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Abstract—Understanding the processes occurring at the ice
sheets requires reliable 3D models of the ice sheet geometry.
To address this challenge, we propose a technique for the 3D
reconstruction of the ice sheet geometry that uses Radar Sounder
(RS) and altimeter (ALT) data to automatically identify the scale
(or grid size) for interpolation. Existing studies derive the inter-
polation scale empirically, by qualitatively analyzing the RS data
sampling and often neglecting the surface topography effects.
Our method initially performs the interpolation of RS data at
several potential scales. At each scale it uses the ordinary kriging
interpolation method which enables the quantitative analysis of
both the RS data sampling and the surface topography. The
optimal scale for the estimation of the surface map is identified
according to an objective criterion that minimizes the difference
to a subset of reference ALT data. Thereafter, the identified
optimum scale on the surface is used to estimate the bedrock and
ice thickness maps. Thus, the technique is a best-effort approach
to the reconstruction of the ice sheet geometry given the reference
surface data and in the absence of reference bedrock data. Results
obtained by applying the method to RS and ALT data acquired
over the Byrd Glacier in Antarctica, in four regions characterized
by different RS sampling and surface topography, confirm its
effectiveness. Moreover, they point out that the method could be
used for guiding future RS surveys, since the identified optimal
scales are typically larger than those needed for addressing
specific science objectives.

Index Terms—3D reconstruction, ice sheet, radar sounder,
altimeter, remote sensing

I. INTRODUCTION

RELIABLE maps of the ice surface, bedrock and ice

thickness are fundamental in several glaciological ap-

plications, e.g., ice mass balance computation [1], ice flow

modeling [2], geophysical data interpretation [3], land stability

evaluation [4] and sea level rise projection [5]. Remote sensing

data acquired at the ice sheets are the main input for the

generation of such maps. In particular, radar sounder (RS)

instruments, which acquire radargrams that show the ice sheet

cross-section (ice surface, thickness and bedrock elevation),

and altimeters (ALT), which acquire surface elevation data,

represent two of the most rich sources of information suitable

for the large-scale analysis of the ice sheet surface and/or

subsurface. RSs are usually operated on airborne platforms.

During the many RS airborne campaigns carried out, a huge

volume of RS data with heterogeneous quality, spatial reso-

lution and regional coverage has been generated and is now

available in archives. ALTs are laser or radar instruments that

can be operated on both airborne and satellite platforms. Thus,

in the past decades ALTs have provided enormous quantities

of ice surface elevation data. The availability of RS and ALT

data and the need for a reliable 3D reconstruction of the ice

sheets call for the development of automatic techniques that

can make efficient use of such data (see Sec. II).

The literature on the development of automatic techniques

for the reliable reconstruction of the ice sheet geometry is

still limited. Two methods to map the global 3D structure of

Antarctica are presented in [6] and [7], whereas [8] and [9]

present techniques for mapping the ice geometry of Greenland.

All these methods consider most of the available data acquired

in Antarctica or Greenland at the time of their publication.

Such data are extremely heterogeneous in terms of resolution

and sample density, since they were acquired in different

airborne campaigns conducted to meet different science re-

quirements. However, the 3D maps are generated at a common

single scale (or grid size) determined by empirically analyzing

the global density of the data at hand. This choice has two po-

tential drawbacks. In regions with high data sampling density,

the use of relatively large scales determines the generation of

low resolution maps, leading to possible loss of information.

On the contrary, in regions with low data sampling density,

the use of relatively small scales determines the generation

of elevation maps with artifacts or artificial features. In [10],

the scale used to interpolate the RS data is also chosen

empirically, based on the sampling of the data. Then, high-

resolution maps of a land-terminating section of the Greenland

ice sheet are generated with the universal kriging method.

In [11], the bedrock topography is estimated regionally, i.e,

for the Jakobshavn Isbrae in Greenland and Byrd Glacier in

Antarctica. The work focuses on the description of a novel

RS system used for data acquisition in these regions and

emphasizes on its capability to reach the bedrock even under

very thick ice (≈ 3km) below the flightlines. However, it

lacks a detailed description of the methods used to identify

the scale and of the interpolation strategy used to reconstruct

the 3D structure of the ice sheet. In [12], the authors propose a

physically-based approach to calculate glacier ice thickness by

using a dynamic model to obtain spatially distributed thickness

of individual glaciers. The method uses two types of data,

i.e., a complete inventory of glacier outlines and digital eleva-

tion models (DEMs). It calculates glacier-specific distributed

thickness based on the inversion of surface topography by

using the principles of ice flow dynamics. The same method

is further developed and adapted to glaciers on the Antarctic

Peninsula in [13]. Another physically-based approach to the

interpolation of ice thickness of the Aurora Subglacial Basin
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is presented in [14]. The method is a development of that used

in [15] and makes extensive use of the surface topography to

define down slope streamlines along which the interpolation

is performed. In [16], the basal topography of Bayley/Slessor

region of East Antarctica is obtained by interpolating RS

data with the kriging method. A mass conservation approach

to map the glacier ice thickness, which exploits RS and

interferometric synthetic aperture radar data, is presented in

[17] and further improved in [18] for the high-resolution ice

thickness mapping in South Greenland. This review of the

related literature points out that there are several interpolation

methods used for the same purpose, i.e., 3D estimation of

ice thickness and bedrock topography. However, it is worth

noting that independently of the interpolation method used,

the above-mentioned techniques use empirically-derived scales

for interpolation. For instance, in [16], [6], [13], the scales

used are 20km, 5km, 100m, respectively. In [16] the au-

thors state that the choice of an interpolation scale of 20km

for the reconstruction of the Bayley/Slessor region of East

Antarctica can be considered an acceptable compromise, given

the extremely different sampling of the RS instrument in the

horizontal direction, i.e., 25m in the along-track direction and

about 40km in the across-track direction. In [6], the choice

of a scale of 5km for the 3D reconstruction of the whole

Antarctica is motivated by the fact that 5km appears to be

sufficient to resolve ice streams and major outlet glaciers.

However, the authors observed that although there are regions

with sufficient sampling to justify a scale of 5km, there are also

wide regions not sufficiently sampled to support the choice

of such a fine scale. Therefore, these values represent an

acceptable trade-off choice given the different sampling of the

data versus the scales desired for specific science objectives.

For instance, a scale of about 5km is sufficiently accurate to

describe inland regions [19]; a kilometric scale is required for

describing coastal outlet glaciers and capturing channelized

landscapes [20], [19]; the maximum bound on the scale of

interpolation has still to be assessed for accurately simulating

ice-sheet dynamics [21]. However, none of the scales chosen

in the aforementioned works has been automatically identified

by analyzing objectively and quantitatively the sampling of

the data. Moreover, these scales have not been chosen by

analyzing the elevation variability of the surfaces. In fact, it

is likely that surfaces with different topography but similar

RS sampling can be reliably reconstructed at different scales.

These issues have been marginally addressed in the literature,

thus calling for the development of efficient techniques that

can reconstruct the ice sheet at an optimal scale, i.e., a scale

that can be automatically derived by taking into account both

the characteristics of the ice sheet and the sampling of the

available RS data.

In this paper we present a technique for the 3D recon-

struction of the ice sheets, which uses RS and ALT data

for the automatic identification of the scale for interpolation.

