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ABSTRACT— In this paper a segmentation-based approach to fine registration of 

multispectral and multitemporal Very High Resolution (VHR) images is proposed. The 

proposed approach aims at estimating and correcting the residual local misalignment (also 

referred to as Registration Noise (RN)) that often affects multitemporal VHR images even 

after standard registration. The method extracts automatically a set of object 

representative points associated to regions with homogeneous spectral properties (i.e., 

objects in the scene). Such points result to be distributed all over the considered scene and 

account for the high spatial correlation of pixels in VHR images. Then, it estimates the 

amount and direction of residual local misalignment for each object representative point by 

exploiting residual local misalignment properties in a multiple displacement analysis 

framework. To this end a multiscale differential analysis of the multispectral difference 

image is employed for modelling the statistical distribution of pixels affected by residual 

misalignment (i.e., RN pixels) and detect them. The RN is used to perform a segmentation-

based fine registration based on both temporal and spatial correlation. Accordingly, the 

method is particularly suitable to be used for images with a large number of border regions 

like VHR images of urban scenes. Experimental results obtained on both simulated and 

real multitemporal VHR images confirm the effectiveness of the proposed method. 
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I. INTRODUCTION 

Image registration is the process of spatially overlaying two or more images acquired over the 

same geographical area at different times [1]. In this field, significant advances have been 

presented in the literature since Very High Resolution (VHR) multitemporal images are available 

according to the launch of various satellites equipped with VHR sensors (e.g., QuickBird, 

GeoEye, WorldView). Image registration methods can be divided into two main categories: area-

based and feature-based [1]. Area-based methods directly calculate the correlation between the 

images or a subset of them. The final result is given as the one that maximizes the correlation. 

Feature-based methods extract salient features from the images and perform salient features 

matching. In general, the feature-based methods are recommended over the area-based ones for 

multitemporal VHR images [2],[3]. The effectiveness of such kind of approaches depends on the 

accuracy of salient features extraction and matching. Thus several studies were conducted on this 

issue by considering VHR image characteristics [4]–[6]. They mainly focus on the identification 

of Control Points (CPs) from salient features such as corners, intersections, and edges. Scale-

Invariant Feature Transform (SIFT) [7], Speeded-Up Robust Features (SURF) [8], Wavelet 

decomposition [9]–[11], and Harris points [12] are among the most effective approaches for CPs 

extraction. These approaches tend to select CPs along boundaries and edges of objects. As there 

is a large number of salient features in VHR images, the amount of CPs and their concentration 

become critical. In this situation, the matching process is likely to fail since many CPs have 

similar spectral properties in their neighboring pixels (which are used to measure similarity for 



 

 

the matching) even if they do not correspond to each other. A huge number of CP pairs with 

imprecise matching generates significant local distortions when employed in establishing the 

transformation function between the input and the reference images. Therefore, despite the 

overall performance of such methods is good, the registration in regions with a high 

concentration of salient features (i.e., sharp borders) is likely to be poor. In other words, even 

after registration, multitemporal images are locally affected by residual misalignment. The 

impact of this phenomenon increases as the concentration of salient features does. This is the 

case of scenes acquired over urban areas where manmade objects (e.g., buildings and roads) 

create a high concentration of salient features. When dealing with VHR images, differences in 

acquisition conditions of the input and reference images (e.g., acquisition angle) make different 

sides of the same object to be sensed and the CPs matching less precise. This contributes to 

residual local misalignment after registration [13], [14]. 

Non-rigid transformation models for warping [3] may mitigate local and nonlinear distortions. 

However, for a good registration performance, they require CPs to be distributed over the entire 

scene, which is a complex task [15]–[18]. Many studies focused on extracting evenly distributed 

CPs in multitemporal images, but this is still a challenging issue [19],[20]. 

