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Abstract—LiDAR data have been widely used to characterize
the three-dimensional structure of the forest. However, their use
in a multitemporal framework has been quite limited due to
the relevant challenges introduced by the comparison of pairs
of point clouds. Because of the irregular sampling of the laser
scanner and the complex structure of forest areas, it is not
possible to perform a point-to-point comparison between the two
data. To overcome these challenges, a novel hierarchical approach
to the detection of 3-D changes in forest areas is proposed.
The method first detects the large changes (e.g., cut trees) by
comparing the Canopy Height Models (CHMs) derived from the
two LiDAR data. Then, according to an object-based Change
Detection (CD) approach, it identifies the single-tree changes by
monitoring both the tree-top and the crown volume growth. The
proposed approach can compare LiDAR data with significantly
different pulse densities, thus allowing the use of many data
available in real applications. Experimental results pointed out
that the method can accurately detect large changes, exhibiting
a low rate of false and missed alarms. Moreover, it can detect
changes in terms of single-tree growth which are consistent with
the expected growth rates of the considered areas.

Index Terms—3-D change detection, multitemporal analysis,
Light Detection and Ranging (LiDAR), remote sensing, forestry.

I. INTRODUCTION

Forests are a living ecosystem characterized by natural
and anthropogenic processes and thus they are constantly
changing. Hence, it is very important to develop techniques
for monitoring forest areas in order to update forest inventories
(for management and planning) and to analyze the health of
wooded areas (e.g., reduced growth rate due to tree diseases).
Remote sensing data acquired at different times over large
forest areas are a suitable information source to perform
automatic CD.
In the literature, the use of remote sensing data for CD in forest
areas has been addressed mainly considering multitemporal
optical images. Given two images acquired on the same areas
at different times, two basic approaches are usually consid-
ered: i) pixel-based analysis; ii) context-based analysis. In
the first approach, a pixel-by-pixel comparison of the images
is carried out by working directly on the original spectral
channels or by comparing features extracted from them (e.g.,
Normalized Difference Vegetation Indices) [1]. However, this
approach does not exploit the contextual information of the
neighbouring pixels. In contrast, the context-based approach
uses the local spatial information to better characterize the
objects in the multitemporal analysis (e.g., comparison of all

the pixel belonging to a tree crown). It is worth noting that, for
an accurate CD, the group of pixels associated with a given
object should be chosen accurately either by using GIS data
[2] or by applying a segmentation method to the images in
order to identify uniform areas [3]. Both approaches (pixel-
based and context-based) can be applied to bi-temporal images
or to time series of images [4] to evaluate the vegetation
variation trend during the year. In CD applied to forestry, it is
important to identify the changes by discriminating between
different types of variations. When dealing with multispectral
or hyperspectral images, multiple spectral bands can be used
to discriminate among different changes. In [5] the authors
propose an unsupervised approach to CD based on the polar
Change Vector Analysis (CVA). By using this polar CVA
representation, it is possible to better distinguish between the
different types of changes exploiting the spectral information
present in the data. More in general, there are many techniques
presented in the literature that can effectively solve the CD
problem in forest areas by using optical data. However, multi-
spectral and hyperspectral data do not contain any information
for characterizing the three-dimensional structure of a forest.
Accordingly, they are not suitable for a detailed analysis of the
3-D geometrical changes of the trees (e.g., changes in volume
and height). Moreover, optical data are very sensitive to the
period and the acquisition conditions. According to the season
in which the data are acquired, the spectral response of the tree
crowns may significantly change thus leading to false alarms.
Furthermore, different illumination conditions may affect the
CD results.
In contrast, Light Detection and Ranging (LiDAR) data ac-
curately measure the 3-D structure of the analyzed scene,
thus collecting valuable informations for forestry applications.
Moreover, LiDAR is not affected by illumination conditions,
even though the acquisition season may affect the acquired
data due to the variation of the foliage in the case of broadleaf
(i.e., leaf-on or leaf-off conditions). LiDAR data have been
widely employed for the estimation of forest parameters on
single acquisitions. Nonetheless, only few papers addressed the
challenging problem of the analysis of multitemporal LiDAR
data for 3-D CD. In particular, three main problems should be
considered: i) the pulse density of the two point clouds can be
significantly different; ii) the irregular sampling of the LiDAR
pulses results in measures that are not uniformly distributed;
iii) the tree crowns are characterized by an irregular structure.
For all these reasons, the probability that the LiDAR pulses
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hit the same portion of the crown in two different acquisitions
is very small.
A possible solution to these problems is to perform the com-
parison by estimating forest attributes at stand level. Instead of
directly comparing the point clouds, the multitemporal analysis
is performed on the parameters estimated from the LiDAR data
at plot level. In [6]–[8] the authors perform CD by estimating
the Above Ground Biomass (AGB) variation. In [6] the AGB
changes are estimated following two approaches. In the first
one they analyze the variation of LiDAR height metrics and
relate them with biomass variation, while in the second they
compare the AGB estimates obtained at the two dates. The first
approach proved to be accurate at a scale of 10ha, whereas
the second one showed good results at 1ha scale. In [7], the
authors independently estimate the AGB at the two considered
dates and then analyze their difference in order to quantify
the AGB variation in areas affected by logging. In [9], the
authors estimated the Leaf Area Index (LAI) and subsequently
computed the LAI variation as the difference of the estimates
to analyze the effects of an insect attack on Scots pines.
However, all these stand level approaches work at large scale
(50m [7], 10m [9]) or at coarse scales (0.25−10ha [6], [8]).
Thus, they are not suitable for an individual tree level analysis.
In addition, they require field measurements for relating the
LiDAR point clouds with the forest parameters that have to
be estimated, which are not always available.
In [10]–[14] the authors use multitemporal LiDAR datasets
to search for canopy gaps opening or closing. A common
approach is to detect the canopy gaps by computing the
difference between the two Canopy Height Models (CHM)
[10]–[12], which are the regularized version of the LiDAR
data on 2-D grids (i.e., image domain). The regularization
step simplifies the CD analysis since it mitigates the effect of
the non uniform laser sampling and the irregular structure of
the crown. In [10]–[12] the difference image is thresholded in
order to obtain a binary map. In other papers, the authors first
detect the canopy gaps in the CHMs separately at the two dates
and then compare the obtained sets in order to identify canopy
gaps opening or closing [13], [14]. To remove noise (i.e., small
patches of pixels wrongly identified as canopy gaps), various
methods have been proposed, such as the removal of all the
patches with area smaller than a given threshold [10], [12],
[14] or the elimination of the areas where the corresponding
pixels of the CHM contain few laser pulses [10], [14]. All
these methods are suitable for the analysis of canopy gaps and
their dynamics, which are large changes that do not require
any detailed analysis.
In order to detect changes in terms of height and volume
growth at the individual tree level, specific techniques should
be used. First, the individual trees have to be identified
and segmented. Many methods have been presented in the
literature to perform the segmentation both in the CHM and
point cloud domains [15]–[19]. A typical approach is the
search for the maxima in the CHM which are then used as
seeds in a region growing approach [15]. In [16] the authors
perform the segmentation by working both in the regularized
domain of the CHM (to delineate the crowns) and in the
point cloud domain (to distinguish between understory and

