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Abstract—Diameter at breast height (DBH) is one of the most
important tree parameter for forest inventory. In this work, we
present a novel method for the adaptive and the accurate DBH
estimation of trees characterized by small and large stems. The
method automatically discriminates among different tree growth-
models by means of a data-driven technique based on a clustering
procedure. First, the method detects young trees belonging to the
lowest forest layer by simply considering the vertical structure
of the forest. Then, different clusters of mature trees that are
expected to share the same growth-model are identified by analyz-
ing the environmental factors that can affect the stem expansion
(e.g., topography, forest density). For each detected growth-model
cluster, a tailored regression analysis is performed to obtain
accurate DBH estimation results. Experiments have been carried
out in an homogeneous coniferous forest located in the Alpine
mountainous scenario characterized by a complex topography
and a wide range of soil fertility. The method was tested on two
datasets characterized by different Light detection and ranging
(LiDAR) point densities and different forest properties. The
results obtained demonstrate the effectiveness of having multiple
regression models adapted to the different growth-models.

Index Terms—Forestry, Light detection and ranging (LiDAR),
Remote Sensing, Tree Stem Attributes, Forest Parameters, Re-
gression Analysis.

I. INTRODUCTION

Diameter at breast height (DBH), together with the height
of the tree, is one of the most relevant tree parameter for the
characterization of the forest structure. At single tree level,
DBH is fundamental to estimate parameters such as tree stem
volume, basal area or carbon storage. At plot level, an accurate
prediction of the DBH distribution (number of stems per ha
across a set of DBH classes) is necessary to characterize the
structure, the growth and the economic value of the forest
stand. Although many studies in the literature present area-
based approaches to estimate the DBH distribution [1]–[3], to
accurately characterize the forest, DBHs should be predicted
at individual tree level. While the height of the trees can be
directly retrieved by subtracting the Digital Terrain Model
(DTM) from the LiDAR measurements, DBHs are not directly
measured and should be extracted from the data by means of
regression models.

To address this issue, several works estimate DBH consider-
ing the crown geometry measured by the LiDAR data [4]–[7].
Besides the correlation between the shape of the crown and the
DBH, these parameters are not sufficient to accurately model
the variability of the DBH especially in heterogeneous forest
scenarios [8]. To obtain a more detailed characterization of
the canopy structure, some studies extract LiDAR point cloud

metrics calculated from the volume of the segmented crowns
[9]–[11]. In [9] the variables extracted from the multireturn
LiDAR data represent the distribution of the laser pulses within
the crown, thus modeling the height of the tree, the horizontal
and vertical shape of the crown, the internal structure of the
crown and the forest species. In [12], the authors performed
stem attribute prediction on continuous waveform LiDAR
datasets acquired in leaf-off/leaf-on conditions. The crown
area, crown volume, tree height and tree crown height were
used to estimate the DBH. The trees were a-priori divided
into species types (coniferous and deciduous) and foliage
conditions (leaf-on/leaf-off seasons). While good estimation
results were obtained for conifers regardless of the season,
poor accuracies were achieved on broadleaves specially in
leaf-on condition, when the detection and segmentation of
the deciduous crowns are more complicated. In [7], the
authors extended the stem attributes analysis by comparing
on the same datasets four regression models. The models
were applied to each group of trees separately to compare
the performance of the different methods. Support Vector
Regression (SVR) yielded the best DBH prediction regardless
of foliage condition or tree species.

Despite the possibility of accurately representing the crown
strcuture, the characterization of the tree shape is not sufficient
to obtain accurate DBH estimates (see [8], [13]). To addrees
this issue, recent studies explored the possibility of extracting
variables from the circular area around the tree to model
the immediate forest neighbourhood [13]–[15]. Indeed, the
stand density plays a fundamental role in the expansion of
the DBH in terms of availability of water and sunlight. In
[13], the authors introduced a competition index to evaluate
the influence of the surrounding trees (i.e., competitors) on the
DBH growth in old-aged forest. The height and the distance of
the competitors are evaluated to quantitatively estimate their
pressure on the growth of the considered tree. The growth
competition index analysis has been presented in [16], where
the authors employed a bitemporal LiDAR data acquisition to
monitor and improve the understating on the individual tree
growth.

In [17], the authors present a method to perform the accurate
reconstruction of DBHs of free-standing or partly occluded
trees considering very high density LiDAR data (i.e., > 50
pts/m2). The method automatically extracts the DBH from
LiDAR data by using a skeleton measurement technique.
Although the stem extraction allows an accurate estimation of
the tree DBH, the method cannot be applied to dense forest
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scenario and requires very high density LiDAR data.
Much effort has focused on spatial statistical models [18]–

[20], which take advantage from the spatial correlation for
improving the accuracy of the predicted DBHs. In [21] the
authors demonstrate that accounting for spatial correlation
of LiDAR model errors can improve the accuracy of the
parameters retrieved. Indeed, it is reasonable to assume that the
dendrometric variables of trees growing in the same forest area
are more similar with respect to trees belonging to separate
forest stands. In [18], the authors compared different statistical
regression models and found that the linear mixed-effects
model (LME) allows a more accurate DBH estimation with
respect to the geographically weighted regression (GWR), the
ordinary least squares (OLS) and the generalized least squares
(GLS) methods with a non-null correlation structure. Although
LME does not directly incorporate the spatial information, the
inclusion of random effects permits to focus on each individual
tree by taking into account the lack of independence among
trees belonging to same forest stand. These models improve
the DBH estimation accuracy, however, in mountainous forest
areas the properties of forest stands are not uniform due to the
complex terrain morphology. Thus, the spatial distribution of
the trees is not homogeneous and the terrain properties rapidly
change when considering close trees due to the steep slopes.