To overcome the aforementioned problems and improve the performance of registration, some 

approaches employed segmentation techniques [21]–[24]. Dare and Dowman [21] used spatial 

attributes of segments, such as area, perimeter, and length and width of the bounding rectangle 

for CPs matching. The spatial information helps to match the CPs extracted from images 

acquired by sensors that have different radiometric and geometric properties. Gonçalves et al. 

applied the segmentation concept for image registration with two objectives: i) to remove small 

regions that are not appropriate for CPs detection [22]; and ii) to extract spatial attributes of 



 

 

objects for better registration performance [23]. Troglio et al. extracted ellipsoidal features using 

watershed segmentation for planetary image registration [24].  

In this paper we propose an approach to fine registration which aims at reducing local residual 

misalignment that affects multitemporal VHR images after applying a standard 

manual/automatic registration method. As mentioned above, even though standard registration 

methods can provide high overall registration accuracy, they may cause significant residual 

misalignment locally [20]. This effect becomes more critical when VHR images are considered 

and when they are acquired over areas with sharp geometries (e.g., urban areas). Thus the main 

goal of the proposed approach is to minimize local residual misalignment under the assumption 

that standard registration has been applied to multitemporal images and that residual 

distortion/misalignment exists locally and may show different intensity and direction. The 

proposed approach: i) estimates local residual misalignment, and ii) uses it to further improve the 

alignment locally by means of a fine-registration step. This is achieved by first identifying a set 

of points distributed all over the scene that are representative for objects in VHR images (e.g., 

buildings, roads, fields). Object representative points are defined as centroids of segments 

computed on the reference image and they account for the spatial correlation of neighboring 

pixels in VHR images. Differently from standard CPs, object representative points tend to 

distribute all over the reference image and have a low probability to cluster to each other. At the 

same time, they are adaptive with respect to the image geometrical content and become denser in 

sharp geometry areas and sparser other areas. Thus the method effectively chases both sharper 

and smother geometries and becomes particularly suitable for urban scenes where standard 

methods tend to show higher local residual misalignment. The object representative points are 

used as points for applying the relative warping function between the input and the reference 



 

 

images. The warping function is estimated according to the intensity and direction of residual 

local misalignment. The estimation procedure relies on a multiple displacement analysis of the 

local residual misalignment conducted according to multiscale differential analysis of the 

multispectral difference image proposed in [13],[25],[26]. This allows to model the statistical 

distribution of pixels affected by residual misalignment and to effectively detect them. This 

phenomenon is referred in the literature as Registration Noise (RN) [13],[25],[26]. Before 

warping it, unreliable object representative points are removed by evaluating their relative spatial 

relation and by identifying unreliable segments associated to shadows.  

Summarizing, the proposed approach provides three main contributions: i) Fine registration is 

carried out for accurate and precise geometric alignment using multitemporal correlation 

throughout the RN concept. ii) The proposed mechanism accounts for the spatial correlation 

among neighboring pixels and the complex geometry of VHR images by the use of segments. 

Thus pixels belonging to the same object are treated in a homogenous way when warping is 

applied. iii) Object representative points for estimating/applying the warping function are 

distributed all over the scene allowing for an effective correction of local misalignments. Thus 

the fine registration produces accurate performance at local level all over the considered scene. 

Experiments carried out both on simulated and real datasets acquired from VHR sensors confirm 

the effectiveness of the proposed approach. 

The remainder of the paper is organized as follows. Section II illustrates the proposed fine 

registration technique based on object representative points. Section III describes simulated and 

real datasets, introduces indices for quantitative performance analysis, and presents the 

experimental setup. Section IV illustrates the experimental results. Finally, section V draws the 

conclusion of this paper. 