overstory vegetation). In [17] the point cloud is seen as a 3-D
multimodal distribution where each mode represents a possible
tree crown. A mean-shift algorithm is used to identify the
considered modes. Other methods are based on a directional
analysis of the crown profile in the point cloud domain [18]
and in the regularized domain [19].
When the individual trees have been detected and segmented,
the CD analysis can be performed at single-tree level [10],
[11], [20]–[24]. In [11], [21], the vertical growth of a tree
is computed as the difference between the highest LiDAR
points of the considered tree at the two dates. This estimate is
computed under the hypothesis that there is at least one laser
pulse that hits the tree-top at both dates. This hypothesis can be
considered valid if the pulse densities of the two point clouds
are relatively high (i.e., greater than 5 − 10 pls/m2). If this
condition is not satisfied, it is possible to evaluate not only the
difference of the highest LiDAR points of the tree at the two
dates but also the difference between the mean and median of
the values of the Digital Surface Models (DSM) representing
the analyzed tree [20] or the mean of the elevation of the
LiDAR points belonging to the considered tree in the two
data [10]. In [22] the authors analyze the relationship between
canopy gaps and the growth of individual trees by comparing
the growth of the individual trees on the edge of canopy gaps
(i.e., with large part of the canopy not covered by other trees)
with the growth of the trees surrounded by other crowns.
Regarding the horizontal growth of the canopy, in [11] an
estimate is computed by measuring the difference between the
areas of the segmentation regions associated to the same tree
at the two dates. However, the method does not exploit the rich
information content of the 3-D tree crown structure present in
the point cloud. In [23], [24] the change detection is performed
at individual tree level in the point cloud space. In [23] the
authors analyze multitemporal terrestrial LiDAR data to assess
AGB changes. For each detected tree the AGB is estimated
by using the two LiDAR point clouds separately. Then, the
estimates are compared to identify the biomass change per
tree. In [24] a method to detect tree changes in urban areas
(in which typically trees do not intersect significantly) using
multitemporal high density airborne LiDAR data is presented.
The parameters of the tree crown are estimated separately on
the two LiDAR point clouds and then compared to estimate
the tree changes.
It is worth noting that regardless of the method used to perform
the CD, to obtain satisfactory results the two point clouds have
to be registered. The problem of 3D point cloud registration
has been extensively analyzed in the literature. The Iterative
Closest Point (ICP) [25] algorithm is one of the most common
solutions adopted in a large variety of datasets and contexts.
ICP allows a fine registration of overlapping 3D point clouds
by iteratively estimating the transformation parameters. The
errors are distributed among all the points of the sets to
limit distortion while preserving the geometry of the entire
scene [26], [27]. However, since it is an iterative descent
algorithm, a good a priori alignment should be provided to
reach the global minimum. Moreover, a major bottleneck
is the rate of convergence. To refine the registration results
and reduce the computational burden, local features can be
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employed considering object-based approaches [28] or using
local features [29], [30].
From this analysis of the literature, it turns out that little re-
search regarding the analysis of multitemporal LiDAR data has
been carried out. In particular, most of the techniques present
in the literature perform the CD at stand level, thus producing
maps representing the variation of forest metrics at plot level.
Very little has been done regarding the single-tree analysis
with most of the papers focusing on the vertical growth of
the canopy. For all these reasons, in this paper we propose
a novel approach to the detection of large changes (e.g., cut
trees) and single-tree changes (i.e., vertical and crown volume
growth) in multitemporal LiDAR data. The proposed approach
is based on a hierarchical strategy that first detects the large
changes and then identifies the changes at the individual tree
level according to an object-based approach. This allows us to
decompose the complex multitemporal analysis into simpler
problems, thus simplifying the 3-D CD problem. While the
large changes are detected in the CHM, the object-based
approach focuses on the single-tree crowns directly in the point
cloud domain to exploit the full information of the LiDAR
data to detect the 3-D changes of the canopy. Unlike most
of the literature methods, the proposed approach estimates
both the vertical and horizontal growth to characterize the
canopy volume growth. Moreover, we are able to perform the
CD using point clouds with very different pulse densities. It
is worth noting that the crown volume is an important tree
parameter which has been demonstrated to be a good predictor
for the estimation of the forest biomass [31], [32], for forest
fire simulations [33], [34] and for Diameter Breast Height
(DBH) estimation [35] (since DBH and crown volume are
correlated). In [33] the authors estimate the crown volume and
the foliage biomass to compute the single-tree crown density
as the foliage biomass divided by the crown volume. Thus,
the detection of the changes of the crown volume is really
important for the monitoring of forest areas.
To assess the effectiveness of the proposed approach, experi-
ments have been carried out on two forest areas located in the
Southern Alps of the Trentino region (Italy). This work focuses
on conifers which are the primary tree species in Alpine
environment. We used both high density (up to 50 pls/m2) and
medium density (up to 10− 15 pls/m2) LiDAR data. Results
confirmed the effectiveness of the proposed 3-D CD method.
The paper is organized as follows. Section II describes the
proposed approach, by illustrating in detail all the different
steps. The data used for the validation of the proposed method
and the experimental results are presented and discussed in
Section III. Finally, Section IV draws the conclusions and
presents possible directions for future developments.

II. PROPOSED HIERARCHICAL 3-D CHANGE DETECTION
APPROACH

The aim of the proposed hierarchical CD approach is to
accurately detect 3-D forest changes in multitemporal LiDAR
data. First, the method identifies the large changes (e.g., cut
trees, new buildings) and then focuses the attention on the
individual trees in order to detect the changes of the tree

canopies both in term of vertical and crown volume variation.
Figure 1 shows the architecture of the proposed method, which
is composed of 3 main parts: i) pre-processing (to make the
two point clouds comparable); ii) detection of large changes
by comparing the two CHMs; iii) object-based detection of
changes at the individual-tree level.