From the analysis of the literature it turns out that even
though height and DBH are correlated within the same forest
area, there is a high variability in their relationship due to
the terrain properties (e.g., fertility, soil class, altitude, slope)
and the forest properties (e.g., stem density, management
history of the stand). Accordingly, regression models based
only on tree variables achieve good performances on medium
size DBHs but are highly sensitive to the outlayers, thus
causing poor model fitting at the tails of the distribution. In
particular, these models tend to overestimate small DBHs and
underestimate large DBHs. While the underestimation of the
DBH strongly affects the tree (or stand) volume estimates, the
overestimation of the small DBH is problematic for predicting
the future growth of the stand plot. Moreover, recent studies
have proposed approaches for precise forest mapping, by
estimating the forest age [22], monitoring the carbon dynamic
[23] or accurately modeling the forest structure via synthetic
models [24]. In this context, the precise characterization of
the environmental conditions can be employed to improve
the DBH estimation. In this paper we propose a data-driven
process that dynamically detects classes of trees characterized
by different DBH growth-models. Instead of considering the
spatial correlation, the proposed approach takes into account
the vertical forest structure and all the major environmental
factors (which can be computed from LiDAR data) that affect
the DBH growth. The aim of the proposed approach is to detect
classes of trees characterized by different growth-models.
Indeed, trees belonging to the same stand plot but affected by
different environment conditions (e.g., stand density, terrain
slopes) present different growth-models. In contrast, trees
located in different forest areas but sharing similar forest
conditions are characterized by comparable stem expansion
rates. The environmental variables are used in the framework
of a clustering technique to aggregate trees sharing the same

growth-model in the same class. Moreover, the variables that
mainly discriminate different growth-model classes are identi-
fied by a feature ranking method. Finally, a regression model
specific for each class is defined and adopted, thus increasing
the estimation accuracy. The main contributions of this work
are: (i) to employ the LiDAR data to accurately represent
both the crown structure and the local forest environment
of a tree, (ii) to dynamically detect classes of trees sharing
similar growth-models in a considered forest scenario and,
(iii) to estimate the DBH of different growth-model classes by
using tailored regression analyses. The proposed method has
been tested in two homogeneous coniferous forests located in
the Southern Italian Alps, a complex mountainous scenario
characterized by a wide range of soil classes and DBHs. Re-
sults obtained demonstrate the effectiveness of having multiple
regression models tailored to each growth-model class. This
allows a sharp improvement in the estimation accuracy of tree
attributes related to both small and large DBHs.

The paper is organized into five sections. Section II il-
lustrates the architecture of the proposed DBH estimation
approach and describes all the phases of the method in
detail. Section III presents the two LiDAR datasets used in
the experimental analysis. Section IV presents the obtained
experimental results. Finally, Section V draws the conclusion
of the work.

II. PROPOSED ESTIMATION METHOD

In this paper, we present a novel method for accurately
estimating tree DBHs by using the 3-D LiDAR data to
account for both the tree crown structure and the local forest
environment. The proposed method (PM) is separated into
four main phases: (i) preprocessing, (ii) extraction of variables
potentially correlated to the stem growth, (iii) data-driven
clustering of the trees belonging to different growth-model
classes, and (iv) data-driven DBH estimation. Fig. 1 shows
the architecture of the proposed DBH estimation technique.
In the following we describe in detail each phase of the PM.

A. Preprocessing

The preprocessing phase seeks to delineate the individual
tree crowns and their surrounding local forest environment
from the LiDAR data. The method used to perform the
individual tree crown segmentation is described in detail in
[25]. First, the DTM is subtracted from the LiDAR data to
obtain the relative height value of each laser point with respect
to the ground. To this end, the DTM provided by the company
that acquired the LiDAR data was used. The nominal precision
of the DTM is of about 30 cm for altimetry and of about 1
m for planimetry. Then, the normalized LiDAR point cloud
is rasterized to generate the Canopy Height Model (CHM) in
order to identify most of the trees present in the scene by
using a Level Set Method (LSM). To recover possible missed
crowns, the method further analyzes the forest area around
each tree-top directly in the LiDAR data. Finally, the trees are
delineated in the 3D space by exploiting the geometrical shape
of their crowns.
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Figure 1. Architecture of the proposed method based on a data-driven clustering of trees belonging to different growth-models for a multi-regression based
stem DBH estimation.

(a) (b) (c)

Figure 2. Visual representation of the variables extracted to model the growth of the tree stems in terms of: (a) structure of the crown xTree, (b) forest stand
xPlot, (c) topography xDtm.

In addition to the segmented crown, around each tree-top
tj = {xtj , ytj , ztj} the method extracts from the LiDAR data
both the forest stand and the ground topography within a given
radius renv . The gaps present in the terrain are interpolated by
using the two-dimensional Laplacian elliptic partial differential
equation (PDE) that guarantees accurate results even in cases
where many holes are present [26]. At the end of this step, for
each tree-top {tj}j we obtain the related segmented LiDAR
point clouds representing the crowns {Cj}j , the forest plot
{Pj}j and the 3D ground topography {Gj}j (see Fig. 2).

B. Feature Extraction

The PM aims to identify clusters of trees belonging to
the same growth-model class directly from the data. Thus,
we need to properly model both the vertical forest structure
and the environmental variables (in terms of stand density
and topography) which may affect the stem growth. Fig. 2
presents a visual representation of the main factors that affect
the DBH. Note that in our implementation, we do not consider
the species information in the DBH estimation as from an
operational view point it is not always feasible to assume
classification maps available over large forest areas. For each
detected tree tj we extract variables in order to consider: (i) the
structure of the tree crown xTree, (ii) the local and global stand
densities xPlot, and (iii) the topography xDtm. Accordingly, the
considered feature vector xj ∈ Rd associated to the tree tj is
defined as follows:

xj = (xDtm
j ∪ xPlot

j ∪ xTree
j ) (1)

Tab. I reports the features extracted from {Cj}j to represent
the crown structure xTree. Because of the availability of the

multireturn LiDAR data, we extract both a set variables which
represent the statistical distribution of returns within the crown
(e.g., H1

max is the maximum height value measured among
all the first returns collected within the same crown) and
a set of variables being able to model the crown geometry
(e.g., ca, r1, r2). The internal structure of the tree crowns is
accurately characterized by the differences between the mean
height values of different returns (e.g., H1

av - H2
av), whereas the

vertical profile is represented by the height percentiles Hp and
the difference between the maximum height of the 1st return
and the minimum height of the 3rd return, H1

max-H3
max. It is

worth noting that this set of variables has been widely used for
modelling the tree structure for both stem volume estimation
[27]–[29] and forest species classification [30], [31].