In particular, it uses the RS data for the 3D reconstruction

and the ALT data, which is split into two distinct datasets,

as reference for scale selection and validation. The technique

aims to address two main challenges: i) the reconstruction

should be performed by interpolating the RS data at a scale

derived automatically on the basis of an objective criterion,

and ii) the reconstruction should have the highest overall

quality, i.e., the lowest overall uncertainty. To address these

challenges, we employ the ordinary kriging (OK) method [22],

which analyzes the topography variability of the investigated

surfaces at the sampling of the RS data, and provides both

estimated 3D elevation maps of the surface and bedrock, along

with uncertainty maps that quantify the overall quality of the

estimation. The presented method relies on data processing

techniques and objective statistical measures for the automatic

identification of the scale for interpolation, hereafter denoted

s∗. It is composed of four main steps, i.e., A) RS data

preprocessing, B) automatic identification of the optimal scale

of the ice surface and estimation of the ice surface map, C)

estimation of the bedrock map, and D) estimation of the ice

thickness map. The first step extracts the surface and bedrock

elevation from the RS data. The second step interpolates the

ice surface RS data at several potential scales using the OK

technique and identifies the optimal scale based on a criterion

that minimizes the overall error between the interpolated maps

and a subset of the ALT data. Similarly, the optimal scale is

also validated by using a second subset of the ALT data. In the

third step, in the absence of reference data of the bedrock, the

identified optimal scale of the ice surface is used to interpolate

the bedrock RS data for the estimation of the bedrock elevation

map. Finally, in the fourth step, the ice thickness map is

generated by subtracting the estimated surface and bedrock

elevation maps. As it will be shown, since the identified scale

is optimal for the interpolation of the surface, whereas it is

presumably suboptimal for the interpolation of the bedrock RS

data, the method shall be regarded as a best-effort approach

to the reconstruction of the ice sheet geometry based on the

availability of reference data on the surface and absence of

reference data on the bedrock.

The main novelty and advantage of the technique is that it

identifies the optimal scale automatically based on a quantita-

tive analysis of both the surface topography variability and

the RS sampling. This is important for two main reasons,

i.e., i) it provides an objective criterion for identifying the

lower bound of the scale for interpolation by proving that

empirical attempts to choose lower scales yield higher overall

errors and potentially introduce artifacts in the reconstruction,

and ii) it provides guidelines for defining the density of RS

surveys in relation to the requirements on the scale needed

for a given science objective. Additionally, the joint use of

the RS and ALT data for the automatic identification of the

optimal scale on the surface, as well as the analysis and use of

the uncertainty maps generated by the OK method, are notable

enhancements relative to previous literature methods, e.g., [9],

[16].

The method has been applied to RS data acquired by the

MultiChannel Coherent Radar Depth Sounder (MCoRDS) [23]

and ALT data acquired by the Geoscience Laser Altimeter

System (GLAS)/ICESat [24] over a large portion (≈ 200 ×
200km) of the Byrd Glacier in Antarctica. In particular, to

prove the effectiveness of the method for the reconstruction

of the ice sheet and for the automatic identification of the

scale for interpolation, it has been applied to four regions of



3

Byrd Glacier, which are different in terms of area, surface

topography variation and RS sampling. The results confirm the

usefulness of the automatic identification of the scale, i.e., for

the different regions analyzed, the presented method provides

different scales which are qualitatively consistent with the

ice surface variability and the sampling of the data, and are

quantitatively confirmed by validation with a second subset of

ALT data.

The rest of the paper is organized as follows. Sec. II

describes the main properties of the RS and ALT data. The

technique (which relies on the OK method, see Appendix A) is

presented in details in Sec. III. Sec. IV illustrates and discusses

results obtained by applying the technique to RS and ALT data

acquired in Antarctica. Finally, Sec. V draws the conclusion

of this work and proposes ideas for future developments.

II. PROPERTIES OF RADAR SOUNDER AND ALTIMETER

DATA ACQUIRED OVER THE ICE SHEETS

There are several archives containing both RS and ALT data

acquired at the ice sheets. In this section we describe their

general properties, mainly in terms of coverage and sampling.

Radar sounder data. RS data, or radargrams, contain georef-

erenced vertical profiles of the ice sheet. They are acquired

during dedicated airborne campaigns at the ice sheets [shown

schematically in Fig. 1(a)]. RS systems that have been used

to obtain data on the ice sheets include MultiChannel Co-

herent Radar Depth Sounder (MCoRDS) [23], High CApa-

bility Radar Sounder (HiCARS) [25], POLarimetric Airborne

Radar Ice Sounder (POLARIS) [26]. At present, because of

frequency allocation and physical constraints, there are no

satellite-mounted RSs for Earth observation. Due to the nature

of airborne surveys, RS data typically have inhomogeneous

quality, coverage and resolution. Science requirements and

technological constraints drive data acquisition strategy plans

(e.g., location, coverage) and condition the data quality (e.g.,

maximum penetration, resolution). Therefore, the RS data

acquired during different campaigns present different prop-

erties. Nonetheless, there are properties of the RS data that

are common in most acquisitions. For instance, the spacing

between two adjacent measurements in the flightline (along-

track/azimuth) direction dRS
x is typically much smaller than

the spacing between two adjacent flightlines (across-track

direction) dRS
y (see Fig. 1). This results in a highly irregular

sampling pattern in the horizontal direction [see Fig. 1(b)],

with dRS
x (in the order of few m) ≪ dRS

y (few hundreds of m

to tens of km). Depending on the planning of the campaign, the

spacing between adjacent flightlines can be uniformly small

(1km or less), moderate (few km, e.g., see the sampling of

Jakobshavn Isbrae in Greenland in [11]) or large (tens of km,

e.g., see the sampling of Bayley/Slessor in [16]), or it can be

variable in different portions of an investigated area (e.g., see

the sampling of Byrd Glacier in Antarctica in [11]).

Altimeter data. Contrary to RS systems that acquire georef-

erenced 2D vertical profiles of the ice sheet subsurface, ALTs

take georeferenced measurements of the ice surface elevation

only. Such measurements can be acquired both from airborne

and satellite platforms. Often, during the airborne campaigns,

(a)

(b)

Fig. 1. Schematic representation of airborne-mounted RS and satellite-
mounted ALT data (a) acquisition and (b) sampling over the ice sheets. Note
that the RS and ALT data are not acquired exactly on the same ground tracks.

both RS and ALT data are acquired at the same time, on

the same ground tracks, thus the coverage and the horizontal

sampling of the ALT are comparable to that of the RS. The

situation is different in the case of satellite missions during

which ALTs acquire data with a more uniform coverage on

tracks that are not necessarily overlapped on those of the RS

(see Fig. 1). The horizontal sampling of the ALT in terms of

spacing between adjacent samples dALT
x and adjacent tracks

dALT
y shows an irregular pattern similar to that of the RS, with

dALT
x < dALT

y [see Fig. 1(b)].

The above analysis points out that airborne-mounted RS

data and satellite-mounted ALT data have complementary

sampling attributes which enable the joint use of the two types

of data for the reliable reconstruction of the ice sheet geometry.

In particular, we propose (see Sec. III) the interpolation of the

RS data for generating ice surface and bedrock 3D maps, and

the use of the satellite ALT data for the identification and

validation of the scale for interpolation on the surface.

III. PROPOSED METHOD

The technique is made up of four main steps (see Fig. 2) and

relies on the use of the OK method. The motivation for this
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Fig. 2. Block scheme of the technique. A detailed flowchart of step B is given in Fig. 3.

choice is given by the intrinsic properties of the OK method,

i.e., i) it analyzes the variability of the surfaces prior to the

interpolation, and ii) it generates uncertainty maps along with

the estimated interpolated maps (for details on the OK method,

see Appendix A). A detailed description of all the processing

steps of the method is given in the following subsections.

A. RS data preprocessing

The aim of this step is the extraction from the radargrams

of the surface and bedrock elevation along the flightline

direction at the original scale sRS
0

of the RS data. We define

sRS
0

as the spacing between two adjacent measurements (or

columns/traces of the radargram) in the along-track direction,

i.e., sRS
0

= dRS
x . Each trace of the radargram contains the RS

measurements of power reflected by the surface and subsurface

features at each platform coordinate in the azimuth direction as

a function of radar wave two-way travel time. We first detect

the surface and bedrock reflection positions. This can be done

manually or according to automatic techniques [27]. Then, we

estimate the elevation of the ice surface and bedrock for all

traces of the radargram by using the elevation of the platform

(given along with the radargram) and a standard time-distance

conversion equation that considers propagation in two media,

air and ice. The output of this step consists of two sets of

measurements forming an irregular pattern, i.e., the surface

elevation and the bedrock elevation at the initial along-track

scale sRS
0

of the RS data, i.e., SRS(sRS
0

) and BRS(sRS
0

),
respectively. The set SRS(sRS

0
) is used in the second block

of the technique (see Sec. III-B and Fig. 3), whereas the set

BRS(sRS
0

) is used in the third step (see Sec. III-C).