A. Problem definition

As mentioned in Section I, forests are characterized by
heterogeneous changes. In order to correctly identify all of
them, it is necessary to properly define the CD problem. Let us
assume to have a multitemporal LiDAR dataset consisting of
two point clouds P1 and P2 (each composed by a set of points
p having coordinates x, y, z) acquired on the same forest area
at different times t1 and t2, respectively. Let Ω = {Ωl,Ωc, ωn}
be the set of all the considered classes where Ωl is composed
by the areas affected by large changes, Ωc corresponds to
the areas with forest canopy cover present at both dates and
ωn represents all the areas that are of no interest for forest
change studies, i.e., areas that do not have any canopy cover.
Class Ωl = {ωln, ωlp} represents the classes of changes
corresponding to large negative changes ωln (e.g., cut trees,
destroyed buildings) and large positive changes ωlp (e.g., new
trees or buildings). Finally, Ωc = {ωng, ωg} represents the
status of the areas covered by trees. We distinguish between
trees with no growth (class ωng) and trees that have changed
between the two acquisitions (class ωg). Class ωg represents
the growth of the trees both in terms of vertical variation dH
and crown volume variation dV . It is worth noting that dH and
dV are not mutually exclusive but they are usually correlated
as the height variations contribute also to crown volume
growth. Figure 2 shows the modeling of the hierarchical tree
structure in the considered CD problem.

B. Pre-processing

The aim of the pre-processing is to make the two point
clouds P1 and P2 comparable to accurately perform the
multitemporal analysis. Accordingly, first we register the two
data by applying the ICP algorithm, which aims at minimizing
the Euclidean distance between the two 3-D point clouds. In
this step we assume that a large portion of the forest did not
change significantly between the two acquisitions. To this end,
the algorithm iteratively searches for the rigid transformation
T = [R|t] (defined by a rotation matrix R and a translation
vector t) that best aligns the two LiDAR data. This is done
by finding, at each iteration, a one-to-one correspondence
between the points of P1 and the reference point cloud P2

thus generating a set of Q matched points {p1,q,p2,q}Qq=1.
The algorithm searches for a transformation T that minimizes
the Euclidean distance between each point p2,q and the
corresponding transformed point pT1,q = Rp1,q − t, i.e.,:

d(pT1,q,p2,q) = ||pT1,q − p2,q||. (1)

Thus, the algorithm searches for the T such that:

T = argmin
T ′

E(T ′) = argmin
T ′

Q∑
q=1

d(pT
′

1,q,p2,q). (2)
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Fig. 1: Architecture of the proposed method for the detection of large changes and single-tree changes.

Fig. 2: Hierarchical tree structure of the considered CD
problem in forest areas. The represented classes are: Ω set
of all considered classes; Ωl large changes; ωln large negative
changes; ωlp large positive changes; Ωc forest canopy cover
present at both dates; ωng trees with no growth; ωg trees with
growth; ωn areas of no interest for forest change studies.

The transformation T is applied to the point cloud P1 (or P2

if the reference point cloud is P1). The algorithm then defines
a new set of matched points between the reference and trans-
formed point clouds and searches for a new transformation.
These operations are repeated until E(T ) is smaller than a
given threshold. It is worth noting that the ICP algorithm was
originally developed for computer vision applications. Thus,
it has been applied mostly to 3-D models having a very high
point density. Moreover, a basic assumption of the original ICP
is that the two 3-D models are almost identical (at least the
portions that have to be aligned). Unfortunately, this is not the
case for multitemporal airborne LiDAR data acquired on forest
areas. Hence, the point-to-point approach of the ICP may lead
to compute the rigid transformation using unreliable pairs of

points. To mitigate the effects of this problem, we use only
the first return of the two point clouds, thus considering only
the external surface of the tree crowns, which is also the most
informative. In addition, we discard a given percentage of pairs
of points with the largest Euclidean distance. In particular, at
each iteration we compute the set D = {d(p1,q,p2,q)}Qq=1 of
the Euclidean distances between all the pairs of matched point
(before computing the transformation) and we define a binary
variable wq as:

wq =

{
0 d(p1,q,p2,q) > Pr(D)

1 d(p1,q,p2,q) ≤ Pr(D)
, ∀q = 1, . . . , Q, (3)

where Pr(D) is the rth percentile of D. The defined binary
variable wq can be used in E(T ′) to discard pairs of point for
which the pairwise Euclidean distance is large, i.e.,:

E(T ′) =

Q∑
q=1

wqd(pT
′

1,q,p2,q) (4)

These points cannot be used to reliably compute the transfor-
mation because they have a high probability of not represent-
ing the same portion of the tree or ground at the two dates.
This may be due to outliers or large changes (e.g., a point
representing a branch of a tree that has been cut between the
two acquisitions should not be used in the ICP). Moreover, we
decimate the two point clouds in order to apply the ICP on
two data with the same density. Note that the ICP is applied
to the two point clouds before subtracting the Digital Terrain
Model (DTM). This allows us to use the information regarding
the morphology of the terrain in the registration step. The
transformation is applied also to the discarded points, which
are considered in all the following steps.
After the registration phase, a DTM is subtracted from the two
LiDAR data to obtain the relative height of the points with
respect to the ground (i.e., normalized point clouds P1 and
P2). Then, we regularize the two LiDAR data on a square
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grid. To this aim, we compute the value for each square as
the elevation of the highest point which x, y coordinates fall
inside the cell. Subsequently, to fill the gaps in the grid due
to missing points, we apply an interpolation algorithm [36].
Finally, the regularized point clouds can be easily converted
into images, thus obtaining the two Canopy Height Models
CHM1 and CHM2.

C. Detection of Large Changes

According to the hierarchical approach, first we need to
automatically identify the areas affected by large positive
ωlp and negative ωln changes. To this end, we compute the
difference image CHMD by subtracting CHM1 and CHM2
[10]–[12] as follows:

CHMD(x, y) = CHM2(x, y)− CHM1(x, y). (5)

As we are searching for large changes, to identify only the
areas in which there is a substantial height variation, two
thresholds th,lp and th,ln are applied to CHMD, in order to
obtain two binary maps CHMD,lp(x, y) and CHMD,ln(x, y)
according to:

CHMD,lp(x, y) =

{
1 CHMD(x, y) ≥ th,lp

0 otherwise

CHMD,ln(x, y) =

{
1 CHMD(x, y) ≤ −th,ln
0 otherwise

(6)

where the pixels set to 1 identify the areas affected by large
changes (positive changes ωlp for CHMD,lp(x, y) and negative
changes ωln for CHMD,ln(x, y)). We use two thresholds (con-
sidering th,lp < th,ln) since the magnitude of the deforestation
changes can be much larger with respect to the one of the
forestation changes. Indeed, whereas the cut of a tree may
correspond to a variation of more than 30m, the growth of
a new tree corresponds to much lower absolute values in
CHMD(x, y), which depend also on the elapsed time between
the two acquisitions. It is worth noting that the choice of
two different threshold values does not affect the detection of
other large changes such as the construction or destruction of
buildings since their magnitude is large both for positive and
negative changes. Then we perform a series of morphological
operations on both binary maps starting with an erosion filter
based on a circular structuring element. This operation allows
us to remove most of the noise, thus identifying either the cut
or new tree canopies and other large changes. Then, all the
regions with area lower than a given threshold tA are removed
and finally a dilation filter (having the same structuring ele-
ment used in the previous morphological operation) is applied
to the resulting binary image. It is worth noting that the size
of the structuring element and the threshold area tA should be
chosen according to the spatial resolution of the CHMs. The
obtained binary maps CHMD,ln(x, y) and CHMD,lp(x, y) are
then merged in a single map CHMD,l(x, y) which is used
to drive the detection of the single-tree changes, i.e., all the
operations of the second part of the method are applied only
on to the areas that are not affected by large changes. At this
point of the analysis, all the areas not affected by large changes

may belong to areas not of interest for forest studies (i.e., ωn
class) or to areas with the presence of canopy cover at both
dates (Ωc).

D. Single-Tree Change Detection

In the last step of the proposed hierarchical approach, we
address the difficult task of detecting the single-tree changes
and the related attributes dH and dV . This requires to ac-
curately detect and delineate the tree canopies at the two
dates since every error in the crown detection and delineation
step will affect the single tree CD results. The individual
tree crowns are detected and delineated in the CHMs and
then the multitemporal analysis is performed directly in the
point cloud space. This condition allows us to exploit the
full information content of the point clouds to improve the
detection of the single-tree changes. To overcome the problem
related to the CD in multitemporal LiDAR data (i.e., point-to-
point comparison is not feasible), we focus the attention on
the whole tree structure by means of an object-based approach
based on the geometry of the tree canopy.
To detect the trees at the two dates, first we apply median and
Gaussian filtering to the two CHMs. Then, by applying a Level
Set Method [35] to CHM1 and CHM2, we separately identify
the positions of the tree-tops, hereafter referred also as seeds.
This operation produces the set of seeds S1 = {s1,k1}

N1

k1=1

at time t1 and the set of seeds S2 = {s2,k2}
N2

k2=1 at time t2,
where s1,k1 = (xk1 , yk1) and s2,k2 = (xk2 , yk2) represent the
2-D positions of the tree-tops at the two dates. According to
the availability of the multitemporal dataset, we can employ in
a synergistic way the two LiDAR data to improve the detection
result. Thus, we compare the set of seeds S1 with S2 to match
the trees present at both dates. The position of the same tree-
top may be different at the two dates due to natural causes or
residual registration error (which we assume to be small due
to registration step applied in the pre-processing phase). Thus
we can perform a final object-based registration by matching
the two sets of seeds associating to each seed s1,k1 ∈ S1 the
nearest seed s2,n ∈ S2 according to the Euclidean distance:

s2,n : n = argmin
k2∈[1,...,N2]

‖s2,k2 − s1,k1‖. (7)

To avoid false matching, we discard all the matched pairs
having an Euclidean distance greater than a given threshold
ts. Note that the matching is performed considering only the
tree-tops locations, without taking into account the tree-top
heights, which change due to the vertical growth of the trees.
For those seeds detected only in one acquisition, we improve
the detection accuracy by using the information provided by
the other acquisition. In particular, we aim to distinguish
between false alarms (i.e., false tree-tops detected due to noise
at one date) or true tree-tops correctly identified only at one
date. To this end, we compute a rough estimate of the crown
width by analyzing the behavior of the CHM around each
of these seeds by means of a directional analysis. If the
estimated crown width is greater than 1m at least at one
of the two dates, we recover sm, otherwise we definitely
discard it. This operation allows us to use in a synergistic
way the multitemporal information to reduce the number of
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Fig. 3: Example of the first operation of the segmentation
of tree sk surrounded by three trees {sj}3j=1. In blue the
lines `k,j with in green gk,j=1. The orange dots represent
the points at which the considered tree intersects with its
neighbours. The portion of the CHM shows the result of the
partial segmentation as the bright area (delineated by the red
bounding box).

false alarms without increasing the number of missed alarms.
In this step we compute a rough estimate of the the crown
radius. However, to perform an accurate CD a more precise
approach to the crown delineation is required. The result
of these operations is a single set S = {sk}Nk=1, where
sk = (xk, yk) represents the ground coordinates of the kth tree
and N ≤ min {N1, N2} is the number of tree-tops detected at
both dates.
To fully characterize the tree canopies, we perform the crown
delineation separately in CHM1 and CHM2 around each sk ∈
S. In the CD segmentation errors may lead to the detection of
changes which are not related to the growth of the trees. Thus,
we aim to perform a conservative segmentation to reduce the
number of errors (i.e., portions of crowns that are included
in the segmentation region of other tree canopies). For this
reason, in the first phase of the segmentation we delineate
a preliminary bounding box around each tree-top. Second,
we refine the segmentation result by accurately delineating
the crown boundaries. Let us focus on a generic kth tree
and on CHM1. After a median filtering of the CHM, the J
neighbouring tree-tops of sk within a maximum radius r are
detected, i.e., we select a subset of seeds {sj}Jj=1 ∈ S such
that:

sj ∈ S : ‖sk − sj‖ ≤ r (8)

If no trees are found around sk (i.e., the tree can be considered
isolated), the method moves directly to the second phase. For
each {sj}Jj=1 ∈ S , we define line `k,j connecting sk and sj
and the corresponding values of the CHM gk,j . We search
for the absolute minimum of gk,j and the corresponding
x, y position in `k,j . The 2-D line perpendicular to `k,j
passing trough the x, y point corresponding to the minimum
of gk,j can be considered as a conservative crown boundary.
By repeating this operation for all {sj}Jj=1 we generate the
preliminary bounding box of the kth tree. The bounding
box allows us to use the contextual information of the tree
and its neighbours in the segmentation. Figure 3 illustrates
the preliminary segmentation of a tree surrounded by three
neighbours.
In the second phase of the segmentation we delineate the