To consider the forest density, we extract features from
{Pj}j representing both the local and the global stand density
(Tab. II). While the local features allows us to account for
the immediate neighbourhood around the tree, the global
stand density models the forest environment (e.g., forest stand
density). The Local Canopy Cover (LCC) is calculated as the
ratio between canopy cover and ground area within a radius
larger than 1m with respect to the crown radius (i.e., r1+1m).
For the stand density we calculate the Global Canopy Cover
(GCC) as the ratio between canopy cover and ground area
around the tree within a given radius renv . In the same area
we calculate the ratio p2/p1 between the number of 2nd and
1st returns to evaluate the vertical density of the forest stand.
Moreover, we extract the Canopy Reflection Sum (CRS) index,
which has been proved to be an effective metric to model the
forest density [32], [33].

Finally, a proper representation of the topography around
each tree is obtained by extracting from {Gj}j the variables
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Table I
SET OF VARIABLES USED FOR MODELING THE CROWN STRUCTURE.

Variable Description

H1
max Maximum height value among the 1st returns

H2
max Maximum height value among the 2nd returns

H3
max Maximum height value among the 3rd returns

H4
max Maximum height value among the 4th returns

H1
range Height range of the 1st returns

H2
range Height range of the 2nd returns

H3
range Height range of the 3rd returns

H4
range Height range of the 4th returns

H1
av Average height value among the 1st returns

H2
av Average height value among the 2nd returns

H3
av Average height value among the 3rd returns

H4
av Average height value among the 4th returns

H1
var Height variance of the 1st returns

H2
var Height variance of the 2nd returns

H3
var Height variance of the 3rd returns

H4
var Height variance of the 4th returns

H1
skw Height skewness of the 1st returns

H2
skw Height skewness of the 2nd returns

H1
kurt Height kurtosis of the 1st returns

H2
kurt Height kurtosis of the 2nd returns

H1
max-H3

max Max height 1st - Min height 3rd

H1
av - H2

av Average height 1st - Average height 2nd

H1
av - H3

av Average height 1st - Average height 3rd

H1
av - H4

av Average height 1st - Average height 4th

H2
av - H3

av Average height 2nd - Average height 3rd

H2
av - H4

av Average height 2nd - Average height 4th

H3
av - H4

av Average height 3rd - Average height 4th

Hp pth height percentile, with p ={25,50,75,90,95}
ca Crown area

r1 Radius of the circle circumscribed to the crown

r2 Radius of the ellipse circumscribed to the crown

Table II
SET OF VARIABLES USED FOR MODELING THE FOREST DENSITY.

Variable Description

LCC Local Canopy Cover

GCC Global Canopy Cover

p2/p1 Ratio of 2nd and 1st returns

CRS Sum of intensity

presented in Tab. III. It is worth mentioning that even though
the topography is often not considered, the terrain properties
play a fundamental role in the DBH growth (e.g., water
drainage, soil fertility, sunlight exposure). Let us focus the
attention on the tree crown Cj and let us define the partial
derivatives of z = Gj(x, y) along the orthogonal directions x
and y at the distance renv in the horizontal plane and let us

Table III
SET OF VARIABLES USED FOR MODELING THE TOPOGRAPHY.

Variable Description

Swest Slope between (xtj , y
t
j) and (xtj − renv , ytj)

Seast Slope between (xtj , y
t
j) and (xtj + renv , ytj)

Ssouth Slope between (xtj , y
t
j) and (xtj , y

t
j − renv)

Snord Slope between (xtj , y
t
j) and (xtj , y

t
j + renv)

γ Aspect (degrees clockwise from north)

ϕ Profile Curvature: direction of max slope

φ Plan Curvature: transverse to the max slope

w Wetness Index

Amin Minimum Altitude

Amax Maximum Altitude

Aav Average Altitude

assume that the second-order partial derivative exist:

gx =
∂z

∂x
, gy =

∂z

∂y
, gxx =

∂2z

∂x2
,

gyy =
∂2z

∂y2
, gxy =

∂2z

∂x∂y

(2)

The standard topographic metrics usually employed in the
DBH estimation (which are slope, altitude and aspect within
a given radius renv around the tree) are extracted, where the
sun exposure γ has been calculated as follows:

γ = 180− arctan
(
gy
gx

)
+ 90

gx
|gx|

(3)

Moreover, differently from the literature, an accurate charac-
terization of the terrain morphology is performed by using
variables introduced in the hydrological modeling of a terrain
[34], [35]. This is done to obtain a proper characterization
of hydrological topographic attributes that allow a better
estimation of the relation between DBH and tree height. Let
us define:

p = (g2x + g2y) and q = (g2x + g2y + 1) (4)

The considered terrain variable are the profile curvature (ϕ),
the plan curvature (ω) and the wetness index (w), defined as
follows:

ϕ =
gxxg

2
x + 2gxygxgy + gyg

2
y

pq3/2
(5)

ω =
gxxg

2
x − 2gxygxgy + gyg

2
x

q3/2
(6)

w = ln
( As√

g2x + g2y

)
(7)

where As is the circular area around the tree having a given
radius renv .

C. Data-Driven Clustering of Trees Belonging to Different
Growth-Models

The third phase, data-driven clustering of trees belonging to
different growth-models, seeks to automatically detect classes
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of trees characterized by different growth rates. Let us assume
to have Ω growth-models classes. The first growth-model we
aim to detect is the one associated to the young trees. While
the growth of mature trees is significantly affected by the
environment, young trees are characterized by almost linear
DBH/height growth rate. Moreover, young trees are character-
ized by relative low height values with respect to the structure
of the forest, since they usually belong to the lowest forest
layer. Accordingly, the detection of the young trees is per-
formed by analyzing the vertical structure of the forest consid-
ering the variables xStr = [H1

max,H
1
max−H3

max,H
1
av,H

1
range]

derived from the tree feature space xTree. In the considered
implementation, a data-driven approach is employed to auto-
matically detect the forest layers by using an unsupervised
clustering algorithm. Thus, the clustering is completely driven
by the employed variables (i.e., the considered feature space).
Here, for simplicity we use the k-mean clustering algorithm.
However, any other clustering technique can be considered.
Let n be the number of forest layers {Li}ni=1 of the considered
scenario. The k-mean clustering algorithm initializes randomly
the set of centroids and associates each features vector xStr

j to
the closest centroid considering the euclidean distance metric.
By iteratively adjusting the centroid position with respect to
the center of the obtained clusters {µi}ni=1, the algorithm
converges by minimizing the intra-cluster variance in the
feature space defined as:

n∑
i=1

∑
xStr∈Li

||xStr − µi||2 (8)

where µi is the cluster centroid of Li. Since the vertical forest
structure is strongly dependent on the type and the age of
the forest, in the PM we automatically estimate the number
of layers n. This condition allows us to adapt the estimation
of the forest structure (and thus, of the young trees) to the
specific properties of the considered forest. To this end, the PM
employes the Calinski Harabasz (CH) Index, which has been
widely used to automatically detect the number of clusters
in an unsupervised way [36]–[38]. The cluster validity is
evaluated for different values of n by considering the average
between- and within- cluster sum of squares, i.e.,

