(s). Individ-
ual subdominant crown(s) is extracted at the voxel level by
stacking the group of all structurally similar voxel cells from
different d layers. For each tree, segments from all d layers that
has the major portion of its area falling within the respective
elliptical boundary (derived from 2D analysis of candidate
segment in Sec. II-D) are stacked. We perform multivariate
marker-controlled watershed algorithm [46] on interpolated
texture feature maps to identify such segments in individual d
layers. A spatial Gaussian filtering is applied to each texture
layer in order to smoothen out any local irregularity and to
avoid oversegmentation. The stacked voxel segments define
the 3D crown of the subdominant tree(s) in the projected space.
Every data point inside the projected segment is then assigned
to one of the voxel cells, based on the proximity of a point to
the center of a voxel cell. The index of points belonging to the
individual stacked-voxel segments define the point cloud of a
tree in the original space. Any unassigned point is assigned to
one of the tree cloud segments based on proximity.

However, CHM based segmentation may result in a subdom-
inant tree crown being split between 3D candidate segments
(Fig. 5a) (i.e., section of the subdominant tree crown is
allocated to different proximal 3D candidate segments) and
hence will be detected and delineated as separate trees in
the respective 3D candidate segments (Fig. 5b). This results
in an overestimation of subdominant tree count, and an un-
derestimation of the crown size. To address this issue, we
merge subdominant tree clusters if they have: a) similar crown

boundary parameters on data points in the G most external
d slices of the 3D candidate segment. These are the ones
corresponding to the largest d values. Here we consider G = 2
to include enough points for crown segment boundary estima-
tion (i.e., ∪(dD, dD−1) (Fig. 5c). Elliptical crown boundary
parameters ae and be are calculated as in Section II-D and used
for similarity estimation; and b) the Euclidean distance ptS
between the highest point in the respective slices is small. For
each subdominant tree cluster, we represent these parameter
values as a 3D vector td = [ae be pts]. Clusters pairs with
the Euclidean difference between corresponding td vectors
less than a threshold are merged. It is worth noting that
the proposed split-crown merging technique works also for
complex situations where a crown is split into more than 2
parts.

We consider the horizontal position of the highest point in
the delineated point cloud as the location of the tree. The
maximum radius of a delineated crown is calculated as the
perpendicular distance of the point that is maximally away
from the line connecting the highest point in the subdominant
tree segment and its projection on the ground.

III. EXPERIMENTS AND RESULTS

A. Study Area, Dataset

The study area is a multistoried coniferous forest in the
southern Italian Alps, in the municipality of Pellizzano located
in the Trentino region in Italy. The altitude of this mountainous
terrain ranges from 900 m to 2000m above sea level. The area
has an extent of 3200 ha with the geographic center point of
46017′31.00′′ N and 10045′56.49′′ E. High density LiDAR
data were acquired between 7th and 9th of September 2012
using a Riegl MS-Q680 sensor. The acquisition was performed
from an airborne platform flying at an average height of
660m above ground level with a speed of around 180km/hr.
The pulse repetition frequency was 400 KHz and recorded
a maximum of four returns for each laser pulse fired. The
major tree species include the Norway spruce (Picea abies),
the European Larch (Larix decidua), and the Silver Fir (Abies
alba).

The experiments were conducted on a set of 6 plots contain-
ing both dominant and subdominant trees. The radius of each
plot is 25m. The plot centers were measured using a survey
grade differential GPS, which provided a root mean square
error of 0.25m in a separate validation. The position of trees
within a plot was measured with respect to the center of the
plot using an ultrasound instrument with high measurement
accuracy of 0.25m. The height, the DBH (at 1.3m above the
ground), and the species are also available from an in situ
survey. The height of individual trees was estimated using
regression models (4) based on a set of reference trees for
which height is also known.

hi = α0 + α1ln(DBHi) + ϵ (4)

where hi is the height of ith tree, DBHi is the DBH of the
ith tree, and ϵ is the error term in the regression function. The
α0 and α1 are regression parameters [35]. Regression models
were derived for each species in the dataset separately. The
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(a)

(b)

(c)