It is worth mentioning here that there are a few factors that

influence the accuracy of the above estimations. Clutter is one

critical factor. It is due to off-nadir surface reflections arriving

at the RS receiver at the same time as the nadir reflections

from the subsurface. For this reason, the clutter may mask

the bedrock reflection. In order to limit the negative effect of

clutter on the estimation of the ice thickness, we use radar-

grams processed with the minimum variance distortionless

response algorithm for clutter reduction [28]. Other errors in

the estimation of the ice elevation and thickness are due to

the accuracy of the global positioning system, the sampling

frequency of the RS in the vertical direction, the accuracy of

the automatic detection method employed and the assumed

dielectric permittivity of the ice. In fact, we here consider a

constant dielectric permittivity of pure ice εicer = 3.15 along

the whole ice column, neglecting the presence of firn and ice

impurities. However, this can result in less than 10m of error

in the ice thickness estimate [11].

B. Automatic identification of the optimal scale and estimation

of the ice surface map

This step aims to identify the optimal scale s∗ at which the

irregular pattern of ice surface elevation samples SRS(sRS
0

)
should be interpolated. The identification of the optimal scale

is performed automatically based on an objective statistical

measure that involves the use of a subset of the reference ALT

data. Moreover, the method aims to estimate the ice surface

map that has the highest overall quality across different OK

parameter sets (see Appendix A). To address these challenges,

we investigate a) several potential candidate scales sj , j =
[1..J ], and b) for each candidate scale sj several parameter

sets pS
i , i = [1..P ]. As depicted in Fig. 3, this is accomplished

in 3 main sub-steps: 1) Processing of the surface elevation

from the ALT data, 2) Processing of the surface elevation from

the RS data, and 3) Parameter set and scale selection.

1) Processing of the surface elevation from the ALT data:

As already mentioned, the ALT data provide only the ice

surface elevation and are used by the method as reference

for identifying, and subsequently for validating, the scale for

the interpolation of the RS data. We collect these data in a set

of measurements SALT (sALT
0

), where sALT
0

is the original

scale of the ALT data, defined as the spacing between two

adjacent measurements in the the along-track direction, i.e.,

sALT
0

= dALT
x . Since for the interpolation we are investigating

several candidate scales, the ALT data used as reference should

be available at the same scales sj , j = [1..J ]. Thus, in this step

we are generating J sets of ALT data at different scales sj
by averaging adjacent measurements of the original ALT data

on a distance sj . Note that by doing so, we aim to capture

the significant trend of the data at each investigated scale and

remove unnecessary details. Then, at each scale we generate

two subsets of rescaled ALT data. Each subset contains a



5

2. Processing of the surface

elevation from the RS data

3. Parameter set and

optimal scale selection

Ice surface

maps

ALT data subsets

for scale selection

Ice surface

map

to C

measurements

ALT surface

measurements

RS surface

ALT data subsets

for scale validation

1. Processing of the surface 

elevation from the ALT data

B

s
∗

J · P

J

J · P

J

J

Fig. 3. Flowchart of the second step of the technique, i.e., step B in Fig. 2.

statistically significant number of randomly selected samples

from the rescaled ALT data. The obtained samples, i.e., for

each subset 10% of the total of rescaled ALT samples, are

collected in SALT
I (sj) and SALT

V (sj), ∀j = [1..J ], represent-

ing two different ALT subsets used for scale identification and

scale validation, respectively (see Sec. III-B3 and Fig. 3).

2) Processing of the surface elevation from the RS data:

The final goal of this step is the estimation of the set of surface

elevation maps obtained by applying the OK method with P
different parameter sets at a generic scale sj . To this end, we

use the available surface elevation measurements SRS(sRS
0

)
(see Sec. III-A). Since we are interested in the results at

scale sj , we first rescale SRS(sRS
0

) to obtain SRS(sj). We

accomplish this by averaging adjacent RS measurements in the

along-track direction on a distance sj and by collecting one

measurement every sj meters. The rescaling of the RS data is

performed similarly to the rescaling of the ALT data, in order

to reduce the details and retain only the significant surface

trend at each scale. Note that by increasing sj , the pattern

of these measurements becomes more regular, with the along-

track spacing of the rescaled measurements dRS
x (sj) = sj

approaching dRS
y . Then, we interpolate SRS(sj) with the OK

method (see Appendix A) by considering for the interpolation

at each query point its N0 = 10 nearest observed neighbors

from SRS(sj). As there are P possible parameter sets to be

used in the OK method (see Appendix A), for each scale sj the

technique generates P couples of ice surface maps SRS
pS
i
(sj)

and uncertainty maps US
pS
i

(sj), i = [1..P ]. From Appendix A,

it is worth noting the number of simulations carried out by

the OK method for the generation of the P couples of surface

and uncertainty maps at a certain scale sj . Since there are 4

semivariogram models (i.e., Spherical, Exponential, Gaussian

and Linear) and P = 8 parameter sets that reflect different

binning and weighting options of the semivariograms, the

number of simulations can be either 32(= 4∗8) in the case of

stationary data, or 56(= 4∗8+3∗8, because the linear model

is excluded in the fitting of the rigenerated semivariogram) in

the case of non-stationary data.

3) Parameter set and scale selection: The aim of this step

is two-fold, i.e., i) the identification at a generic scale sj of

the parameter set p∗S (hereafter called best parameter set) that

provides the ice surface elevation map with the highest overall

quality SRS
p∗S (sj), and ii) the identification of the optimal scale

s∗ and the corresponding surface elevation map SRS
p∗S (s∗).

i) The lower the uncertainty value provided by the OK

method, the more the estimated value is expected to approach

the true value, i.e., the better the estimation (see Appendix A).

Therefore, the key idea is to analyze the P uncertainty maps

generated by the OK method and to choose the parameter

set that minimizes the overall uncertainty (OU) of the maps

across parameter sets pi, i = [1..P ]. Note that OU, which we

define as the mean value of US
pS
i

(sj), i = [1..P ], is an objective

criterion which equally treats the estimated uncertainty at all

query points. Therefore, by minimizing OU we aim to obtain,

at each scale, the map with the lowest overall uncertainty, i.e.,

with the highest overall quality. This operation provides the

best parameter set p∗S(sj) and thus SRS
p∗S (sj). The identification

of the best parameter set is performed for all the scales

sj , j = [1..J ]. Thus, we obtain a set of J elevation maps

SRS
p∗S (sj), j = [1..J ] with the highest overall quality at each

scale.

ii) Then, we identify the optimal scale s∗ by minimizing the

overall absolute error (OAE) between the estimated surface

elevation maps SRS
p∗S (sj) and the reference subset of rescaled

ALT samples SALT
I (sj) (see Sec. III-B1) across the investi-

gated candidate scales sj , j = [1..J ]. The error at a query point

at a generic scale sj , i.e., the error in a grid cell of size sj ,

is computed as the difference between the estimated surface

elevation value and the average value of the rescaled ALT data

in the grid cell. Then OAE is defined as the mean value of the

absolute error at all considered grid points. Note that OAE

is an objective criterion which equally treats the estimated

elevation values at all query points. Therefore, by minimizing

OAE across scales we identify the scale that, from a statistical

point of view, provides the ice elevation map that best fits the

reference ALT samples. This operation provides s∗ and thus

SRS
p∗S (s∗). It is worth noting that, although we identify the best

parameter set and the optimal scale based on the minimization

of the first order statistics (mean), other criteria could also

be used, e.g., based on second order statistics (variance), R2

indicator, root mean square error.

The scale validation is performed by verifying if the scale

obtained by minimizing the OAE between the interpolated

surface maps and the ALT validation set SALT
V (sj) is equal
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to the optimal scale obtained with the proposed method.