 

 

 

II. PROPOSED SEGMENTATION-BASED FINE REGISTRATION APPROACH 

The proposed segmentation-based fine registration approach works on multitemporal VHR 

images under the assumption that they have been already registered by any manual/automatic 

registration method. The goal is to mitigate local residual misalignments if any and thus to 

improve registration accuracy by using both spatial correlation between neighboring pixels 

available in VHR images and temporal correlation between multitemporal images. Let 𝑋1 and 𝑋2 

be the already registered reference and input images collected at different times. The input image 

(𝑋2) is the one to be warped to the coordinates of the reference image (𝑋1) by the proposed fine 

registration approach. The proposed approach mainly consists of five steps: i) detection of 

segment-based object representative points; ii) residual local misalignment estimation by 

multiple displacement analysis; iii) shadow detection; iv) displacement of object representative 

points; v) input image warping. Figure 1 represents the block scheme of the proposed approach. 

A detailed description of each step is given in the following subsections. 

 

 

Figure 1. Block scheme of proposed segmentation-based fine registration approach. 



 

 

A. Detection of segment-based object representative points 

In the first step a set of points is identified to be used for fine registration by estimation of a 

warping function. Such points should be: i) distributed over the entire scene to capture local 

behaviors effectively; and ii) representative of objects so that while warping pixels belonging to 

the same object will be treated homogenously. Representative points for objects (i.e., regions of 

spatially connected pixels with homogeneous spectral properties) are detected by image 

segmentation of the reference image 𝑋1. Any segmentation method from the literature can be 

used. Here, without any loss of general validity, we selected the Simple Linear Iterative 

Clustering (SLIC) superpixel method since it is computationally efficient and extracted segments 

adhere well to object boundaries [32]. For sake of completeness we recall below the main steps 

of SLIC. According to [32], the method is an adaptation of k-means clustering to segmentation. 

First, the image is divided into L hexagonal regions such that their centers are sampled at the 

same distance with spacing 𝑆 = √𝑁
𝐿⁄  (N is the number of pixels in 𝑋1). The L centers are used 

as initial seeds for clustering. Each pixel within a limited search region is associated to a 

cluster/hexagon center by considering the distance measure D that accounts for proximity both in 

the spatial and spectral domain [32],[33]: 

 𝐷 = √𝑑𝑐
2 + (

𝑑𝑠

𝑆
)

2

𝑚2 (1) 

where 𝑑𝑐 is the color distance between the cluster center and each pixel within a search region of 

size 2S×2S computed in the LAB color space [34] (where L is the lightness of the color, and A 

and B are the colors along red/green and blue/yellow axes), whereas 𝑑𝑠 is the spatial distance 

between the spatial position of two pixels. m is the compactness parameter that balances the 

relevance between spectral and spatial proximity while segmenting. According to [32], m can 



 

 

assume values in the range [1; 40]. A pixel is assigned to the cluster that results in the smallest D. 

Once the assignment procedure is complete, cluster centers are updated by computing the mean 

value of pixels in the cluster. The process is iterated until the cluster changes between subsequent 

iterations are negligible. Unassigned isolated pixels are linked up to the nearest cluster, however 

if a large number of adjacent pixels remain unassigned a new cluster is created [32]. At the end, 

since objects are made of spatially connected pixels that show similar spectral behaviors, the 

shape of segments adheres the objects boundaries. Thus, the 𝑐1
𝑙  centroid (i.e., cluster center) of 

the lth segment (𝑙 = 1, … , 𝐿) can be assimilated to the center of the object represented by the 

segment and assumed as the object representative point in the reference image 𝑋1 [14],[21]. The 

number L of segments should be large enough to limit the number of large heterogeneous 

segments that embrace more objects (i.e., under segmentation). Centroids of heterogeneous 

segments cannot be considered as object representative since they represent more than one object. 