Fig. 5: (a) Top and side view of two proximal 3D candidate
segments (CS1 and CS2) with a split subdominant tree crown,
and (b) shows the corresponding projected 3D candidate
segment, and (c) ∪(dD, dD−1).

estimated height is used for correcting/rectifying the positional
errors of trees [47]. Each delineated tree i derived using the
proposed and the state-of-the-art methods is linked to a tree
j in the reference data based on the distance dij (5). For
the case with multiple trees satisfying the distance criteria,
the most proximal tree is linked to the reference data. Only
clusters which fall completely within the boundary of the plot
are included for the validation. However, a few trees near the
plot boundary which satisfy the inclusion condition are not
used in the validation due to lack of field data, i.e., such cases
counted to a total of 7 trees.

dij =
√
(r2xy + (rz/3)2) (5)

where the rz is the vertical distance, and rxy is the horizon-
tal distance between the highest point in the delineated tree i
and the nearest reference tree j. A delineated tree is linked to a
reference tree only if dij is less than 1.5m + 2DBH, in order to
allow for positioning and height errors or else is considered as
a Commission Error (CE) [35]. The DBH estimation for every
tree is performed using a model that employs the tree height
and the crown diameter as the independent variables (6).√

DBHi = b0 + b1
√
hi + b2

√
di + ϵ (6)

where DBHi is the estimated DBH (in mm) of the ith tree,
and hi and di are the tree height (in dm) and the crown
diameter (in dm), respectively. The b0, b1 and b2 are model
parameters. The coefficients of the model used for Norway
spruce are b0 = −3.524, b1 = 0.729 and b2 = 1.345, whereas
for other species the model coefficients are b0 = −3.733,
b1 = 0.807, and b2 = 1.144 [48].

TABLE I: Statistics of the structural characteristics of the trees
in the dataset considered for automatic segmentation.

Plot #Trees DBH (cm) Crown Radius (m)
Range Mean Range Mean

H1 40 9.0 - 76.0 39.6 1.3 - 7.0 3.7
H2 32 9.0 - 78.0 44.0 2.0 - 7.5 5.2
H3 30 16.0 - 77.0 35.5 2.6 - 7.8 4.4
H4 25 20.0 - 92.0 53.4 3.7 - 7.7 5.8
H5 45 25.0 - 67.0 35.1 2.1 - 6.9 4.2
H6 38 9.1 - 81.0 33.6 1.3 - 6.8 3.6

B. Experimental Results and Discussion

The performance quantification was conducted on the 6
plots to investigate the operational effectiveness of the pro-
posed method. The dominant tree tops detected using the level
set algorithm are used as the markers for the marker-controlled
compact watershed segmentation on CHM, which in turn is
used to delineate 3D candidate segments. The compactness
parameter q is set to 1 as it was found to be optimal for
minimizing the over-segmentation errors [42]. The spatial
resolution of the CHM was chosen on the basis of the average
number of LiDAR points/m2, while the 2D Gaussian filter
parameters were tuned to minimize false peaks in the CHM.
In our case, the CHM resolution and the Gaussian filter size
are selected to be 0.25 and 5 x 5, respectively. Fig. 8 shows
the watershed segments for plot H1. The watershed segment
boundaries are used to generate the 3D candidate segments,
i.e., all points within a CHM boundary are assigned to the
respective segment. However, CHM smoothening results in
points to remain unassigned near/outside the CHM bound-
aries. Thus, unassigned points are assigned to the nearest
candidate segment. Fig. 10 shows the candidate tree segments
for four scenarios with one, and four subdominant trees,
respectively. Each candidate data segment is then projected
into the proposed space to detect subdominant trees. Fig. 7a
and Fig. 7b show the 3D visualization of the projected data
with and without a subdominant tree, respectively. Here, large
d values associated with the subdominant trees are shown
in shades of red, while the low values correspond to the
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(a) (b) (c)

(d) (e) (f)

Fig. 6: (a)-(f) High density LiDAR data CHM representations of the plots with individual tree tops (in red) and respective
maximum crown extents (white dotted circles). The points represent the crown center, and is colored based on the DBH value.
Small to large DBHs are represented in shades from yellow to red.

background/dominant tree crown points, and appears in shades
of yellow and green.