crown by analyzing the values of the CHM around the seed po-
sition sk. To this end, we apply a crown delineation algorithm
similar to those proposed in [18], [19]. In greater detail, we
analyze the profile of the canopy in several directions starting
from the position of the tree-top. For each direction, we search
for the first local minimum and its position is considered as
a crown boundary reference point. It is worth noting that, to
increase the reliability of the segmentation result, we consider
only the crown boundary reference points that are inside the
conservative bounding box delineated in the previous phase
of the segmentation. Indeed, in some cases the first local
minimum may be found further away than the true crown
boundary point (e.g., due to the interpolation artifacts in the
regularization step). The use of the bounding box allows us
to reduce the probability of such errors by discarding large
portions of the CHM that do not belong to the considered
canopy. Finally, to define the final polygon of the segmented
region, we compute the 2-D convex hull of the obtained set
of reference crown boundary points. This is done because it
is reasonable to approximate the crown perimeter as a 2-D
convex polygon and in this way we discard the points that
are inside the canopy perimeter but are wrongly detected as
crown boundary. The outcomes of the segmentation are two
sets of regions {R1,k}Nk=1 and {R2,k}Nk=1, where R1,k and
R2,k delineate the crown of the tree sk in CHM1 and CHM2,
respectively. It is worth noting that all the areas that are not
included in {R1,k}Nk=1 and {R2,k}Nk=1, and are not affected
by large changes Ωl, belong to the class ωn.
In order to exploit the full information content of the LiDAR
data we perform the detection of the single-tree changes
directly in the point cloud domain. To this end, we transfer
the sets of regions {R1,k}Nk=1 and {R2,k}Nk=1 to the 3-D point
cloud space, generating two sets of segmented point clouds
{C1,k}Nk=1 and {C2,k}Nk=1 where C1,k and C2,k represent the
crown of the tree sk at times t1 and t2, respectively. Since it
is not feasible to compare the two point clouds C1,k and C2,k

using a point-to-point approach, we reconstruct the external
surface of the tree canopy at the two dates using an object-
based approach defined by a parametric modeling. The 3-
D model can be used to compute an estimate of the crown
volume which is less affected by outliers with respects to other
methods such as convex hull or alpha shape. It is worth noting
that any model can be used in principle with the proposed
technique but here we focus on conifer trees and thus a 3-D
ellipsoid is suitable to accurately model the tree canopy [37]–
[39]. The mathematical model of the generic kth tree is defined
by four parameters that control the shape of the ellipsoid: i) the
tree-top height Ht,k, ii) the crown height cht,k, iii) the crown
radius crt,k, iv) the crown curvature cct,k, with t = 1, 2. The
3-D model is defined as follows:

(z + cht,k −Ht,k)
cct,k

cht,k
cct,k +

[
(x− xk)

2
+ (y − yk)

2
]cct,k/2

crt,kcct,k
= 1

Ht,k − cht,k < z < Ht,k, t = 1, 2
(9)

Figure 4 shows an example of the 3-D ellipsoids with the
described parameters. To define the two 3-D ellipsoids for
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both point clouds C1,k and C2,k, we need to estimate the
aforementioned parameters at both dates. Due to the con-
servative crown segmentation, the number of outliers in the
segmented point clouds C1,k and C2,k is reduced, thus making
the parameter estimation process more reliable. Since we are
in a multitemporal framework, we perform the estimation by
fusing the information of both dates to improve the accuracy
of the estimates at single date. To this end, we define a set of
rules based on natural physical constraints. First, we estimate
the tree-top heights H1,k and H2,k as the highest elevation
values of the two point clouds C1,k and C2,k, respectively.
It is very unlikely that tree-top height decreases over time
except some cases in which the highest part of the tree is
damaged (e.g., due to severe whether conditions). Thus, we
assume that H1,k ≤ H2,k and if this condition is not satisfied
we set H1,k = H2,k.
Then, we estimate the crown base heights bh1,k and bh2,k

(i.e., heights of the lowest branch) defined as bht,k = Ht,k −
cht,k, (t = 1, 2). The estimates are obtained by analyzing
the vertical profiles of the segmented point clouds. If the
two point clouds have been acquired few years apart, we can
assume that the base height does not variate significantly with
time (i.e., bh1,k = bh2,k = bhk). Indeed, the base height
variation (i.e., rise of the lowest branch of the tree) is due
to the death of the lowest branches of the canopy [40] and
thus it does not change rapidly. Accordingly, we can define
a single base height as bhk = min{bh1,k, bh2,k}. In this way
we improve the estimation of the base height by fusing the
information of the multitemporal LiDAR data. Indeed, the
laser may penetrate more the lower portion of the canopy
at one of the two dates with respect to the other due to
a higher pulse density thus allowing for a more accurate
estimation. By fusing the two estimates we use the higher
density data to improve the estimation in the other one.
It is worth noting that if the time difference between the
acquisitions of the two LiDAR data is large, this assumption is
not valid anymore and the base heights have to be estimated
separately at the two dates. The two crown heights can be
computed as cht,k = Ht,k − bhk, t = 1, 2.
To estimate the crown radius, for each segmented tree we
select all the points belonging to the canopy (i.e., points
for which z > bhk) and then we compute the area At,k of
the 2-D convex hull computed using the x, y coordinates of
the selected points. Finally, we calculate the crown radius
as crt,k =

√
At,k/π, t = 1, 2. Also in this case we use the

multitemporal information to improve the estimation accuracy.
To this end, we consider the constraint on the radius cr1,k ≤
cr2,k. In particular, for those crowns where cr1,k > cr2,k we
set cr1,k = cr2,k since it is plausible to assume that the crown
radius does not decrease in time.
Similarly to the base height, it is reasonable to assume that
the crown curvature does not change significantly in time
(i.e., cc1,k = cc2,k = cck). Thus, the crown curvature cck
is estimated by detecting the one that minimizes a residual
distance metric between the 3-D ellipsoid and the points
belonging to the external surface of the segmented point cloud
with the highest number of points. If we consider the crown at
time t1 as the crown with larger number P of points, we can

define the residual distance metric of a single xi, yi, zi point
for a given cc′k as:

ri(cc
′
k) =

(zi + ch1,k −H1,k)
cc′k

ch1,k
cc′k

+

[
(xi − xk)

2
+ (yi − yk)

2
]cc′k/2

cr1,kcc
′
k

− 1.

(10)

Thus, the overall residual distance metric for P points can be
defined as:

r(cc′k) =

P∑
i=1

ri(cc
′
k)2 (11)

The estimate of cck is selected according to:

cck = argmin
cc′k

r(cc′k). (12)

The aforementioned operations allow us to simplify the de-
tection of the 3-D changes at the individual tree level (in
particular the detection of the crown volume growth dV )
by characterizing the canopy structure using a 3-D ellipsoid
regardless of the pulse density. For each kth tree, we have the
following variables:
• tree-top heights H1,k and H2,k;
• two 3-D ellipsoids E1,k and E2,k (defined using

Ht,k, crt,k, cht,k, cck, t = 1, 2) representing the canopy
structure at the two dates.