Accordingly, a certain degree of over segmentation is preferred. The performance improvement 

(see Sec. IV for a quantitative analysis) compensates for the increase of the computational 

burden. Moreover, segments should be compact so that object representative points are located 

inside the segment. Centroids outside the segments cannot be considered as representative for the 

object. Figure 2 shows an example of centroid location according to different values of the 

compactness parameter m. The centroid (cross mark) and its segment boundary are displayed 

with the same color. Higher compactness results in centroids inside the segment (i.e., red cross in 

Figure 2.b) and thus in a representative point for the corresponding object, whereas lower 

compactness results in centroids outside the segment (i.e., red cross in Figure 2.a) and thus less 

representative for the object. The impact of compactness on registration performance is 

illustrated in the experiments (see Sec. IV). 



 

 

  
(a) (b) 

Figure 2. Examples of centroids location and their boundaries according to different compactness parameters: 

(a) Lower compactness (m = 1) and (b) higher compactness (m = 40). 

 

 

B. Residual local misalignment estimation by multiple displacement analysis  

The second step aims at establishing the intensity and direction of local residual misalignment. 

To this end the concept of RN introduced in [26],[27] is employed. The estimated values are the 

ones of the correction to be applied to object representative points for fine registration. The 

analysis relies on change detection and multiple displacement concepts. 

RN pixels are defined as pixels that have the same spatial position in multitemporal images, but 

do not correspond to the same area on the ground due to residual misalignment after registration. 

They are especially visible along the object borders. In order to illustrate RN behaviors in VHR 

multitemporal images, Figure 3.a shows a multitemporal false-color composite of images 

acquired over the same geographical area. Because of misalignment of 5 pixels in both 

horizontal and vertical directions, red/cyan structures appear parallel to building borders where 

non corresponding objects overlap. This effect can be modeled as a multitemporal noise 

component and has been extensively analyzed in [26]. Here we recall some of the main outcomes 

of that work and we refer the reader to [26] for the details. Since RN is a multitemporal noise 

component and misaligned samples tend to behave as changed pixels, multitemporal image 

comparison can be employed to identify it [26]. The detection is conducted in the Change Vector 

Analysis (CVA) [27],[29] feature space, i.e., the space of the multispectral difference image 𝑋∆. 



 

 

CVA computes 𝑋∆ by applying pixel-by-pixel subtraction to 𝑋1 and  𝑋2: 

 𝑋∆ = 𝑋2 − 𝑋1 (2) 

 

  
(a) (b) 

Figure 3. (a) Multitemporal false-color composite of misaligned VHR images and (b) Registration noise map. 

 

Without loss of generality, let us assume that 𝑋∆ has two spectral bands only. In a 2D feature 

space, the information in 𝑋∆ can be described in a polar coordinate system by computing the 

magnitude 𝜌 and the direction 𝜗: 

 𝜌 = √(𝑋∆,1)
2

+ (𝑋∆,2)
2

, 𝜌 ∈ [0, 𝜌𝑚𝑎𝑥] (3) 

 𝜗 = 𝑡𝑎𝑛−1 (
𝑋∆,1

𝑋∆,2
) , 𝜗 ∈ [0,2𝜋) (4) 

where 𝑋∆,𝑏  denotes the bth spectral band of 𝑋∆ (𝑏 = {1,2})  and 𝜌𝑚𝑎𝑥  denotes the highest 

magnitude value in 𝑋∆ . The ambiguity introduced by the 𝜋-periodicy of the inverse tangent 

function is solved by considering the signs of the 𝑋∆ components. Accordingly, the values of 𝜗 

are properly distributed over to the range [0,2𝜋). 

According to the literature [27],[29], this feature space can be divided into two main regions by 

defining a decision threshold T along the magnitude (T can be set by any of the methods 

available in the literature [28]–[30]). The first one is a circle that embraces samples with a 



 

 

 

 
Figure 4. Representation of the changed and unchanged decision regions in the CVA polar domain. 