The projected space is divided into voxels. The optimal
voxel size is obtained against the range of an exponentially
fitted semivariogram. However, the range is set to 0.5m for
the case in which semivariance does not saturate. Fig. 11(a-
d) show the projected point cloud of dominant segments with
one, two, three and four subdominant trees, respectively. For
each projected segment, the CSM is computed on the d values
(Fig. 12). The crown of subdominant trees maximally stretches
along the z direction (i.e., along the height of the tree). We
exploit these characteristics to minimize the local variation
of d in the l − z plane, and reduce false peak detection, by
using a rectangular spatial filter with the longer side along the
z axis. For our dataset, the 6 x 3 rectangular Gaussian filter
with σ = 1 was found to optimal in removing false peaks
caused due to locally protruding branch points. The location
of a subdominant tree top (red dots in Fig. 13) combined with
the nearest valley points on its either (blue dots in Fig. 13) side
are used to define the boundary of the subdominant tree. Fig.
13 shows the elliptical boundaries of the subdominant crowns
detected in the projected space for cases with one, two, three,
and four trees.

The delineation of subdominant tree crowns is performed by
exploiting the tree top location, and the 2D crown boundary

Fig. 8: The candidate tree segments for the plot H1 are shown
as color-filled polygons.

information modeled from the CSM using the ellipse. The
projected space is divided into dmax/v voxel layers, where
dmax is the maximum d value of points in P , and v is the voxel
size derived using the semivariogram. Texture segmentation of
each voxel slice/layer is done using a marker-controlled wa-
tershed algorithm as: a) it allows detecting spatially confined
and homogeneous local segments even in the presence of large
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(a) (b)

Fig. 7: Projected point cloud of a 3D candidate tree segment: a) with a subdominant tree, and b) without any subdominant
tree.

variance in the data, b) the situation is similar to the case of
crown segmentation in a CHM (for which it is largely used),
and c) it is simple. Here, the gradient magnitude is used as the
segmentation function, the foreground markers are obtained
by using the opening-by-reconstruction and the closing-by-
reconstruction morphological operations, and the background
markers are obtained by considering the watershed ridge
lines obtained from the binarization (using Otsu’s method
[49]) of the original image with the foreground markers
superimposed. All segments falling to the subdominant voxel
layers and within the respective ellipse are separately stacked
to identify the 3D subdominant crown segment(s). Fig. 15
shows the voxel layer segments stacked together to obtain
the 3D crown segment of subdominant trees for different
subdominant growth situations. All voxel layer interpolated
texture feature maps are separately smoothened using the
rectangular Gaussian filter with σ = 1. Point cloud segment
of the subdominant tree(s) are obtained by identifying the
projected points contained by the 3D voxel set. The mapping to
the original space is done using a unique index that is assigned
to every data point. Subdominant tree clusters with td < 1.8
are merged into a single cluster. The value of td was obtained
using the trial and error method. The objective here was to
minimize CE for a set of manually selected 3D candidate
segments in the 6 plots for which subdominant crown split
occurred.

We compared the proposed method with a point cloud based
tree detection and delineation technique, henceforth referred to
as the SoA method [36]. The method uses level set analysis on
CHM to detect dominant tree apexes, and perform an angular
analysis around them to delineate individual crown boundaries.
The crown boundary for a tree is derived based on the first
local minimum detected on the angular sectors considered
around the apex. Further, a sector-wise analysis is performed
on the delineated 3D dominant tree segments to detect and

delineate any subdominant crown [36]. The dominant and
subdominant trees were detected and delineated by employing
angular sector-splits of 4 and 8, respectively. The quantization
steps for vertical profile analysis is set to 29, and was estimated
using the method in [36].