C. Estimation of the bedrock map

The processing steps involved in the estimation of the

bedrock map are similar to those performed for the estimation

of the ice surface elevation map. The main difference is that,

in the absence of reference data for the bedrock, we analyze

the interpolation results only at scale s∗ (see Fig. 2). Thus,

we rescale the RS bedrock measurements at s∗ in order to

obtain BRS(s∗) and interpolate BRS(s∗) with the OK method

(see Appendix A) as done with the surface samples. Since

the OK method is run with P parameter sets, we obtain a

set of P couples of estimated bedrock maps BRS
pB
i
(s∗) and

corresponding uncertainty maps UB
pB
i
(s∗), i = [1..P ]. Then, we

select the best parameter set p∗B as the one that minimizes the

OU of the estimated bedrock maps. This operation provides

p∗B and thus BRS
p∗B(s∗).

Note that according to the criterion used for estimating s∗,

using a scale smaller than s∗ for the interpolation of the surface

RS data determines higher overall absolute errors (see also

Sec. IV), besides introducing artifacts. Since i) the bedrock

elevation variability is generally higher than that of the surface,

and ii) the spatial sampling of the RS data at the bedrock

is equal to that at the surface, the abovementioned negative

effects would be even more critical for the interpolation of

the bedrock RS data at scales smaller than s∗. For this reason

and in the absence of reference data of the bedrock, we

chose to interpolate the RS bedrock elevation measurements

at scale s∗, which has been identified and validated on the

surface. Summarizing, the method provides an optimal scale

for the estimation of the ice surface map, whereas the scale

is coherent and likely suboptimal for the estimation of the

bedrock map. Thus, using the scale of the surface to interpolate

the measurements of the bedrock is a best-effort approach to

reconstruct the ice sheet geometry from the RS data, based on

the available reference surface ALT data and in the absence

of reference bedrock data. When reference bedrock data will

become available (e.g., 3D-bed tomography [29]), the method

presented in Sec. III-B3 could be applied in a more rigorous

way also to estimate the optimal scale for the generation of

the bedrock map.

D. Estimation of the ice thickness map

Once the scale s∗, the surface elevation map and the

bedrock elevation map have been derived, the ice thickness

map ∆RS(s∗) can be obtained as:

∆RS(s∗) = SRS
p∗S (s∗)− BRS

p∗B(s∗). (1)

It is worth highlighting that the ice thickness map could be

obtained by directly interpolating the thickness measurements

extracted from the RS data rescaled at s∗, i.e., by interpolating

with the OK method the values SRS(s∗)−BRS(s∗). However,

this may introduce more ambiguities in the estimation, which

are due to both the surface and bedrock elevation variability.

For this reason, we chose to interpolate the bedrock measure-

ments, and to subtract the result from the interpolated surface,

to obtain the ice thickness map.

IV. EXPERIMENTAL RESULTS

The described technique has been applied to RS data

acquired by MCoRDS [23] and ALT data acquired by GLAS

[24] over a large portion (≈ 200 × 200km) of the Byrd

Glacier in Antarctica. Tab. I reports the specific properties

of the analyzed data. Fig. 4 shows the investigated portion of

the Byrd Glacier. Given the large variability of the surface

topography and of the sampling of the RS instrument in

different portions of the analyzed area, in order to prove the

effectiveness of the described method, we apply it to four

distinct regions defined and characterized as follows:

• R1 (red rectangle in Fig. 4) covers an area of 30 × 30km

with smooth topography and high RS sampling;

• R2 (blue rectangle in Fig. 4) covers an area of 40 × 40km

with rough topography and moderate RS sampling;

• R3 (magenta rectangle in Fig. 4) covers an area of 80 ×
80km with variable topography and low RS sampling;

• R4 (black rectangle in Fig. 4) covers an area of 100

× 100km with variable topography and variable RS

sampling, e.g., low sampling in the top left side and high

sampling in the bottom right side.

The ALT and RS measurements over the regions R1, R2,

R3 and R4 are shown qualitatively in Fig. 5(a), Fig. 5(b), Fig.

5(c) and Fig. 5(d), respectively.

The largest scale considered in the analysis of each region

is bounded by the area of the region and by the minimum

number of rescaled RS data required by the OK method in

order to provide a meaningful geostatistical analysis inside

the region. The smallest scale, i.e., 500m, is the minimum

scale considered by previous studies in the Byrd Glacier [11].

Intermediate scales are chosen with a step size of 500m

between the minimum and maximum scale in each region.

According to these criteria, the candidate scales are:

• R1: sj = [500:500:5000]m, J = 10;

• R2: sj = [500:500:5000]m, J = 10;

• R3: sj = [500:500:8000]m, J = 16;

• R4: sj = [500:500:10000]m, J = 20.

We applied the method to each region independently in

order to identify the corresponding optimal scales for the

interpolation of the ice surface RS measurements. For the

identification of the optimal scales we used the subset of

reference ALT data SALT
I (sj), j = [1..J ] (see Sec. III-B1).

Fig. 6 reports the OAE obtained at each candidate scale and

the identified optimal scale for each region.

By analyzing together Fig. 5 and Fig. 6 one can derive the

following observations:

• Independently on the scale, OAE(R1) < OAE(R4) <
OAE(R2) < OAE(R3). The relation OAE(R1) <
OAE(R3) is expected given the sampling of the RS

data in these regions, i.e., the highest in R1 and the

lowest in R3, see Fig. 5(a) and Fig. 5(c), respectively.

The relation OAE(R4) < OAE(R2) is likely due to the

smoother short range topography of R4 with respect to

the topography of R2, see Fig. 5(d) and Fig. 5(b).

• The identified optimal scales are 3000m, 4500m, 7500m

and 8500m, for the regions R1, R2, R3 and R4, re-

spectively. This result is summarized qualitatively in
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Fig. 4. Investigated portion of the Byrd Glacier in Antarctica. The inset shows the location of Byrd Glacier in Antarctica map. The ice surface DEM is the
one provided in [30]. The colored rectangles represent four investigated regions which are different in terms of area, surface topography variation and RS and
ALT sampling (see also Fig. 5). The dimension in km and the polar stereographic (70S latitude of true scale)

(x,y) coordinates of the top left corner of each region are also illustrated.

TABLE I
PROPERTIES OF THE RS AND ALT DATA USED IN THE EXPERIMENTS.

Property RS data (MCoRDS) ALT data (GLAS)

Horizontal spacing dRS
x = 15m, dRS

y variable dALT
x = 170m, dALT

y variable

Horizontal resolution

δRS
x = 25m with SAR processing,

δRS
y ∈ [35− 250]m depending on surface roughness

(at a platform height ≈ 500m)

δALT
x = δALT

y = 70m

Vertical resolution
δRS
z = 4.3m in ice, δRS

z = 7.4m in air
with range compression and windowing factor kt = 1.53

δALT
z = 15cm

Fig. 7, which reports the sampling of the RS and ALT

instruments over the analyzed portion of the Byrd Glacier

and the optimal scale. As one can see by combining the

information in Fig. 5 and Fig. 7, the size of the output grid

cell, which is derived automatically with the described

method, is highly dependent on the sampling of the input

RS and ALT data and on the surface topography variation.

• The identified optimum scales, ranging from 3000m to

8500m, depending on the sampling and surface features

in each region, are typically larger than those generally

needed for certain science requirements, e.g., [19], [20],

[21]. These large estimated scale values are due to the

scarce sampling in the investigated regions. Indeed, a

scarce sampling inevitably misses important details (e.g.,

resolution of mesoscale channelized morphology to guide

glacier flow, resolution of small-scale roughness to deter-

mine topographic resistance to flow [20]. In order to be

able to improve the optimum interpolation scale to meet

specific science applications, it is necessary to plan more

dense RS surveys.

• The errors committed by forcing the interpolation of the

surface RS data at scales different from the optimal one

can be deduced from Fig. 6. In particular, the differences

between the OAE(s∗) and OAE(sj 6= s∗) range from

few centimeters to more than 10m (e.g., on region R3,

the OAE is 72m at scale 500m, whereas it is 59m at

the optimal scale 7500m). The analysis of these results

offers the possibility to perform a quantitative error

assessment of the interpolation at scales that match the

needs of specific objectives or applications (e.g., ice sheet

modeling) but are different from the identified optimal

scale. It also enables evaluating the criticallity in choosing

arbitrarily the scale for interpolation.