 

magnitude lower than T (dark grey shaded area in Figure 4). Samples in this circle are the ones 

with similar spectral signatures in 𝑋1 and  𝑋2 and thus are labeled as unchanged. The second one 

is an annulus (light grey shaded area in Figure 4) that includes samples with magnitude greater 

than the threshold. Samples in the annulus are the ones that show different spectral signatures in 

𝑋1 and  𝑋2. Such difference in the multitemporal signature may be generated by the presence of 

changes on the ground or by the comparison between misaligned pixels (i.e., RN pixel). In [26], 

it is demonstrated that, while smoothing the geometrical details and the sharp object borders in 

the multispectral difference image, RN pixels tend to reduce their magnitude. Therefore, the 

smoothed version of the multispectral difference image 𝑋∆ shows a smaller number of samples 

that along the direction 𝜗  fall above the threshold T in the light grey shaded annulus. 

Accordingly, the identification of RN pixels is possible by a multiscale differential analysis of 

the direction distribution in the polar domain at full resolution and at low resolution N [26]. From 

the analytical point of view, we can write the conditional density of RN distribution 

�̂�𝑅𝑁(𝜗|𝜌 ≥ 𝑇) as [26]: 

 �̂�𝑅𝑁(𝜗|𝜌 ≥ 𝑇) = 𝐶[𝑃0(𝜌 ≥ 𝑇)�̂�0(𝜗|𝜌 ≥ 𝑇) − 𝑃𝑁(𝜌 ≥ 𝑇)�̂�𝑁(𝜗|𝜌 ≥ 𝑇)] (5) 

where 𝑃0(𝜌 ≥ 𝑇)  and 𝑃𝑁(𝜌 ≥ 𝑇)  denote the probabilities of SCVs having values in the 

magnitude domain higher than T at the original image scale and at low resolution level N, 



 

 

respectively, �̂�0(𝜗|𝜌 ≥ 𝑇)  and �̂�𝑁(𝜗|𝜌 ≥ 𝑇)  denote the marginal conditional densities of the 

direction variable of the SCVs at full resolution and at resolution N, respectively. C denotes a 

constant defined to satisfy the condition ∫ �̂�𝑅𝑁(𝜗|𝜌 ≥ 𝑇)𝑑𝜗 = 1
2𝜋

0
. The statistical variables in (5) 

can be estimated in an unsupervised way according to [26],[29],[31]. If �̂�𝑅𝑁(𝜗|𝜌 ≥ 𝑇) is above a 

threshold value TRN, the probability of having pixels contaminated by RN is high and thus 

misaligned samples are detected. Figure 3.b shows an example of RN map obtained for the 

image pair in Figure 3.a. 

In order to use RN information for fine registration, the amount and direction of residual 

misalignment that affect RN pixels should be estimated. This is achieved by a multiple 

displacement analysis. Since multitemporal images are already preliminary registered, the largest 

differences in scale and rotation are mitigated. Therefore, local residual misalignments, including 

small residual scale and rotation displacements, can be modeled as small rigid shifts [35]. 

Accordingly, we create a set of possible multiple displacements between the reference image 𝑋1 

and the input image 𝑋2 by shifting the latter according to a predefined set of misalignment values 

while considering the level of residual misalignment between them. Let us assume that  Ω =

{Ω1, … , Ω𝐷}  is the set of D displacements. Each displacement has two components Ω𝑑 =

{Δx𝑑, Δy𝑑}. Let 𝑋2
𝐷 = {𝑋2

𝑑 , 𝑑 = 1, … , 𝐷} be the set of input images after shifting 𝑋2 by the D 

displacements in Ω. For each combination of the reference image and one of the D shifted input 

images, we derive the RN conditional density �̂�𝑑
𝑅𝑁 (𝑑 = 1, … , 𝐷) as presented in (5) and generate 

the RN map 𝑅𝑁𝑑. When the displacement is d, the dth RN map 𝑅𝑁𝑑 is defined as 

 𝑅𝑁𝑑(𝑥, 𝑦) = {
1,    if  �̂�𝑑

𝑅𝑁(𝑥, 𝑦) ≥ 𝑇𝑅𝑁

0,    otherwise                
 (6) 

where (𝑥, 𝑦) is the spatial position of samples. The displacement Ω𝑑 that locally minimizes the 



 

 

amount of misalignment represents the estimation of the local residual displacement to be 

corrected and thus the displacement to be applied to object representative points to effectively 

minimize the local residual misalignment between the input image 𝑋2 and the reference image 

𝑋1. 