The vertical growth of the considered tree can be computed as
dHk = H2,k −H1,k. In order to compute the crown volume
growth, first we compute the volume of the considered tree at
the two dates according to:

V (Et,k) =

∫∫
√
x2+y2≤crt,k

(
chcckt,k +

(x2 + y2)cck/2

crcckt,k

· chcckt,k

)1/cck

− cht,k + Ht,k dx dy, t = 1, 2.
(13)

Then, the crown volume growth is estimated as:

dVk = V (E2,k)− V (E1,k). (14)

It is now possible to distinguish between trees with no growth
(class ωng) and trees with growth (class ωg) by applying two
thresholds to dHk and dVk, i.e,:

sk ∈

{
ωng dHk < tdH ∧ dVk < tdV

ωg dHk ≥ tdH ∨ dVk ≥ tdV
. (15)

We used these thresholds to avoid the effects of small differ-
ences that may depend on either systematic acquisition errors
of LiDAR or the complex forest scenario. Thus, the thresholds
allow us to correctly identify the trees that show a significant
growth. From the definition of dHk and dVk, one can see
that these two attributes are not mutually exclusive since both
Ht,k, (t = 1, 2) and Et,k, (t = 1, 2) are dependent from
cht,k, (t = 1, 2).
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(a) C1,k and E1,k (b) C2,k and E2,k

Fig. 4: 3-D models fitted on the segmented point clouds at the
two dates for a generic tree k.

III. EXPERIMENTAL RESULTS

A. Dataset Description and Experimental Setup

To assess the effectiveness of the proposed method, we
performed the CD analysis on two forest areas located in the
southern Italian Alps in the Trento province. The first area is
located in Baselga di Piné, Trentino (central point coordinates
46◦10′79, 18′′N, 11◦22′66, 13′′E) and extends approximately
25ha. The terrain is characterized by a complex morphology
with an altitude ranging from 850m to 1000m. The species
composition of the forest is mainly Larix decidua (European
Larch) and Picea abies (Norway Spruce). The LiDAR data
were acquired in 2010 and 2014 by an ALTM 3100EA sensor
with a maximum pulse density of 10 pls/m2 and 15 pls/m2,
respectively, and four returns registered for each pulse. We
selected two 70m× 70m areas (see Figures 5a-5e and 5b-5f)
for our experiments.
The second study area is an old-growth coniferous forest
located in Pellizzano, Trentino (central point coordinates
46◦17′31, 00′′N, 10◦45′56, 49′′E). The size of the area is
3200ha with an altitude ranging from 900m to 2800m and
a complex terrain morphology. The species composition is
similar to the one of the first test forest. The LiDAR data
were acquired in 2012 by a Riegl LMS-Q680i sensor with
a maximum pulse density of 50 pls/m2 and in 2015 by
an ALTM 3100EA sensor with a maximum pulse density
of 15 pls/m2. In both the acquisitions four returns were
registered for each pulse. We selected a 70m × 70m area
(Figures 5c-5g) and a 80m × 80m area (Figure 5d-5h) for
our experiments.
Table I shows the parameters of the proposed method used for
all the considered LiDAR point clouds. To generate the CHMs,
we considered a spatial resolution of 0.3m to accurately
represents the forest structure. Accordingly, the radius of the
structuring element (with the shape of a disk) was set to 3 and
the large changes area threshold tA was set equal to 100 pixels

(i.e., minimum large changes area 9m2) in order to avoid the
detection of the crown widths variations as large changes. For
the detection of the tree-tops a small 3×3 median kernel filter
and a 4×4 Gaussian kernel filter were considered to reduce the
missed detection of trees present in the scene, even though this
increases the false alarm rate. However, due to the synergistic
use of the of multitemporal data, the false alarm rate is reduced
by comparing the sets of seeds. The distance threshold ts for
the matching was set to 1.5m in order to be robust to the
presence of residual registration errors or variations of the tree-
top position due to natural causes.
For the segmentation we selected a larger 5 × 5 kernel filter
to avoid the detection of local minima caused by errors in the
regularization step. The preliminary segmentation is carried
out analyzing a maximum of J = 4 neighbours trees (selected
according to the typical structure of the forest) in a range of
r = 10m from the considered tree. The minimum canopy
height growth tdH and minimum crown volume growth tdV
were set to 0.2m and 10m3 considering the time interval
between the two acquisitions. Note that we used the same
parameters for all the considered LiDAR data even if they are
characterized by very different pulse densities and represent
forests with very diverse characteristics. This choice of param-
eters can be considered general for Alpine forest. It is worth
noting that a minimum pulse density of 5 pls/m2 is required
in order carry out an accurate CD.
The first step of the method is the ICP registration. Since
the data were already registered, to validate the ICP algorithm
with the used settings we simulated different registration errors
and analyzed the registration results using Ground Control
Points (GCPs). In greater detail, for each stand we tested shift
errors ranging from 0m to 10m. For each shift we selected
two partially overlapping portions of the data (one at time t1
and one at time t2) with the same size and we shifted data
at time t2 in such a way that they completely overlap. To
test also the robustness to rotation errors we added different
amounts of rotation (from 0◦ to 5◦). We validated the results
both from a qualitative (by visual analysis of the registered
point cloud and the reference data) and quantitative (using
GCPs) point of view. We selected as GCPs the position of
the tree-tops at the two dates and we manually matched the
tree-top at time t1 with the tree-tops at time t2. For each test
we applied the corresponding shift and rotation to the GCPs
and after the ICP step (applied to the shifted point cloud)
we applied the resulting rigid transformation on the GCPs of
time t2. Finally, we computed the average Euclidean distance
between the tree-tops at time t1 and the registered tree-tops at
time t2. The results of the detection of large changes have
been validated by using reference maps derived by photo-
interpretation. The reference maps were then compared with
the ones automatically generated by the proposed method. The
validation of the tree detection has been carried out by using
a map of trees identified by a visual analysis. In particular, the
obtained results were evaluated in terms of false alarms and
missed alarms. We manually estimated the crown radius and
crown base height for 72 trees in stand S1, 80 trees in stand S2,
16 trees in stand S3 and 36 trees in stand S4. The segmentation
results have been validated both qualitatively by visual analysis
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TABLE I: Parameter values defined for the proposed method.