Let us focus on the ice sheet reconstruction at the identified

scales. Since the procedure is similar for all the analyzed

regions, here we provide and discuss the results obtained on

region R2, which is characterized by a moderate RS sampling.
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(a)

(b)

(c)

(d)

Fig. 5. ALT surface measurements and RS surface and bedrock measurements over the regions (a) R1, (b) R2, (c) R3, and (d) R4.

As described in Sec. III, at all candidate scales, the OK

method provides P = 8 couples of estimated surface elevation

and uncertainty maps, each couple corresponding to a different

parameter set. Among these, the estimated surface map with

the highest overall quality at each scale is the one generated

with the parameter set that provides the minimum overall

uncertainty (OU) across parameter sets. Because of space

constraints, here we report the results obtained at the identified

optimal scale 4500m on region R2. The variability of the

OU across parameter sets is given in Fig. 8. As one can

see, the parameter set that minimizes the OU is p5. The

RS measurements of the surface at scale 4500m and the
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Fig. 6. OAE (between the estimated surface maps and the subset of reference
ALT data used for scale identification) versus candidate scales for each
investigated region.

semivariogram generated with the parameter set p5 along with

the best fitting model are given in Fig. 9(a) and Fig. 9(b),

respectively. Fig. 9(d) and Fig. 9(e) report the same analysis

performed on the samples of the bedrock at 4500m. As one

can see by comparing Fig. 9(a) and Fig. 9(d), the bedrock

has a much higher elevation variability at short range than the

surface. This is also confirmed statistically (see Appendix A),

since the surface is better modeled by the Gaussian model,

see Fig. 9(b), whereas the bedrock is better modeled by the

Exponential model, see Fig. 9(e). The identified best fitting

models are then used to generate the surface and the bedrock

elevation maps, which are reported in Fig. 9(c) and Fig.

9(f), respectively. The above analysis has been performed

for all regions at the identified optimal scale. The obtained

results, which are summarized in Tab. II, can be interpreted

by analyzing the input data provided in Fig. 5 as follows:

• The surface typically has a smoother short range topog-

raphy than the bedrock. Specifically, on all regions at

the optimal scale the surface is modeled by the Gaussian

model. The bedrock has a sharper short range variability

on regions R1 and R2, at scales 3000 and 4500, where

it is modeled by the Spherical and Exponential models,

respectively, and a smoother variability on regions R3

and R4, at scales 7500 and 8500, respectively, where it

is modeled by the Gaussian model.

• The OU values of the surface (in the range ≈ 10-16m)

are much lower than the OU values of the bedrock (in

the range ≈ 100-170m), independently of the investigated

region and identified optimal scale. This can be explained

by the fact the the bedrock has a much higher variability

than the surface.

• The minimum OU across parameter sets (see Tab. II) is

obtained with different parameter sets on different regions

at the optimal scale [e.g., on region R1 at scale 3000m,

the best parameter set for estimating the ice surface map

is p8, whereas on region R2 at scale 4500m the best

parameter set is p5 (see also Fig. 8)]. This confirms

the importance of studying the dependence of the OK

solution on the parameter set in order to obtain maps

with the highest overall quality; on the contrary, the use

of parameter sets different from those identified would

result in estimates with lower overall quality.

Ice surface and bedrock maps are generated for all the

investigated regions with the parameter sets and fitting models

reported in Tab. II. The corresponding thickness maps are

illustrated in Fig. 10. As one can see, apart from few errors

mainly at the borders of the investigated regions (e.g., see the

bottom right pixel on region R3 in Fig. 10), the obtained range

of values of the ice thickness is similar to the range provided

in the most recent compilation of ice thickness data, i.e.,

BEDMAP2 [7], over the Byrd Glacier. The main difference

is that the BEDMAP2 ice thickness map is generated at an

empirically derived scale of 5km (subsequently rendered at

1km to capture the complexity of mountainous areas [7]),

whereas the results obtained here are generated at scales

derived automatically, based on an objective statistical analysis

of the variability of the surfaces and of the sampling of the RS,

and validated with the ALT data. The scale of 5km (or 1km)

used in BEDMAP2 is an acceptable compromise for gridding

at a unique scale the whole Antarctica, although the RS

sampling is extremely heterogeneous over the whole continent

(see [7]). Because of this heterogeneous sampling, it is not

expected that 5km (or 1km) is a optimal scale for interpolation

in region R3, where the across-track sampling of the RS is

relatively low, i.e., between ≈ 10km and 30km. Conversely,

the higher across-track sampling in R1, i.e., between ≈ 1km

and 5km, allows the generation of ice sheet maps with higher

resolution than 5km.

Besides the qualitative assessment, we performed a quanti-

tative validation of the obtained results. To this aim, we used a

second subset of the reference ALT data, i.e., SALT
V (sj), j =

[1..J ], which has been generated as explained in Sec. III-B1.

The validation results are reported in Tab. III. As one can see,

during the validation phase the minimum OAE values obtained

on the four regions are very similar to those obtained during

the scale identification phase. This confirms the robustness of

the method to the identification of the optimal scale given the

random choice of the reference ALT data. Note that on the

one hand, the optimal scale identification and validation with

the proposed method is possible for the interpolation of the

surface due to the availability of ice surface ALT reference
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Fig. 7. Distribution of the RS and ALT sampling over the Byrd Glacier and identified optimal scale in each region. The dimension in km and the polar
stereographic (70S latitude of true scale) (x,y) coordinates of the top left corner of each region are also illustrated. The top right rectangle in each region
represents the size of the output grid maps at the identified optimal scale.

TABLE II
SUMMARY OF THE RESULTS OBTAINED FOR THE ESTIMATION OF THE SURFACE AND BEDROCK MAPS IN THE INVESTIGATED REGIONS OF THE BYRD

GLACIER.

Surface Bedrock
Identified

optimal scale
OAE

Best parameter set
and related OU

Semivariogram
fitting model

Best parameter set
and related OU

Semivariogram
fitting model

R1 3000m 11.82m p8, OU = 13.86m Gau p3, OU = 110.43m Sph

R2 4500m 40.57m p5, OU = 10.97m Gau p8, OU = 168.77m Exp

R3 7500m 58.97m p5, OU = 15.97m Gau p5, OU = 153.10m Gau

R4 8500m 24.13m p5, OU = 12.74m Gau p7, OU = 102.14m Gau

1 2 3 4 5 6 7 8

Parameter set index

12

14

16

18

20

22

O
U

 [
m

]

OU at 4500m for R2

Parameter set at minimum OU

Fig. 8. OU variability across parameter sets for the estimated ice surface map
of region R2 at scale 4500m.

data. On the other hand, the approach is general and could be

analogously applied to identify and validate the optimal scale

of the bedrock, when reference data for the bedrock will be

available (e.g., 3D bed topography [29]).

TABLE III
SUMMARY OF THE RESULTS OBTAINED DURING THE SCALE

IDENTIFICATION PHASE VERSUS THE SCALE VALIDATION PHASE.