CH =


n∑

i=1

ni||µi − µ||2

n− 1

/


n∑
i=1

∑
xStr∈Li

||xStr − µi||2

nt − n

 (9)

where nt is the total number of samples, ni is the number of
samples of the ith cluster, µi is the cluster centroid of Li and
µ is the centroid of the entire dataset. Let ω1 be the growth-
model class associated to the young trees and Ωp = {Ω−ω1}
be the remaining set of classes. Let L1 be the lowest layer of
the forest detected by the k-mean clustering algorithm. The
jth crown Cj is classified according to the following rule:

Cj ∈ ω1 if xStr ∈ L1

Cj ∈ Ωp if xStr ∈ {L2, .., Ln}
(10)

Although the correct detection of the young trees is important
to improve the DBH estimation of the small tree DBH,

the main challenge is represented by the DBH estimation
of mature trees. Thus, for a given tree height, the DBH
considerably varies depending on the age of the tree. However,
the stem growth of these trees is strictly related to the environ-
mental condition. Therefore, by considering the feature space
xEnv = (xDtm ∪ xPlot), we can identify classes of mature trees
characterized by different growth-models. Accordingly, the
data-driven approach automatically determines the remaining
p growth-models {ωi}pi=1 in the feature space xEnv. Note
that the clustering analysis is completely independent on the
geographic location. Thus, trees widely separated in space
can be associated to the same growth-model class given the
similarity of the environmental conditions by minimizing the
cost function:

p∑
i=1

∑
xEnv∈ωi

||xEnv − µi||2 (11)

where µi is the cluster centroid of ωi. Similarly to the previous
case, the number of remaining growth-models p is estimated
directly from the data by using the CH index.

D. Data-Driven DBH Estimation
In the last step of the PM, data-driven DBH estimation,

different regression models are defined and adopted for each
growth-model class to accurately retrieve the DBH. Thus,
the dependence of the DBH from the extracted variables
varies according to the different environmental conditions.
Accordingly, having a regression model tailored to each class
allows us: (i) to adapt the regression rule to the class of
trees, (ii) to detect the set of most informative variables per
regression model and, (iii) to increase the correlation between
the predicted variables and the stem attributes.

Let us assume to have a training set made up of qs samples
T = (y,X), where X is the qs × d matrix of extracted
variables and y ∈ Rqs is the vector of the observed values
that need to be estimated. According to the clustering results
obtained, the considered training set is partitioned into p + 1
training sets Ti(i = 1, .., p + 1), where the ith training set
Ti = (yi,Xi) is composed of the qi training samples associated
to the ith growth-model class ωi. To avoid model overfitting
and reduce the computational burden, a feature selection step
is performed. This is done separately for each growth-model
class in order to optimize the selection of features with respect
to the behaviour of the specific class. Note that the feature
selection is applied to the whole set of d features in order to
identify for each class of trees the most informative features.
The search algorithm used is based on the optimization of
a multiobjective problem which optimizes both the mean
squared error MSE and the determination coefficient R2 on the
validation set. The metrics are jointly optimized according to
the concept of Pareto optimality [39]. The most informative set
of features is detected by using a Sorting Genetic Algorithm II
(NSGA-II), which achieves accurate feature selection results
in a reasonable computational time [39], [40].

III. DATASET DESCRIPTION

Experiments were carried out on two LiDAR datasets ac-
quired with different point densities in homogeneous conif-
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(a) (b)

Figure 3. Study areas, Trentino region, Italy: (a) Paneveggio, and (b) Pellizzano. The stand plots are highlighted in white and the zooms point out the different
forest density and structure conditions. Coordinates are reported in the UTM WGS84 32N system.

erous forests located in the Trentino region, Southern Alps,
Italy (see Fig. 3). The considered mountainous scenario is
characterized by a wide range of DBHs and complex terrains
morphology (steep slopes, wide range of elevation and soil
fertilities). The main forest species are Norway Spruce and
European Larch, with a small presence of Silver Fir and Swiss
Pine.

The first study area is located at Parco Naturale Paneveggio
Pale di San Martino (see Fig. 3a). The coordinates of the
central point of this area are 46◦17′47,60′′ N, 11◦45′29,98′′ E.
The area extends approximately 3.68 km2 and is characterized
by a complex topography with hillsides having different incli-
nations and sun exposition (mainly north north-west aspect).
The altitude ranges from 1536 to 2064 m a.s.l., whereas the
slopes are up to 30◦. Medium density LiDAR data, with
a maximum pulse density of 5 pls/m2, were acquired with
an Optech ALTM 3100EA sensor in September 2007. The
number of returns acquired per pulse was up to four, the
laser pulse wavelength was 1064 nm and the pulse repetition
frequency 100 kHz.

The second study area is located in the municipality of
Pellizzano (see Fig. 3b). The coordinates of the central point
of this area are 46◦17′31,00′′ N, 10◦45′56,49′′ E. The area
extends approximately 32 km2 and the altitude ranges from
900 to 2000 m a.s.l.. High-density LiDAR data, with a
maximum pulse density of 15 pls/m2, were acquired between
7th and 9th of September 2012 with a Riegl LMS - Q680i
sensor. The pulse repetition frequency was 400 kHz and up to
4 returns were recorded per laser pulse.