 

C. Shadow detection 

Before giving the details of the object representative points displacement and image warping 

steps, the shadow issue should be managed. Shadows are very common features close to the 

objects in VHR urban scenes. The spectral signature of shadow pixels shows high interclass 

similarity and strong differences with adjacent non-shadow pixels. Thus shadow pixels are likely 

to generate segments and to be associated to an object representative point. However, shadows 

are not objects and often occlude objects. Thus, centroids in shadow segments cannot be 

considered as object representative. In addition, due to different acquisition conditions (e.g., Sun 

azimuth angle, season), multitemporal images may show shadows with different shapes [36]. 

When performing multitemporal images comparison, such differences may result in samples 

with high magnitude values that are likely to behave as RN pixels even if they are not. Their 

contribution to the displacement estimation impacts in a negative way on fine registration 

performance. Accordingly, shadow pixels should be identified and removed. 

Shadow detection is performed by the invariant color models introduced in [37], where the 

author demonstrates that in the HIS color space, shadows are likely to have: i) low intensity 

values because the electromagnetic radiance emitted from the Sun is obstructed; and ii) higher 

hue values than those of adjacent regions from the same surface when hue values are normalized 

in [0,1]. Accordingly, the shadow index is defined as [37]: 



 

 

 𝑆𝐼𝑖 =
𝐻𝑖 + 1

𝐼𝑖 + 1
 (7) 

where 𝐻𝑖  and 𝐼𝑖  stand for the hue and intensity values of image 𝑋𝑖 (𝑖 = {1,2}). SIi assumes 

values greater than a threshold 𝑇𝑆𝐼 in the presence of shadows, thus: 

 𝑀𝑆𝑖
(𝑥, 𝑦) = {

1,    if  𝑆𝐼𝑖(𝑥, 𝑦) ≤ 𝑇𝑆𝐼

0,    otherwise            
 (8) 

The multitemporal shadow map 𝑀𝑆 associated with both 𝑋1 and 𝑋2 detects a shadow if a shadow 

exists in at least one of the two images, i.e., 

 𝑀𝑆(𝑥, 𝑦) = 𝑀𝑆1
(𝑥, 𝑦)𝑀𝑆2

(𝑥, 𝑦) (9) 

 

D. Displacement of object representative points 

In this step, for each object representative point 𝑐1
𝑙  (𝑙 = 1, … , 𝐿) in the reference image, the 

amount of displacement is established. This information is used to locate a corresponding object 

representative point 𝑐2
𝑙  (𝑙 = 1, … , 𝐿) in the input image for each 𝑐1

𝑙 . This is different with respect 

to standard methods where the corresponding points in 𝑋1.and  𝑋2 are identified first, and the 

displacement is estimated from matching them. To this end the output of the multiple 

displacement analysis after removing shadow segments is employed. Let 𝐴𝑅𝑁𝑑
𝑙  be the variable 

that codes the number of RN pixels for the generic segment l (𝑙 = 1, … , 𝐿) with displacement d. 