Scale identification phase Validation phase
Obtained scale OAE Obtained scale OAE

R1 3000m 11.82m 3000m 12.09m

R2 4500m 40.57m 4500m 39.90m

R3 7500m 58.97m 7500m 59.01m

R4 8500m 24.13m 8500m 24.16m

By analyzing together Fig. 7 and Fig. 10 one can understand

the usefulness and effectiveness of the proposed technique for

the identification of the optimal scale. For instance, in the

regions R1, R2 and R3, the scales could be also qualitatively

inferred as a compromise by empirically analyzing the sam-

pling density. However, the method provides an objective scale

that accounts for both the RS sampling and the ice surface

topography. Note that without an objective and quantitative

statistical analysis, the effect of the surface topography on the



11

Easting [km]
530 540 550 560

N
o
rt

h
in

g
 [
k
m

]

-880

-875

-870

-865

-860

-855

-850

-845

1900

1950

2000

2050

2100

Elv. [m]

(a)

h [km]
0 5 10 15 20 25

γ̂
(h
)[
m

2
]

0

100

200

300

400

500

600

Gau

ρ = 7.62

ξ = 423.11

η  = 1.75

R2 = 0.700

p
5

(b)

Easting [km]
530 540 550 560

N
o
rt

h
in

g
 [
k
m

]

-880

-875

-870

-865

-860

-855

-850

-845

1920

1940

1960

1980

2000

2020

2040

2060

2080

2100

Elv. [m]

(c)

Easting [km]
530 540 550 560

N
o
rt

h
in

g
 [
k
m

]

-880

-875

-870

-865

-860

-855

-850

-845

-400

-300

-200

-100

0

100

200

300

Elv. [m]

(d)

h [km]
0 5 10 15 20 25

γ̂
(h
)[
1
0
2
m

2
]

0

50

100

150

200

250

300

350

Exp

ρ = 26.75

ξ = 350.76

η  ≈ 0

R2 = 0.638

p
8

(e)

Easting [km]
530 540 550 560

N
o
rt

h
in

g
 [
k
m

]

-880

-875

-870

-865

-860

-855

-850

-845

-400

-300

-200

-100

0

100

200

Elv. [m]

(f)

Fig. 9. (a) RS measurements of the surface at scale 4500m on region R2; (b) Corresponding semivariogram generated with the parameter set p5 along with
the best fitting model; and (c) Corresponding map of the ice surface at scale 4500m; (d) RS measurements of the bedrock at scale 4500m on region R2;
(e) Corresponding semivariogram generated with the parameter set p8 along with the best fitting model; and (f) Corresponding map of the bedrock at scale
4500m.
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Fig. 10. Estimated ice thickness maps of the four investigated regions, R1,
R2, R3 and R4 in the red, blue, magenta and black rectangles, respectively.
The black dots represent the position of the rescaled RS data at the identified
optimal scales, i.e., 3000m, 4500m, 7500, 8500m for the regions R1, R2, R3
and R4, respectively.

choice of the scale is difficult to quantify. Accordingly, the

method becomes a valuable tool for the automatic 3D recon-

struction of the ice sheet in areas characterized by variable

RS sampling density, e.g., R4. The analysis of Fig. 7 and Fig.

10 also points out a potential disagreement on the estimated

scales on overlapping regions, e.g., although region R1 is com-

pletely inside region R4, the estimated scales are 3000m and

8500m, respectively. This is because the criterion used for the

identification of the optimal scale considers the overall surface

variability and data sampling within the whole region. Thus,

in the mentioned example, given that these characteristics are

very different in the regions R1 and R4, it is reasonable that

the optimal scales estimated by the proposed technique are

also different. As a final remark, note that the method cannot

avoid the generation of artifacts in areas with low sampling

density and the generation of oversmoothed maps in areas with

high sampling density. However, the method ensures that such

negative effects have the lowest overall impact at the identified

optimal scale over the whole investigated region compared to

the maps that could be obtained at scales derived empirically.

V. CONCLUSION

This paper presents an automatic best-effort approach to

reliably reconstruct the ice sheet geometry using RS data for

interpolation and surface ALT data to derive and validate the

scale (or grid size) for interpolation. In particular, while other

methods in the literature interpolate the RS measurements at
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a scale derived empirically from the qualitative analysis of the

RS sampling, the presented method first analyzes statistically

the sampling and the variability of the surfaces across different

potential candidate scales. This is done with the OK method.

Then the optimal scale is identified automatically and subse-

quently validated based on an objective criterion that compares

the ice surface interpolation results obtained at different scales

with two different subsets of samples drawn from the reference

ALT data. It is worth noting that the method provides a single

scale that is optimal for the entire region under investigation.

In the absence of reference data of the bedrock, the optimal

scale is then used for interpolating the bedrock measurements

in order to generate scale-comparable maps that are subtracted

in order to generate the ice thickness map. Hence, the scale

is optimal for the interpolation of the surface, whereas it is

coherent and likely suboptimal, but reasonably chosen, for the

estimation of the bedrock map. For this reason, the method

is a best-effort approach to the reconstruction of the ice sheet

geometry, in the presence of the ALT ice surface data and

in the absence of bedrock reference data. Moreover, at the

optimal scale, the method provides the ice surface and bedrock

maps having the minimum overall uncertainty with respect to

the choice of OK parameter values.

The method has been applied to airborne RS data acquired

by MCoRDS and satellite ALT data acquired by GLAS over

a portion of the Byrd Glacier in Antarctica. The topography

of the ice surface and the RS sampling within the investigated

portion vary considerably. Thus, in order to prove the effec-

tiveness of the method for the automatic identification of the

scale, we applied it locally to four regions that are different

in terms of area, topography variation and RS sampling. From

the analysis of the results it appears that the obtained scales are

appropriate given the characteristics of the input data. These

have also been compared qualitatively with the scales provided

by other methods, i.e., BEDMAP2, over the same region.

The multiple scales provided by our method are tuned to

the investigated scenarios in that our method accounts for the

regional topography and sampling of the RS data. In contrast,

BEDMAP2 has been generated for the whole Antarctica at

a scale which is derived empirically and appears to be a

compromise given the extremely heterogeneous RS sampling

over the whole continent. We also performed a quantitative

validation of the results by using a second subset of ALT

data. The quantitative analysis points out the robustness of

the method to the random choice of the reference ALT data.

The validation phase confirms that the identified optimal scales

are typically larger than those desired for specific science

requirements. However, this should not be regarded as a

weakness of the method, rather as an effect of the poor

data coverage. In this case, the method can be used as a

guideline for future RS surveys. Indeed, a possible strategy to

reduce the scale for interpolation is the planning of campaigns

with more dense RS flightlines. If this is impractical due to

logistical constraints, the analysis of the results provided by

the method offers the possibility to perform a quantitative error

assessment at scales that match the needs of specific objectives

or applications (e.g., ice sheet modeling), but are different

from the optimal scale. Furthermore, it enables evaluating the

criticallity in choosing arbitrarily the scales for interpolation.

It is important to note that the described method can be

applied to smooth, rough and more generally to any kind

of surface, and the obtained results capture this topography

variability. This is enabled by the intrinsic advantage of the

OK method that quantifies statistically the variability of the

data prior to the interpolation. As such, we derived that, at

the identified optimal scales, the topography of the surface

(always modeled by a Gaussian function) is typically smoother

than that of the bedrock (modeled by either the Spherical,

Exponential or Gaussian functions, depending on the region).

This is expected since the study area is the Byrd Glacier, which

lies near the Transantarctic Mountains, where the bedrock

presents a steep relief. Also, this is qualitatively confirmed

by investigating the short range variability on the surface and

bedrock directly from the RS measurements.

The OK method can be run with different combinations

of parameters, i.e., parameter sets, which provide different

OK solutions, i.e., couples of estimated and uncertainty maps.

In this paper we performed an analysis of the OK method

performance across parameter sets and observed that at the

identified optimal scales, for the different regions there are

different parameter sets that provide the maps with the highest

overall quality. This highlights the importance of such analysis

when high quality interpolation maps are desired. If there are

no stringent requirements on the quality of the interpolation,

in order to reduce the complexity of the method, any of the

discussed parameter sets can be used at the expense of a loss

in quality (e.g., Fig. 8 shows that for the R2 region the overall

uncertainties of the estimated ice surface maps vary from a

minimum of ≈ 13m obtained with p5 to a maximum of ≈
22m obtained with p7). The analysis of the results also points

out that independently on the region, the overall uncertainty

on the surface is about one order of magnitude lower than that

on the bedrock, i.e., in the range 10-20m and 100-200m for

the surface and bedrock, respectively. This can be explained

again by the smoother topography of the surface with respect

to the topography of the bedrock. A possible solution for the

reduction of the high uncertainty at the bedrock could be a

better RS sampling of the surveyed region.

By comparing the final surface, bedrock and thickness maps

across the investigated regions, one can see that in regions with

uniform sampling density, although the scale could be qualita-

tively inferred, the method provides a scale that accounts both

for the sampling and also surface topography, whose effect on

the scale is difficult to qualitatively assess. Furthermore, the

method is a valuable tool for the automatic 3D reconstruction

of the ice sheet geometry in areas characterized by variable

RS sampling density as it interpolates the RS measurements

at a scale that minimizes the overall errors with respect to

the available ice surface reference ALT data. Moreover, note

that when reference data of the bedrock will be available, the

method could be applied to the identification and validation of

the optimal scale for the interpolation of the bedrock, offering

the possibility to improve current estimates in glaciology, e.g.,

ice sheet volume.