Reference data were collected on the ground within 21 stand
plots, for Paneveggio, and 52 stand plot, for Pellizzano. The
plots are randomly distributed on the entire study area to obtain
a uniform statistical representation in terms of topography
and forest density. Species, DBH, volume and height were

measured for some trees inside each plot of Pellizzano (1930
trees) and for all the trees having DBH larger than 3 cm in
Paneveggio (1462 trees). A summary of the field data used
in the analysis is reported in Tab. IVa and Tab. IVb for
Paneveggio and Pellizzano, respectively. The samples were
randomly divided into training, test and validation sets. While
the test set allows us to detect both the best set of features and
the best parameters of the regression model, the validation
set is used to evaluate the performance of the PM. For
each set, the species composition and the number of trees
are reported. Moreover, the average, the minimum and the
maximum values of DBH and tree top height are presented.
In the considered experimental analysis we are dealing with
homogeneous coniferous forests mainly dominated by Norway
Spruce. However, note that the PM is data-driven, and thus
adaptive. Therefore, it can be applied to any forest scenario. At
regional level, the DBH inventory categories used in Trentino
are the following:

• pre-inventory trees (DBH ≤ 17.5 cm);
• small trees (17.5 cm < DBH ≤ 27.5 cm);
• medium trees (27.5 cm < DBH ≤ 47.5 cm);
• large trees (DBH > 47.5 cm).

This categorization aims to model the forest structure for
management and planning. Fig. 4a and Fig. 4b report the
number of samples for training, test and validation sets divided
per DBH class for Paneveggio and Pellizzano, respectively.
In Paneveggio, most of the trees have a medium size DBH
which ranges between 27.5 cm and 47.5 cm with a signifi-
cant presence of young trees having DBH ≤27.5 cm. Thus,
Paneveggio is a forest mainly characterized by mature trees
where young trees are still growing. In contrast, Pellizzano is
an old-growth forest mainly characterized by old trees having
medium or very large DBH values (i.e., > 47.5 cm). Here,
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Table IV
DISTRIBUTION OF THE REFERENCE DATA DIVIDED INTO TRAINING, TEST AND VALIDATION SETS. THE SPECIES COMPOSITION OF EACH SET AND THE

VALUES OF DBH AND TREE HEIGHT ARE REPORTED FOR: (a) PANEVEGGIO, AND (b) PELLIZZANO.

N. Height (m) DBH (cm)

Average Min Max Average Min Max

Training Set 215 23.7 2.3 42 38.6 3 109

Silver Fir 1 4 4 4 10 10 10

Norway Spruce 203 23.7 2.3 42 38 3 109

Swiss Pine 4 21.9 19.3 26.8 65.8 42 92

European Larch 7 24.5 13.6 33.5 43.4 12 70

Test Set 142 24 2.3 43 38.1 3 74

Silver Fir 5 27.8 12.3 35.4 43.8 20 60

Norway Spruce 129 23.9 2.3 43 37.98 3 74

Swiss Pine 2 25.2 23.7 26.8 33.7 30.5 37

European Larch 6 24.9 7 31.5 37.33 12 54.5

Validation Set 1105 23.6 2.3 42 35.9 3 78

Silver Fir 10 21.3 3.7 34.6 32.2 8 66

Norway Spruce 1040 23.6 2.3 42 35.5 3 78

Swiss Pine 17 24.2 3.9 39.9 43.9 9 64

European Larch 38 25.2 3.6 38.7 42.7 7 70.5

(a)

N. Height (m) DBH (cm)

Average Min Max Average Min Max

Training Set 344 28.3 3.5 46 46.5 5 111

Norway Spruce 249 29 4.3 46 46.4 6 111

European Larch 95 26.4 3.5 45.5 46.7 5 105

Test Set 318 28.9 3 44 47.1 7 92

Norway Spruce 224 30.1 3 44 47.58 7 92

European Larch 94 26.1 75 43.34 45.83 10.5 86

Validation Set 1268 30.3 4.5 46 48.7 8 90.5

Norway Spruce 949 30.5 4.5 46 48.29 8 90.5

European Larch 319 29.5 5.7 468 49.71 10 85

(b)

only few trees present small stems (i.e., <17.5 cm).

IV. EXPERIMENTAL RESULTS

In this section we present the experimental results obtained
by applying the PM (hereafter referred as PM), to both
datasets. The results are presented in terms of: i) number
of clusters of trees belonging to different growth-models, ii)
feature selection analysis, and iii) accuracy of DBH estimation.

The results obtained with the PM are compared with two
reference methods present in the literature [9] (hereafter re-
ferred as RM1) and [12] (hereafter referred as RM2). In [9],
the authors predict the DBHs by means of a regression analysis
applied to the whole set of trees considering only features
modelling the tree structure. Experiments were carried out

on a medium density LiDAR dataset acquired in the Alpine
scenario (i.e., Trentino Region). Different variable selection
methods and different estimators were compared. Here, we
considered the methods that provided the highest accuracy
on the validation set (i.e., Sequential Forward Selection with
multiple linear estimator and SVR estimator with linear kernel
function). In [12] a multiple linear regression model is trained
on a full waveform LiDAR dataset acquired in the Bavarian
Forest National Park (which is a sub-alpine spruce forest).
The prediction parameters used for the regression analysis
aim to describe the crown shape (i.e., crown height, tree-top
height, crown area and crown volume). These comparisons
allow us to highlight the increase of accuracy obtained by the
PM due to the novelties introduced with respect to common
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(a) (b)

Figure 4. Number of samples for training (TR), test (TS) and validation (VD) sets divided per DBH classes for: (a) Paneveggio, and (b) Pellizzano.

practice described in the literature, which are: (i) the use of
features that characterize the forest environment, (ii) the use
of tailored regression models to separately estimate DBH of
trees belonging to different growth-model classes. For all the
datasets renv was set equal to 10m, which is a standard plot
size used to perform area-based LiDAR analysis and field
surveys [10], [14], [41].

A. Growth-Models Identification
Fig. 5 shows the clustering results obtained in terms of

detected forest layers (Fig. 5a and Fig. 5b) and growth-model
classes (Fig. 5c and Fig. 5d) for Paneveggio and Pellizzano,
respectively. According to the CH index, the number of mature
classes p is equal to 2 for both datasets. In contrast, the
number of forest layers detected is n = 3 for Paneveggio
and n = 4 for Pellizzano. While Pellizzano is an old-
growth forest characterized by a complex vertical structure,
Paneveggio presents younger trees. This is also confirmed by
the fact that most of the Pellizzano trees belong to the mature
growth-model classes.