The 𝐴𝑅𝑁𝑑
𝑙  can be defined as 

 
𝐴𝑅𝑁𝑑

𝑙 = ∑ 𝑅𝑁𝑑
𝑙 (𝑥, 𝑦)

(𝑥,𝑦)∈𝑙
𝑙=1,…,𝐿

 
(10) 

where 𝑅𝑁𝑑
𝑙 (𝑥, 𝑦) indicates whether the pixel of coordinates (𝑥, 𝑦) in the lth segment of the dth 

RN map has been labeled as RN pixel according to (6). The 𝐴𝑅𝑁𝑑
𝑙  is used to determine the 

displacement to be applied to the object representative point 𝑐1
𝑙  to correct for local residual 



 

 

misalignment. Let us assume that for a given segment less RN pixels are detected compared with 

other possible displacements when imposing displacement Ω𝑑 . This segment will be less 

misaligned and thus more precisely registered when the two images are shifted by the amount of 

the displacement Ω𝑑. This concept allows to estimate the amount of displacement between 𝑋1 

and 𝑋2 for each object representative point in that segment. In other words, the displacement 

Ω𝑑 ∈ Ω  associated to the minimum number of misaligned pixels 𝐴𝑅𝑁𝑑
𝑙  is selected as the 

displacement for 𝑐1
𝑙  in the lth segment that generates the best local alignment between 𝑋1 and 𝑋2. 

Such local displacement Ω𝑙 of the l-th segment is computed as 

 𝛺𝑙 = 𝑎𝑟𝑔 min
Ω𝑑∈Ω

{𝐴𝑅𝑁𝑑
𝑙 } (11) 

Thus the proposed method identifies the local relative displacement between 𝑋1 and 𝑋2. It uses 

the object representative points in 𝑋1 as points to apply the displacement and thus to estimate the 

warping function (see Sec. II.E). This is possible as the RN concept provides an estimation of 

displacement on those points where the geometry change is sharper and local residual 

displacement more critical. Once displacement is known, fine registration is performed 

accounting for the homogeneity information in the segments. This mechanism is intrinsically 

different from the one employed by standard segmentation-based matching approaches, which 

identify the centroids of segments in both the reference and input images and use them as CP 

pairs for estimating the displacement [21],[23].  

 

E. Input image warping 

Let (𝑥1
𝑙 , 𝑦1 

𝑙 ) be the spatial coordinates of 𝑐1
𝑙 . The spatial position (𝑥2

𝑙 , 𝑦2
𝑙 ) of the corresponding 

point 𝑐2
𝑙  in the input image can be determined by applying the estimated displacement 𝛺𝑙 as 



 

 

 {
𝑥2

𝑙 = 𝑥1
𝑙 − ∆𝑥𝑙

𝑦2
𝑙 = 𝑦1

𝑙 − ∆𝑦𝑙

,    ∀𝑙 = 1, … , 𝐿 (12) 

where 𝛺𝑙 = {∆𝑥𝑙, ∆𝑦𝑙} denotes the estimated local displacements in 𝑥 and 𝑦 directions for the lth 

segment estimated in the previous step (11). Once the process is over, for each 𝑐1
𝑙  (𝑙 = 1, … , 𝐿) a 

set of object representative points pairs C = {𝑐1
𝑙 , 𝑐2

𝑙 } (𝑙 = 1, … , 𝐿) is obtained. 

The set of point pairs 𝐶 is employed to establish the warping function that maps the entire input 

image 𝑋2 to the reference image 𝑋1. Before that, possible critical pairs (i.e., the ones that can 

cause poor matching) are removed to guarantee the reliability of the transformation model. This 

is done by considering the spatial relation between 𝑐1
𝑙  and 𝑐2

𝑙  throughout an affine transformation 

[3]. An affine transformation is first estimated using the least squares method with all the object 

representative pairs in 𝐶 . The pair having the largest Root Mean-Square Error (RMSE) is 

removed, and the transformation is estimated again on the remaining pairs. The process is 

repeated until RMSE of all the remaining pairs is less than a predefined threshold. Let us assume 

that there are M remaining object representative pairs C𝑚 = {𝑐1
𝑚, 𝑐2

𝑚} (𝑚 = 1, … , 𝑀)  after 

outlier removal step. As the object representative points are associated to segment centroids, they 

can be still considered as being distributed all over the entire image, even though some of them 

have been removed. This condition allows to apply a non-rigid transformation model [20]. We 

employ the piecewise linear function, which is known to be appropriate for mitigating local 

distortion between VHR images [15],[38]. The piecewise linear function divides 𝑋1  into 

triangular regions by the Delaunay’s triangulation algorithm while using object representative 

points as vertexes of the triangles. When the object representative points in 𝑋1 are triangulated, 

the corresponding object representative points in the input image 𝑋2 are triangulated accordingly. 