As future developments of this research, we plan to study

the possibility to refine the estimated 3D maps by including in
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the method possible known input data uncertainties and their

effects on the results provided by the adopted geostatistical

interpolation strategy. Moreover, we aim to extend the method

by including the modeling of possible anisotropic behavior of

the ice sheets.
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APPENDIX

In this Appendix, background notions about the OK inter-

polation method are provided (for a detailed study of the OK

method the reader is referred to [22], [31], [32]).

OK is a geostatistical interpolation method that estimates

the value of a random variable at an query position x0, i.e.,

ê(x0), based on N0 known/observed values at neighboring

positions xn, n = [1..N0], i.e., samples e(xn) in the domain

of interest. OK relies on what is called spatial variability

analysis (SVA), which is a process that analyzes statistically

the variability of the investigated surfaces by quantifying the

spatial autocorrelation of the available samples. This is done

through the generation and model fitting of the empirical

semivariogram γ̂(h). Here we assume an isotropic model of

spatial variability (a more complex analysis relies on the

assumption of anisotropic models of spatial variability [31]).

Under this assumption γ̂(h) is a graph generated by computing

the squared difference between all pairs of samples separated

by a distance (lag) hk. h is the vector of point pair distances

hk, with k = [1..k̄], where k̄ is the maximum number of bins

of the semivariogram. Depending on the application domain,

several candidate theoretical parametric models γCan can be

used to fit the empirical semivariogram. Here below we report

the analytical formulation of the theoretical models used in our

analysis, i.e., the Spherical γSph, Exponential γExp, Gaussian

γGau and Linear γLin models.

− The Spherical model:

γSph(h; θ) =











0, h = 0,

η + (ξ − η)[ 3
2
· h
ρ
− 1

2
(h
ρ
)3], 0 < h ≤ ρ,

ξ, h > ρ,
(2)

− The Exponential model:

γExp(h; θ) =

{

0, h = 0,

η + (ξ − η)[1− e−
3h
ρ ], h > 0,

(3)

− The Gaussian model:

γGau(h; θ) =

{

0, h = 0,

η + (ξ − η)[1− e
−

3h2

ρ2 ], h > 0.
(4)

θ = (ρ, ξ, η) is the vector of parameters of these models,

where the range ρ is the distance after which the samples

lose spatial correlation, the sill ξ is the value that the

semivariogram has at ρ, and the nugget η is associated

with measurement errors and variations at microscales

smaller that the distances between the available samples.

− The Linear model:

γLin(h; θ) =

{

0, h = 0,

η + bh, h > 0,
(5)

where b is the slope and η is the value of the semivar-

iogram where the line fitted to the data intersects the

y-axis.

We chose these models since they are legitimate for fitting

semivariograms [31] and are likely to fit elevation data

[31] (e.g., the Exponential and Linear models have been

used in [10] for the 3D reconstruction of the ice sheet). In

particular, the Spherical and Exponential models have a

steep behavior near the origin, and therefore are suitable

for representing surfaces with high elevation variability

at short range, i.e., with weak autocorrelation. Among

the two models, the Exponential model, with its steeper

behaviour near the origin, is appropriate for representing

rougher surfaces. The Gaussian model has a parabolic

shape near the origin, therefore it is suitable for rep-

resenting smoothly varying surfaces [31]. The Linear

model indicates non-stationarity in the data. The presence

of non-stationarity in the data invalidates the intrinsic

hypothesis required in geostatistics. A common approach

to solve the problem of non-stationarity is to fit a trend

surface to the data, to regenerate the semivariogram

by using the residuals [31], [33] and repeat the fitting

procedure, which is described here below.

The vector of parameters θ of each theoretical model can

be estimated on the basis of the weighted least square

criterion [34], expressed as follows:

θ̃ = min
θ

k̄
∑

k=1

wk[γ̂(hk)− γCan(hk, θ)]
2, (6)

where wk is the weight associated to bin k. Then, the

fitting performances of these models can be quantified in

terms of the R2 indicator; the best fitting model with the

associated vector of parameters γ∗(h; θ̃) is the one that

maximizes R2. γ∗(h; θ̃) is the output of the SVA and

is used to interpolate the observed samples in order to

estimate ê(x0). Moreover, since OK is a (geo)statistical

method, it also provides an uncertainty value u(x0)
associated with ê(x0) (for the analytic formulation of

ê(x0) and u(x0) the reader is referred to [22], [32]). On

the basis of the couple of estimates ê(x0) and u(x0), one

can infer with 95% confidence that the true value e(x0)
lies in the interval [ê(x0) ± u(x0)] [32]. Therefore, the

lower the uncertainty value, the more the estimated value

is expected to approach the true value, i.e., the better the

estimation.

SVA can be performed by choosing the way of con-

structing the semivariogram (i.e., the way of creating the
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bins of the semivariogram [32]) and also by choosing the

way the semivariogram fitting model is weighted [35].

In other words, depending on these choices, SVA can

be performed by using different combinations of binning

the semivariogram and weighting the fitting model. Since

the dependence of the OK solution on these combinations

(or parameter sets pi, i = [1..P ]) has not been sufficiently

investigated in the scenario of the 3D reconstruction of

the ice sheets, we here study several possible parameter

sets (see Tab. IV). In particular, we study the two pos-

sible ways to perform the binning of the semivariogram

depending on the aggregation of point pairs in each bin,

i.e., constant binsize (bs) and constant binwidth (bw). In

both cases, hk is computed as the mean value of all the

distances inside bin k. With the bs option, we create bins

(of point pair distances) with variable width and with

constant number of point pairs within each bin. In the

bw option, the number of point pairs within each bin

can vary, whereas the width of all k̄ bins is the same.

Thus, binning = {bw,bs} is the first subset of parameters

within the OK parameter set (see Tab. IV). Furthermore,

we consider the choice of the weighting function [see (6)]

as the second subset of parameters of the OK method.

The semivariogram weighting models that we identified

in the literature [35] and used in our analysis are:

– W1 =
{

wk = 1, ∀k = [1..k̄]
}

. This represents the

case in which the weights are all constant, as for the

ordinary least squares criterion.

– W2 =
{

wk = |Nk|, ∀k = [1..k̄]
}

. In this case higher

weight is given to the bins k containing a higher

number of samples Nk.

– W3 =
{

wk = 1/[γ(hk; θ)]
2, ∀k = [1..k̄]

}

. This is

a particular case of inverse distance weighting, in

which the experimental variogram points close to

the origin receive higher weight than experimental

variogram points at larger distances.

– W4 =
{

wk = |Nk|/[γ(hk; θ)]
2, ∀k = [1..k̄]

}

. In this

case the weights are set to the inverse of the uncer-

tainty of the semivariogram estimate (or estimation

variance). This is a popular weighting function [34],

proven to work in many practical situations as it

represents a good compromise of statistical efficiency

and computability.

– W5 =
{

wk = |Nk|/h
2

k, ∀k = [1..k̄]
}

. This weight-

ing function gives more weight to estimates calcu-

lated with more point pairs and at short distances

[36].

Therefore, weighting = {W1,W2,W3,W4,W5} is the

second subset of parameters within the OK parame-

ter set (see Tab. IV). Considering all the combinations

{binning,weighting}, one can deduce that there are 10
possible parameter sets pi for the semivariogram best

model fitting. In fact, note that the number of param-

eter sets reduces to P = 8 (see Tab. IV), since by

definition, the parameter set {bs,W1} ≡ {bs,W2}, and

{bs,W3} ≡ {bs,W4}. Given the parameter sets, it is

worth to highlight the dependence of the fit on pi; there

are P semivariogram best fitting models γ∗

pi
(h; θ̃), i =

[1..P ], each characterized by different values of the

vector of parameters θ̃. It is then straightforward that

for a query point x0, not a single couple of estimates

ê(x0) and u(x0), but P couples of estimates êi(x0) and

ui(x0), i = [1..P ], can be generated. By extending this

reasoning to all the query points in the domain of interest,

the OK method provides P couples of estimated elevation

and uncertainty maps.