For both datasets, the young trees were accurately identified
by the unsupervised clustering performed in the feature space
that describes the vertical structure of the forest, i.e., ω1 = L1.
Then, the two classes ω2 and ω3 of mature and old trees were
retrieved with the clustering applied to the feature space that
describes the environment condition. As one can notice from
Fig. 5c and Fig. 5d, the considered classes are characterized
by different DBH/height growth rates due to the different
tree structure, forest stand and topographic conditions. While
young trees present almost linear relationship between height
and DBH, mature and old trees present more complex rela-
tionships between DBH and tree top. Hence, for the same
tree height, the DBH strongly varies due to the environmental
conditions.

B. Feature Selection Results
Fig. 6 and Fig. 7 show the most informative features selected

by the NSGA-II algorithm to train the regression model for

the set of trees belonging to ω1 (Fig. 6a and Fig. 7a), ω2

(Fig. 6b and Fig. 7b) and ω3 (Fig. 6c and Fig. 7c) for
Paneveggio andn Pellizzano, respectively. For both datasets,
the crown radius (r1 or r2) and the tree top height (H1

max)
are always selected regardless of the growth-model class,
together with the terrain altitude features. This confirms the
strong correlation that exists between the shape of the crown
and the DBH, as well as the impact of the environment on
the growth of the stem. Indeed, in addition to the attributes
belonging to the xTree feature space, variables modeling both
the topography and the stand density are always selected, thus
confirming the importance of a proper representation of the
terrain morphology and forest structure.
In Paneveggio, for the young tree class ω1 the local forest
density metric LCC, the profile curvature ϕ, the wetness index
w and the terrain altitude Amin are selected. Also the DBH
growth of the mature tree class ω2 is influenced by the profile
curvature ϕ and the terrain altitude Amax, whereas differently
from the young trees, the terrain attribute selected is the
slope Swest. Finally, for the old tree class ω3 the vertical
forest density p2/p1 and CRS, the aspect γ and the terrain
altitude, Amin and Amax, mainly affect the stem expansion.
Note that, even though the altitude features may be correlated
in flat forest areas, in the considered complex mountainous
scenario some trees are located on very steep slopes where
the difference between the maximum and the minimum terrain
altitude values (in the plot delineated around the tree) can
be higher than 10m. In this context, the proposed data-driven
method is able to accurately model the specific properties of
the forest without requiring any preliminary analysis from the
user.

For all the classes height percentiles are always selected. In
contrast, in Pellizzano the height percentile (95th percentiles)
is selected only for the young trees (ω1). For the mature
(ω2) and old (ω3) trees, in addition to the features modeling
the crown shape, only variables modeling the topography and
the stand density are selected. In particular, the aspect γ, the
profile ϕ and plan curvature φ, and the wetness index w are
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(a) (b)

(c) (d)

Figure 5. LiDAR tree heights vs measured tree DBH of the identified clusters of trees belonging to: (a) different layers of the vertical Paneveggio forest
structure (L1,L2,L3), (b) different layers of the vertical Pellizzano forest structure (L1,L2,L3,L4), (c) trees belonging to different growth-models of the
Paneveggio forest, and (d) trees belonging to different growth-models of the Pellizzano forest. The young trees are classified as ω1, the mature trees are
classified as ω2 and the old ones as ω3.

selected together with the GCC for the trees belonging to ω2.
For the old trees ω3, the vertical forest density p2/p1, the
GCC, the aspect γ, the wetness index w and the slope Sest

represent the most informative set of features.

C. Stem DBH Estimation

Tab. V shows the DBH predictions obtained with the PM,
the RM1 and the RM2 divided per DBH class and on the entire
set of trees for Paneveggio (Tab. Va) and Pellizzano (Tab. Vb).

To quantitatively evaluate the prediction accuracy, the DBH
predicted with the RM1, the RM2 and the PM were compared
to field measured DBH. In particular, we calculate the Mean
Absolute Error (MAE), the Mean Square Error (MSE) and the
percentage Root Mean Square Error (%RMSE). Note that the
%RMSE is computed as the ratio between the RMSE and the

average DBH value. In this framework, the %RMSE allows
us to quantify the error on the DBH classes, by weighting
the RMSE on the average DBH of each considered class. The
results obtained on both datasets (see Tab. V) demonstrate the
strong improvement obtained by the PM in estimating small
and large stems (tails of the distributions), while similar results
are achieved by the PM and both the reference methods on
trees having medium size DBH.

In Paneveggio the error metrics were reduced by more than
2 cm on the entire dataset, with an RMSE lower than 7 cm
for all the DBH classes. The PM achieved an RMSE of 6.12
cm, while the RM1 and the RM2 obtained 8.82 cm and 8.28
cm, respectively. In particular, the %RMSE of the PM ranges
between 18% (on DBH between 27.5 cm−47.5 cm) and 28%
(on DBH<17.5 cm). In contrast, RM1 generated a %RMSE
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Figure 6. Features selected to train the regression model for: (a) set of young trees (ω1), (b) set of mature trees (ω2), and (c) set of old trees (ω3). (Paneveggio)

that ranges between 24% (on DBH between 27.5 cm−47.5 cm)
and 64% (on DBH<17.5 cm), while RM2 obtained a %RMSE
that ranges between 21% (on DBH between 27.5 cm−47.5
cm) and 46% (on DBH<17.5 cm). From the results obtained,
one can observe that the RM1 allows a better prediction of
large stems with respect to the RM2, while the RM2 achieved
better results than the RM1 on small stems. In contrast, the
PM significantly outperformed both the methods on all the
DBH classes.

Also in Pellizzano the PM obtained the best results on the

entire dataset with a RMSE of 6.98 cm compared to 8.54 cm
and 7.61 cm of the RM1 and RM2, respectively. This improve-
ment is smaller compared to the one obtained in Paneveggio
due to the different forest structures. While in Paneveggio we
are dealing with a mixed-aged forest, characterized by groups
of trees belonging to different growth models, Pellizzano is
an old-growth forest mainly characterized by old/mature trees
with little percentage of young trees. Similar to the Paneveggio
dataset, the PM strongly reduces the RMSE with respect to
RM1 for all the DBH classes. In greater detail, the PM reduced
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Figure 7. Features selected to train the regression model for: (a) set of young trees (ω1), (b) set of mature trees (ω2), and (c) set of old trees (ω3). (Pellizzano)

the RMSE of more than 3 cm for trees having DBH<27.5
cm, and of 2.5 cm for medium stems (DBH between 27.5
cm−47.5 cm). The RM2 achieved slightly better accuracy
than the PM on the pre-inventory stems (DBH<17.5 cm)
and the medium stems (DBH between 27.5 cm−47.5 cm) by
decreasing the RMSE of 0.36 cm and 0.07 cm, respectively.
However, regardless of the forest structure, the PM improved
the RMSE of more than 1cm on large stems (DBH>47.5 cm).