Parameter Value

Percentile Pr 70th

Resolution of CHM and DSM 0.3m

Height Threshold (ωlp) th,lp 3m

Height Threshold (ωln) th,ln 5m

Structuring Element Radius 3
Area Threshold tA 100
Median Kernel Size (tree detection) 3× 3

Gaussian Kernel Size (tree detection) 4× 4

Gaussian Filter Standard Deviation 4
Matching Threshold ts 1.5m

Median Kernel Size (crown delineation) 5× 5

Number of Neighbours Trees J 4
Search Radius for Neighbours Trees r 10m

Minimum Height Growth tdH 0.2m

Minimum Crown Volume Growth tdV 10m3

of the segmented point clouds and quantitatively by comparing
the true radii with the estimated ones. We computed the
Mean Absolute Error (MAE), the Root Mean Square Error
(RMSE), the Normalized Mean Square Error (NRMSE) and
the coefficient of determination (R2) for both the radius and
base height estimations. Finally, the single-tree changes results
were evaluated by a team of experts of the regional forest
service.

B. Results and Discussion

Figures 6 and 7 show the results obtained in the ICP step
in terms of residual mean Euclidean distance on the GCPs at
times t1 and t2. In the case of no artificial rotation, Figure
6a shows that the the proposed ICP procedure can accurately
register data up to a shift of 4m for all the stands and up
to 7m for the stand S4. On the contrary, the standard ICP
procedure (Figure 6b) is robust to shift up to 3m. At a shift
of 4m the residual error becomes significant for the stand S3.
Figure 7 shows the results with different amounts of shift and
an applied rotation ranging from 0◦ to 5◦ degrees. Figures 7a,
7c, 7e, 7g shows that the proposed ICP procedure is robust
also to rotation errors since it reaches almost equal results
with different combination of shift and rotation. Figures 7b,
7d, 7f, 7h point out that the standard ICP procedure shows
stable results at different rotation but is more sensible to shift
errors.
Let us focus the attention on the detection of large changes
Ωl = {ωln, ωlp}. Figure 8 shows a qualitative example of
how morphological operators remove the noise from the CD
map. The erosion filter and the threshold on the area of the
large changes allow us both to discard the false alarms due
to noise in the CHMs and to remove the pixels representing
the expansion of the tree crowns. These qualitative results are
confirmed by the quantitative evaluation given in Table II. In
the considered forest areas, only deforestation changes (i.e.,
large negative changes ωln) are present. The three confusion
matrices show good detection accuracy with a small number
of missed and false alarms. Note that no large changes were
present in stand S2 and the proposed technique did not detect

TABLE II: Confusion matrices related to the detection of large
negative changes ωln in terms of classified pixels in the CHM
for stands S1, S3 and S4.

(a) S1

Estimated
Change No change

True Change 531 34
No change 19 54172

(b) S3

Estimated
Change No change

True Change 959 56
No change 98 53877

(c) S4

Estimated
Change No change

True Change 1453 103
No change 186 69547

any false alarm.
After having identified the large changes, we focus the atten-
tion on the changes at the individual tree level. Figure 9 shows
a qualitative example of the tree-top detection. Note how the
synergistic use of the multitemporal information allows us to
discard false alarms (i.e., the red dot identified only at time
t2.). Table III presents the detection accuracy, the number of
missed trees and false trees. By matching the two set of seeds,
we reduced the false alarm rate from 5.5% − 4.9% to 1.7%
without affecting the detection accuracy and the missed alarm
rate. This shows that the method in most of the cases correctly
distinguishes between trees that have been detected only at one
date and false alarms. The false alarms that are not discarded
during the matching are mostly due to steeply inclined tree
branches that generate a peak in the CHM. The analysis of the
missed alarm rate shows that there is almost no improvement
after the matching. This is due to two main reasons : i) the
tree has not been identified at both dates and thus it is not
possible to exploit the multitemporal information to recover
it; ii) the tree-top is covered by dominant trees.
At the end of the tree detection part, we move to the crown
delineation. Figure 10 shows the scatter plots and error metrics
for the estimated crown radius at the two dates. The plots
show the effectiveness of the proposed segmentation method
which accurately segments the tree crowns and estimates
the crown radius. Thus, the coefficient of determination R2

shows quite high values at both dates (R2 = 0.72 at time t1
and R2 = 0.72 at time t2). In addition, the visual analysis
(see Figure 11) of the segmented point clouds confirms the
accuracy of the segmentation results. To validate the 3-D
model used to represent the structure of the crown, we evaluate
the bh estimation (Figure 12). In particular, Figures 12a and
12b show the results obtained when the estimation is carried
out at the single date, while Figure 12c shows the base height
estimated by fusing the multitemporal data. As one can see in
Figure 12, the base height estimation at time t2 is less accurate
than the one obtained at time t1 since the LiDAR data acquired
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Fig. 5: CHMs of the 4 stand plots at times t1 and t2. The considered forest stands are characterized by different forest densities
and terrain morphologies. The rasterization has been carried out at 0.3m resolution.
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Fig. 6: Plots showing the residual registration error (on the GCPs) versus the amount of artificially introduced shift. The x-axis
represents the applied shift while the y-axis corresponds to the residual error: (a) proposed ICP procedure; (b) standard ICP
procedure.

at time t2 (on both the study areas) are characterized by a
smaller pulse density that result in a lower penetration rate
of the laser in the lower portion of the canopy, thus making
the base height estimation less reliable. However, Figure 12c
shows that by fusing the multitemporal information of the two
acquisitions we can improve the base height estimation with
respect to each single date. Indeed, we improved the coefficient
of determination from R2 = 0.79 (at time t1) and R2 = 0.66
(at time t2) to R2 = 0.81. It is worth noting that, even though
the denser point cloud can be used to improve the crown
parameter estimation on the other point cloud, a lower bound
on the point density for the applicability of the method should
be identified. If the point density of both the point clouds is
too low the crown parameters will be inaccurately estimated

TABLE III: Detection accuracy, false alarms and missed
alarms obtained by the proposed method for the tree-top
detection in all the four considered stands.

Detection accuracy False alarms Missed alarms
t1 337 (98%) 19 (5.5%) 7 (2%)
t2 335 (97.4%) 17 (4.9%) 9 (2.6%)

Matching 336 (97.7%) 6 (1.7%) 8 (2.3%)

at both dates. A reasonable lower bound on the pulse density
is 5 pls/m2.
The final step of the proposed hierarchical CD method per-
forms multitemporal analysis at the individual tree level to
detect and quantify the single-tree changes. Figure 13 shows,
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Fig. 7: Plots showing the residual registration error (on the GCPs) versus the amount of artificially introduced rotation for
different shifts: (a-c-d-e) proposed ICP procedure with an applied shift of 1, 2, 3, 4m, respectively; (b-d-f-h) standard ICP
procedure with an applied shift of 1, 2, 3, 4m respectively.
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(a) (b) (c) (d) (e)

Fig. 8: Example of the detection of large changes for stand S3 (the red circles highlight the large changes identified by photo-
interpretation): (a)-(b)CHMs at times t1 and t2; (c) binary difference image of the two CHMs after the thresholding operation;
(d) binary map after the erosion morphological filter; (e) final result after the elimination of small patches and the dilation
filter.