TABLE IV
PARAMETER SETS CONSIDERED IN THE OK METHOD.

binning weighting parameter set

bw W1 = {wk = 1} p1={bw,W1}
bs W2 = {wk = |Nk|} p2={bw,W2}

W3 =
{

wk = 1/[γ(hk; θ)]
2
}

p3={bw,W3}
W4 =

{

wk = |Nk|/[γ(hk; θ)]
2
}

p4={bw,W4}
W5 =

{

wk = |Nk|/h
2

k

}

p5={bw,W5}
p6={bs,W1}
p7={bs,W3}
p8={bs,W5}
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[10] K. Lindbäck, R. Pettersson, S. Doyle, C. Helanow, P. Jansson, S. Kris-
tensen, L. Stenseng, R. Forsberg, and A. Hubbard, “High-resolution
ice thickness and bed topography of a land-terminating section of the
Greenland Ice Sheet,” Earth System Science Data, vol. 6, no. 2, pp.
331–338, 2014.

[11] S. Gogineni, J. Yan, J. Paden, C. Leuschen, J. Li, F. Rodriguez-Morales,
D. Braaten, K. Purdon, Z. Wang, W. Liu, and J. Gauch, “Bed topography
of Jakobshavn Isbrae, Greenland, and Byrd Glacier, Antarctica,” Journal

of Glaciology, vol. 60, no. 223, pp. 813–833, 2014.
[12] M. Huss and D. Farinotti, “Distributed ice thickness and volume of

all glaciers around the globe,” Journal of Geophysical Research: Earth

Surface (2003–2012), vol. 117, no. F4, 2012.
[13] ——, “A high-resolution bedrock map for the Antarctic Peninsula,” The

Cryosphere, vol. 8, no. 4, pp. 1261–1273, 2014.



15

[14] J. Roberts, R. Warner, D. Young, A. Wright, T. van Ommen, D. Blanken-
ship, M. Siegert, N. Young, I. Tabacco, A. Forieri, A. Passerini, A. Zi-
rizzotti, and M. Frezzotti, “Refined broad-scale sub-glacial morphology
of Aurora Subglacial Basin, East Antarctica derived by an ice-dynamics-
based interpolation scheme,” The Cryosphere, vol. 5, no. 3, pp. 551–560,
2011.

[15] R. Warner and W. Budd, “Derivation of ice thickness and bedrock
topography in data-gap regions over Antarctica,” Annals of Glaciology,
vol. 31, no. 1, pp. 191–197, 2000.

[16] D. Rippin, J. Bamber, M. Siegert, D. Vaughan, and H. Corr, “Basal
topography and ice flow in the Bailey/Slessor region of East Antarctica,”
Journal of Geophysical Research: Earth Surface, vol. 108, no. F1, 2003.

[17] M. Morlighem, E. Rignot, H. Seroussi, E. Larour, H. Ben Dhia, and
D. Aubry, “A mass conservation approach for mapping glacier ice
thickness,” Geophysical Research Letters, vol. 38, no. 19, 2011.

[18] M. Morlighem, E. Rignot, J. Mouginot, H. Seroussi, and E. Larour,
“High-resolution ice-thickness mapping in South Greenland,” Annals of

Glaciology, vol. 55, no. 67, pp. 64–70, 2014.

[19] G. Durand, O. Gagliardini, L. Favier, T. Zwinger, and E. Le Meur,
“Impact of bedrock description on modeling ice sheet dynamics,”
Geophysical Research Letters, vol. 38, no. 20, 2011.

[20] J. Goff, E. Powell, D. Young, and D. Blankenship, “Conditional simula-
tion of Thwaites Glacier (Antarctica) bed topography for flow models:
incorporating inhomogeneous statistics and channelized morphology,”
Journal of Glaciology, vol. 60, no. 222, pp. 635–646, 2014.

[21] F. Graham, J. Roberts, B. Galton-Fenzi, D. Young, D. Blankenship,
and M. Siegert, “A high-resolution synthetic bed elevation grid of the
Antarctic continent,” Earth System Science Data, vol. 9, no. 1, pp. 267–
279, 2017.

[22] N. Cressie, Statistics for spatial data. Wiley series in probability and
mathematical statistics. J. Wiley & Sons, 1993.

[23] F. Rodriguez-Morales, S. Gogineni, C. Leuschen, J. Paden, J. Li,
C. Lewis, B. Panzer, D. Gomez-Garcia Alvestegui, A. Patel, K. Byers,
R. Crowe, K. Player, R. Hale, E. Arnold, L. Smith, C. Gifford,
D. Braaten, and C. Panton, “Advanced multifrequency radar instrumen-
tation for Polar Research,” IEEE Transactions onGeoscience and Remote

Sensing, vol. 52, no. 5, pp. 2824–2842, May 2014.

[24] H. J. Zwally, R. Schutz, C. Bentley, J. Bufton, T. Herring, J. Minster,
J. Spinhirne, and R. Thomas, “GLAS/ICESat L2 Antarctic and Green-
land Ice Sheet Altimetry Data, Version 34. Boulder, Colorado USA.
NASA National Snow and Ice Data Center Distributed Active Archive
Center.” https://nsidc.org/data/GLA12/versions/34, 2014.

[25] M. Peters, D. Blankenship, and D. Morse, “Analysis techniques for
coherent airborne radar sounding: Application to West Antarctic ice
streams,” Journal of Geophysical Research: Oceans, vol. 110, no. 6, pp.
1–17, 2005.

[26] C. Hernandez, V. Krozer, J. Vidkjaer, and J. Dall, “POLARIS: ESA’s
airborne ice sounding radar front-end design, performance assessment
and first results,” in Microwave Symposium Digest, 2009. MTT ’09. IEEE

MTT-S International, June 2009, pp. 393–396.

[27] A.-M. Ilisei and L. Bruzzone, “A system for the automatic classification
of ice sheet subsurface targets in radar sounder data,” IEEE Transactions

on Geoscience and Remote Sensing, vol. 53, no. 6, pp. 3260–3277, 2015.

[28] J. Li, J. Paden, C. Leuschen, F. Rodriguez-Morales, R. Hale, E. Arnold,
R. Crowe, D. Gomez-Garcia, and P. Gogineni, “High-altitude radar mea-
surements of ice thickness over the Antarctic and Greenland ice sheets
as a part of Operation IceBridge,” IEEE Transactions on Geoscience

and Remote Sensing, vol. 51, no. 2, pp. 742–754, 2013.

[29] J. Paden, T. Akins, D. Dunson, C. Allen, and P. Gogineni, “Ice-sheet
bed 3-D tomography,” Journal of Glaciology, vol. 56, no. 195, pp. 3–11,
2010.

[30] J. DiMarzio, “GLAS/ICESat 500 m Laser Atimetry Digital Elevation
Model of Antarctica,” 2007.

[31] G. Bohling, “Introduction to geostatistics and variogram analysis,” 2005.

[32] T. Smith, “Notebook on spatial data analysis,” http://www.seas.upenn.
edu/∼ese502/#notebook”, year = 2016,.

[33] S. Vieira, R. Carvalho, de Josa, M. Ceddia, and A. Gonzalez, “De-
trending non stationary data for geostatistical applications,” Bragantia,
vol. 69, pp. 01 – 08, 2010.

[34] N. Cressie, “Fitting variogram models by weighted least squares,”
Journal of the International Association for Mathematical Geology,
vol. 17, no. 5, pp. 563–586, 1985.

[35] E. Pardo-Iguzquiza, “VARFIT: a fortran-77 program for fitting vari-
ogram models by weighted least squares,” Computers and Geosciences,
vol. 25, no. 3, pp. 251–261, 1999.

[36] X. Zhang, J. Van Eijkeren, and A. Heemink, “On the weighted least-
squares method for fitting a semivariogram model,” Computers and

Geosciences, vol. 21, pp. 605–608, May 1995.