The accurate estimation of the DBHs leads to an accurate
representation of the DBH distribution. This is confirmed by

Fig. 8, which shows the capability of the PM to accurately
model the DBH distribution both for Paneveggio (see Fig.
8a) and Pellizzano (see Fig. 8b). The PM achieves a reliable
estimation of the size of the tree stems also at the tails of the
DBH distribution.

Fig. 9a and Fig. 9b the number of samples in the training,
test and validation sets for each growth model class for
Paneveggio and Pellizzano, respectively. The DBH predictions
obtained by the PM, the RM1 and the RM2 for each growth
model class are reported in Tab. VIa and Tab. VIb for



12

Table V
MAE, RMSE AND RMSE(%) CALCULATED ON THE DBH ESTIMATES FOR THE THREE GROWTH-MODEL CLASSES AUTOMATICALLY IDENTIFIED BY THE

METHOD CONSIDERING THE PM, THE RM1 AND THE RM2 IN: (a) PANEVEGGIO, (b) PELLIZZANO.

DBH PM RM1 RM2

class (cm) MAE RMSE %RMSE MAE RMSE %RMSE MAE RMSE %RMSE

<17.5 2.39 3.17 28.80 5.78 7.07 64.18 3.96 5.08 46.13

17.5−27.5 4.43 5.92 26.35 8.08 9.72 43.29 5.78 7.36 32.77

27.5−47.5 5.29 6.53 17.46 7.29 8.94 23.91 5.93 7.76 20.74

>47.5 5.46 6.86 22.48 6.77 9.09 29.79 8.47 10.74 35.2

All Trees 4.74 6.12 17.03 7.01 8.82 24.56 6.27 8.28 23.05

(a)

DBH PM RM1 RM2

class (cm) MAE RMSE %RMSE MAE RMSE %RMSE MAE RMSE %RMSE

<17.5 2.19 2.81 20.16 5.31 6.43 46.19 1.92 2.45 17.64

17.5−27.5 3.80 5.63 24.09 7.35 9.56 40.91 4.62 6.21 26.58

27.5−47.5 5.71 6.92 17.70 7.57 9.45 24.17 5.27 6.85 17.51

>47.5 5.97 7.28 16.92 6.26 7.82 18.17 6.78 8.35 19.43

All Trees 5.66 6.98 14.35 6.79 8.54 17.56 5.97 7.61 15.64

(b)

(a)

(b)

Figure 8. Field measured vs predicted DBH distributions: (a) Paneveggio,
and (b) Pellizzano.

Paneveggio and Pellizzano, respectively. The results obtained
confirm that the PM accurately retrieves the DBH for all the
growth model classes, by reducing the estimation error with
respect to both RM1 and RM2. In Paneveggio, the RMSE has
been reduced by at least 2 cm for all the growth models. As
expected, a smaller improvement is achieved on the old-growth
Pellizzano forest. In this case the PM improved by more than
1 cm the DBH estimates compared to RM1 for all the classes.
With respect to RM2, it reduced the error of less than 1 cm for
ω1 and ω3, whereas improved of 1.50 cm the DBH estimates
on ω2.

Fig. 10 depicts the field measured versus the predicted
DBHs by the PM (Fig. 10a and Fig. 10b), the RM1 (Fig.
10c and Fig. 10d) and the RM2 (Fig. 10e and Fig. 10f)
for Paneveggio and Pellizzano, respectively. The plots show
the correlation coefficient R2 that represents the amount of
variability within the estimates. The results confirm the quan-
titative evaluation of Tab. V, showing that the PM achieved the
best estimation for both the datasets regardless of the density
of the LiDAR data and the forest conditions.

V. ANALYSIS OF THE MAIN VARIABLES DISCRIMINATING
DIFFERENT CLASSES OF MATURE TREES

Let us focus the attention on the growth model classes
analysis performed to identify which variables mainly affect
the stem growth of the mature trees. To gain a deepest
understanding of the growth mechanism of the mature trees,
we identify the set of variables that have major influence on
discriminating among different growth-models. To this end, we
consider the Jeffreys-Matusita distance (JM) in order to eval-
uate the statistical separability of the growth-model classes,
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(a) (b)

Figure 9. Number of samples for training (TR), test (TS) and validation (VD) sets divided per growth model for: (a) Paneveggio, and (b)
Pellizzano.

Table VI
MAE, RMSE AND RMSE(%) CALCULATED ON THE DBH ESTIMATES FOR THE THREE GROWTH-MODEL CLASSES AUTOMATICALLY IDENTIFIED BY

THE METHOD CONSIDERING THE PM, THE RM1 AND THE RM2 IN: (a) PANEVEGGIO, AND (b) PELLIZZANO.

model PM RM1 RM2

class MAE RMSE %RMSE MAE RMSE %RMSE MAE RMSE %RMSE

ω1 2.35 3.11 21.86 6.68 8.06 23.58 4.16 5.21 36.65

ω2 5.34 6.87 17.46 6.92 8.83 29.45 7.06 9.23 23.45

ω3 5.47 6.64 15.14 7.23 9.15 22.57 6.75 8.78 20.03

(a)

model PM RM RM2

class MAE RMSE %RMSE MAE RMSE %RMSE MAE RMSE %RMSE

ω1 2.32 3.07 14.37 6.04 7.51 14.95 2.39 3.27 15.34

ω2 5.27 6.37 12.40 6.92 8.46 17.76 6.18 7.83 15.25

ω3 6.30 7.65 15.18 6.81 8.71 17.76 6.29 7.85 15.58

(b)

and of the Sequential Floating Feature Selection (SFFS) search
strategy to identify the subset of features that maximizes the
separability criterion. This choice is motivated by the need
to have a good trade-off between quality of selected features
and computational time [42]. Let us consider the classes ωh

and ωt, the JMht between their distributions can be defined
according to the Bhattacharyya distance Bht:

JMht =
√

2{1− e−Bht} (12)

Under the simplifying assumption that the distributions of
the growth-model classes can be modeled with Gaussian
distributions, the Bhattacharyya distance can be defined as
follows:

Bht =
1

8
(mh −mt)

T

(
Σh + Σt

2

)−1
(mh −mt)+

+
1

2
ln

(
1

2

|Σh + Σt|√
|Σh||Σt|

) (13)

where mh and mt are the mean vectors of the classes ωh and
ωt, and Σh and Σt their covariance matrices. Due to the capa-
bility of the JM distance to saturate when the discriminability
between the classes does not increases by increasing their
Bhattacharyya distance, we automatically detect: (i) the most
relevant set of variables, and (ii) the number of variables to
select. This analysis allows us: (i) to determine which variables
mostly affect the growth of mature stems, (ii) to asses from
the quantitative point of view the separability of the classes
in the feature space where we perform the growth-models
classification.