(a) S1 = {s1,k1}
N1
k1=1 (b) S2 = {s2,k2}

N2
k2=1

(c) S = {sk}Nk=1

Fig. 9: Example of tree-top detection on a small portion of
the CHM: (a) set of seeds S1 identified at time t1; (b) set of
seeds S2 identified at time t2; (c) set of matched seeds S. The
detection at time t2 identified a false alarm (red dot) which
has not been identified at time t1 (red dashed line) and thus
it is correctly discarded by the matching.

for each stand, the map with the corresponding identified
classes, whereas Figure 14 shows a qualitative example of the
object-based change detection of a single-tree. Table IV shows
the statistics of the top height and crown volume for each
stand together with the corresponding dH and dV statistics.
It is worth noting that the statistics of the single-tree changes
have been computed considering both the trees in ωng and
ωg . Focusing on the vertical growth showed in Table IVa,
we can observe a different behavior in stands S1 and S2 and
stands S3 and S4. Indeed, stands S3 and S4 show a vertical
growth with a mean variation of 0.4m and 0.3m, respectively,
whereas stands S1 and S2 show a vertical growth of 1m and
0.9m, respectively. These results are in agreement with the
expectation of the team of experts of the forest service since
stands S3 and S4 are characterized by older trees with respect
to stands S1 and S2. Indeed, it is well know that the age of
the tree influences its growth rate which decreases as the age
of the tree increases. This observation can be extended also to
the crown volume variation. Table IVb shows that in stands
S1 and S2 there is a larger variation in terms of crown volume
growth with respect to stands S3 and S4 (i.e., mean variation of
31m3 and 27m3, respectively). Moreover, Figure 13 shows

TABLE IV: Statistics of the individual tree parameters for each
stands at both dates and in terms of: (a) dH; (b) dV .

(a)

Stand
Top height [m]

t1

Top height [m]

t2
dH [m]

Range Mean Range Mean Range Mean
S1 16.9-42.9 35.2 18.3-44.1 36.2 0-2.8 1
S2 18.7-40.6 33.4 19.5-41.5 34.3 0-2.7 0.9
S3 6.8-41.7 33.9 7.2-41.8 34.4 0-2.5 0.4
S4 21-46.2 36.5 21.3-46.4 36.7 0-0.7 0.3

(b)

Stand
Crown Volume [m3]

t1

Crown Volume [m3]

t2
dV [m3]

Range Mean Range Mean Range Mean
S1 53-1200 431 54-1237 463 0-93 31
S2 55-1265 345 73-1284 373 0-95 27
S3 57-2394 1044 88-2410 1058 0-42 14
S4 150-2160 987 150-2179 1004 0-67 15

that for stands S3 and S4 there is a larger number of trees
that do not show significant growth (i.e., belong to class ωng)
with respect to stands S1 and S2. Note that stands S1 and S2
have very similar characteristics in terms of forest structure
(see Figures 5a and 5b); this is also true for stands S3 and
S4 (Figures 5c and 5d). This condition affects the single-tree
changes since stands with similar characteristics show similar
value of vertical and crown volume growth.

IV. CONCLUSION

In this work we have presented a method for the detection of
3-D changes in forest areas using multitemporal LiDAR data.
The method first detects the large changes and then focuses
on the individual tree canopy in order to detect the single-tree
changes by means of an object-based CD. The object-based
CD identifies both the vertical and the crown volume growth
of each single-tree.
The experimental results confirmed the effectiveness of the
proposed method. The large changes were accurately identified
in all the considered stands with low false and missed alarm
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Fig. 10: True versus estimated crown radius (cr) for all the considered stands at the two dates: (a) time t1, (b) time t2.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 11: Qualitative examples of delineated tree canopies obtained by the proposed crown following approach (the segmented
crowns are displayed in bright colors): (a-f) segmented crowns at time t1; (g-l) segmented crowns at time t2.

rates. In the tree detection phase, after the matching we
jointly use the multitemporal LiDAR data in order to discard
the false alarms and recover some of the tree-tops identified
only at one date, thus reducing the number of false alarms
(from 4.9−5.5% to 1.7%) without significantly increasing the
number of missed alarms (from 2−2.6% to 2.3%). Regarding
the canopy characterization, we used a 3-D ellipsoid model
in order to reconstruct the canopy structure considering the
multitemporal information to improve the parameters estima-
tion accuracy. The comparison between estimated parameters
and the true parameters pointed out that the method estimated

the crown radius with an R2 of 0.72 at both dates. The
base height estimation performed at the single date showed
good performance at time t1 with an R2 of 0.79, whereas
at time t2 the estimation was significantly less accurate with
an R2 of 0.66. However, by fusing the information of the
two dates we reduced the effect of the low penetration of the
laser in the lower portion of some canopies thus improving
the estimation reaching an R2 of 0.81. By means of the 3D
ellipsoid, we computed the vertical growth ωdH and crown
volume growth ωdV for each tree. The statistics of these
changes were consistent with what expected by the experts
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Fig. 12: True versus estimated base height (bh) for all the considered stands: (a) single date estimation at time t1, (b) single
date estimation at time t2, (c) multitemporal estimation.

(a) S1 (b) S2 (c) S3 (d) S4

Fig. 13: Maps representing the different kinds of changes identified in the considered stands. (i.e., ωln large negative changes,
ωg trees with significant growth, ωng trees with no significant growth, ωn areas of no interest for forest studies, )

of the regional forest service according to the properties of
the analyzed stands. In particular, stands S1 and S2 showed a
larger vertical growth (i.e., 1 − 0.9m) with respect to stands
S3 and S4 (0.4 − 0.3m) which are characterized by older
trees. The crown volume growth showed similar results with
the first two stands characterized by a growth of 31m3 and
27m3, respectively. One of the most important properties of
the proposed method is that it can effectively compare LiDAR
data with different pulse densities. However, for an accurate
characterization of the tree growth the lower bound on each
single date density is of 5 pls/m2.
As future developments of this work, we plan to extend the
detection of single-tree changes to analyze the variation of
biomass in order to better characterize the health status of the
forest and to test the proposed method on forests with younger
trees to analyze the growth rate of trees with very different
ages. Finally, we plan to use convex hull and alpha shape in
order to characterize more the canopy structure and thus its
changes.
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Fig. 14: Real example of CD at the individual tree level
showing the 3-D model (with the two related segmented point
clouds in red). Note the height and horizontal growth that
contribute to the crown volume variation.

APPENDIX A
NOTATION

The notation used in this paper is shown in Table V.
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