Table II shows the detection accuracies obtained by the
proposed method, and the SoA method, for the six sample
plots. The proposed method improves the overall detection
accuracies by around 5% when compared to the SoA method.
The overall accuracy of the proposed tree detection method
varies from 88.0% to 96.8% for the six automatically seg-
mented plots. The better performance of the proposed method
can be mainly attributed to the projection technique which
selectively induces a structural change in dominant tree cloud,
thus improving the separability between the dominant and the
subdominant cloud segments. This possibility is lacking in the
SoA method which is based on a more complex sector-wise
analysis that tends to result in tree crown being shared between
3D candidate segments. Thus, the algorithm will identify part
of the subdominant crowns in each candidate segment, (and
detect it as separate trees) resulting in larger CE (see table II).
Whereas, the proposed method minimizes the crown splits by
suitably selecting the direction of the reference plane in the
projection. The proposed method performs the crown detection
analysis in the 3D space, rather than on a projected 2D space
as it is the case with the SoA method. Thus it allows the
maximum exploration of the structural information in the
LiDAR data. For this reason the method can better detect small
subdominant trees which are lost when using other methods.
Hence reducing the Omission Errors (OE). Fig. 9 shows the
histogram of the detected trees by the range of DBH class.
The proposed and the SoA method show similar performance
for subdominant trees with DBH greater than 40. However,
the proposed method was able to detect a larger number of
smaller trees (i.e., with DBH less than or equal to 40), when
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compared to the SoA method. Whatsoever, the performance
on detecting trees with DBH less than 20cm is minimum for
both the proposed and the SoA methods. This low performance
can is attributed to the low point cloud density in lower forest
layers. In any case, the proposed method correctly detected a
larger number of trees, which proves its effectiveness.

Fig. 9: Overall detection accuracy obtained on the 6 plots,
across different DBH classes.

Fig 10 - 16 shows the step-wise mechanism for crown
delineation performed on 3D candidate segments of various
complexities. It can be seen that the algorithm is able to
detect both dominant and subdominant trees for simple (1
tree in the 3D candidate segment) and complex (more than
1 tree in the 3D candidate segment) growth scenarios. The
crown delineation performance evaluation was performed on
the correctly detected trees. Table. III shows the Mean Error
(ME), the Mean Absolute Error (MAE), and the Root Mean
Squared Error (RMSE) of the DBH estimates obtained using
the proposed, and the SoA method, on the 6 plots. As expected,
the proposed method is able to better estimate the DBH of
the trees. However, both the proposed and the SoA method
underestimate DBH in average. This can be attributed to the
low point density in the subdominant layer, and Gaussian
smoothing done on the 2D and 3D features. The relatively
lower ME, MAE and RMSE provided to the proposed method
confirm the average ability of the proposed technique to
mitigate the omission errors. The same analysis have been
conducted by dividing the dominant-subdominant pairs in 3
groups of delineation complexity defined in terms of proximity
among the trees: Group 1 includes the pairs with dominant-
subdominant tree distance in the range 0m - 2.5m; Group 2
includes the ones with distance in 2.5m - 5.0m, and Group
3 is the set with pairs of trees being more than 5.0m far
from each other. For both the proposed and the SoA method
the DBH estimation error is found to be larger for trees with
smaller distance (i.e., the ones in PL1). However, the proposed
approach shows a ME of - 1.80cm which is the 65% of the
one achieved by the state of the art. As we move to less
complex situations (Groups 1 and 2) the estimation mean error
in DBH decreases. This is in accordance with the fact that the
crown delineation accuracy improves as the trees are further
away from one another, due to smaller overlap. However, the
proposed method performs better in these cases as well by
resulting in a ME that is less than half the one provided by
the SoA method.

IV. CONCLUSION

In this paper, a novel local projection based tree detection
and 3D crown delineation is proposed for high density LiDAR
data. The proposed method detects both dominant and sub-
dominant trees in multistoried conifer forests. 3D candidate
segments are first extracted and then separately analyzed in
the projected space to detect and delineate both dominant and
subdominant trees. The tree crowns are delineated in 3D by
exploiting the projection-induced texture variation extracted
using GLCM features. The average crown detection accuracies
obtained is 92.3% and the RMSE errors associated with
the DBH estimates is 5.13cm. Possible future works include
leveraging on the intensity information in LiDAR data, and
using datasets with larger point density which include more
texture information (e.g., the Terrestrial Laser Scanning data),
to improve tree detection and crown delineation.
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