Tab. VII presents the ordered ranking of the main variables
that discriminate between two different classes of stem growth
of the mature trees detected in Paneveggio (see Tab. VIIa) and
in Pellizzano (see Tab. VIIb). In the considered datasets, the
clustering identified a class of mature trees and a class of old
trees.
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(a) (b)

(c) (d)

(e) (f)

Figure 10. Field measured vs predicted by (a)-(b) the PM, (c)-(d) the RM1 and (e)-(f) the RM2 for Paneveggio and Pellizzano, respectively.
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Table VII
ORDERED RANKING OF THE MOST DISCRIMINATIVE FEATURES BETWEEN

ω2 AND ω3 : (a) PANEVEGGIO, AND (b) PELLIZZANO.

Mature Growth-Models (Paneveggio)
Maximum Altitude Amax

Profile Curvature ϕ

Wetness Index w

Ratio of 2nd and 1st returns p2/p1
Global Canopy Cover GCC

(a)

Mature Growth-Models (Pellizzano)
Aspect γ

Southern Slope Ssouth

Minimum Altitude Amin

Plan Curvature φ

Wetness Index w

(b)

From the results obtained it turned out that the altitude
plays a dominant role in the class separability of mature
trees, i.e. Amax (Tab. VIIa) and Amin (Tab. VIIb). Indeed,
the tree growth rate decreases when increasing the altitude
because of the colder temperature, the increased exposure to
wind, the shorter growing seasons and the reduced amount
of soil nutrients [43]. The second variables selected in both
datasets is the wetness index w which model the soil water
drainage and thus is strongly correlated to the soil fertility,
especially in mountainous and hilly terrains. This is confirmed
by the selection of the profile curvature ϕ in the Paneveggio
dataset and of the plan curvature φ In the Pellizzano dataset.
Thus, these variables have a similar meaning since they both
represent the curvature of the terrain from the hydrological
and geomorphological point of view [34]. Finally, in Pan-
eveggio the vertical density of the forest stand p2/p1 plays
a fundamental role in the stem growth in terms of availability
of water, whereas the horizontal forest density metrics GCC
models the impact of forest density in terms of surrounding
trees. In particular, trees characterized by low height values
are more sensitive to the presence of taller neighbouring trees
because of the light reduction effect. In contrast, in Pellizzano,
the aspect γ and the southern slope Ssouth are selected, which
provide an accurate representation of the terrain morphology.
Differently from Paneveggio, none of the feature representing
the forest density are selected. This is due to the fact that
Pellizzano is an old-growth forest, where most of the trees are
no more affected by the forest density but mainly by the terrain
properties. This confirm the capabilities of the proposed data-
driven automatic technique to obtain from the data information
that is important for a physical understanding of the modelling
processes.

VI. CONCLUSION

In this paper we have presented a data-driven method for
the identification of clusters of trees belonging to different
growth-model classes for the adaptive estimation of the indi-

vidual DBH. The experimental results obtained on two LiDAR
datasets demonstrate that the method is able to account for
the environmental factors which can be computed from LiDAR
data that influence the growth of the DBH. Due to the proper
representation of the forest conditions, it accurately identifies
clusters of trees belonging to different growth-model classes.
This allows us to adapt the regression rule to the different
classes and to select the best set of features for each growth-
model class, thus improving the correlation between the pre-
dicted and the field measured DBH values. The PM allows a
significant improvement with respect to the reference methods
in the youngest mixed-aged forest characterized by different
growth models (Paneveggio). As expected, the improvement
is a smaller on the old-growth forest characterized by few
young trees (Pellizzano). However, note that also in this case
the RMSE obtained by the PM on trees characterized by large
stems is significantly smaller than those yielded by reference
methods, regardless of the density of the LiDAR data and
the forest structure. Note that the PM is automatic and data-
driven. Thus, it can be applied to different areas for adaptively
identifying the specific growth-models to be used.

A growth-model classes analysis that determines which
variables mainly discriminate growth-model classes of mature
trees has been also presented. From the results obtained, it
turned out that the altitude together with the water drainage
and the wetness index plays a dominant role in the separability
of the mature-tree classes. Thus, the altitude is fundamental
to characterize the local forest environment and the tree
growth condition, while the water drainage is directly linked
to the soil fertility. Moreover, results demonstrate that for the
young-growth forest dataset considered (Paneveggio) attributes
modelling the forest density strongly influence the discrimina-
tion of mature classes. In contrast, in the old-growth forest
dataset (Pellizzano) the topography has a dominant role in the
separability of the mature classes.

By focusing the attention on the feature selection results
obtained per growth-model class, the crown radius and the
tree top height are always selected as features in input to
the regression models regardless of the growth-model classes
and the dataset. This result confirms the strong influence of
the crown shape in the DBH estimation. Moreover, also the
altitude is always selected by the feature selection algorithm
due to the impact of the elevation on the forest environment.
This is evident in the considered mountainous forest datasets.
Although the precise characterization of the shape of the
crown is important to obtain an accurate estimation of the
DBH, features representing the forest density and the terrain
morphology are always selected. In particular, the estimation
results confirm that the terrain properties affect the stem
expansion together with the forest density.

As future developments of this work, we aim to test the
method on forest stands characterized by different ages and
structures. Moreover, we plan to further analyze the growth-
model classes for a better comprehension of the environmental
factor which affect the growth of the trees. In this context,
experiments will be extended to LiDAR dataset characterize
by different laser point density and to forest having different
environmental conditions.
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