Then, each triangulated region in 𝑋2 is mapped to the corresponding region of 𝑋1 through the 



 

 

affine transformation. Since the non-rigid model considers each local triangular region 

independently, local distortions are mitigated. Regions associated with segments involved in the 

removed object representative points are warped by the piecewise linear functions constructed 

from object representative points located near them. Let 𝑀𝑃𝐿(. ) be the piecewise linear function 

constructed from the C𝑚  (𝑚 = 1, … , 𝑀) pairs. The warped input image 𝑋2
𝑅 is computed as  

 𝑋2
𝑅 = 𝑀𝑃𝐿(𝑋2) (13) 

The estimated warping function is able to chase the geometric properties of the scene and thus at 

a given extent also the differences of relief displacements over buildings generated by the off-

nadir viewing angles. Since segments are smaller and more numerous where geometric changes 

are sharper, the warping function will be sharper as well. On the contrary, it will be smoother in 

regions where segments are larger. 

 

III. DATASET DESCRIPTION AND DESIGN OF EXPERIMENTS 

A. Dataset description 

To evaluate the effectiveness of the proposed fine-registration approach, we employed 

multitemporal images acquired over the city of Trento (Italy). QuickBird and WorldView 

satellite multispectral full scenes were used to construct the datasets. The QuickBird images 

consist of a panchromatic band having 0.6m spatial resolution and four multispectral bands [blue 

(450-520nm), green (520-600nm), red (630-690nm), and near-infrared (NIR) (760-900nm)] 

having 2.4m spatial resolution. The multitemporal images were acquired in October 2005 (𝑋1) 

and July 2006 (𝑋2). The WorldView images consist of a panchromatic band having 0.5m spatial 

resolution and eight multispectral bands [coastal (400-450nm), blue (450-510nm), green (510-

580nm), yellow (585-625nm), red (630-690nm), red edge (705-745nm), NIR 1 (770-895nm), 



 

 

and NIR 2 (860-1040nm)] having 2.0m spatial resolution. The multitemporal images were 

acquired in August 2010 (𝑋1) and May 2011 (𝑋2). Both QuickBird and WorldView data cover an 

area including the city of Trento and its surroundings and show significant differences in terms 

of shadows and objects view angles because of the differences in the acquisition seasons and off-

nadir angles (9° and 14°, and 18° and 12.9°, respectively). The proposed approach was first 

applied to a simulated dataset to examine its properties and effectiveness in a controlled 

environment. Then, it was applied to the real multitemporal datasets to demonstrate its practical 

application performance.  

The simulated data set includes the QuickBird image taken in October 2005 (𝑋1). A sub-set of 

1000×1000 pixels was considered that includes urban area only (Figure 5.a). The input image 

(𝑋2) is constructed from the reference image by including a deliberate nonlinear distortion. 

Several simulated datasets were generated by creating multiple 𝑋2  images having different 

deformations both in vertical and horizontal directions with a sinusoidal transform. The distorted 

input images are resampled to the same size of the reference one by a bilinear interpolation. The 

experimental analysis for the different distortions showed similar results. Here we report the 

results obtained with a distortion of sinusoidal deformation in negative horizontal direction with 

4-pixel amplitude and 150-degree period, and in positive vertical direction with 3-pixel 

amplitude and 200-degree period, only. 

The real datasets were generated from the QuickBird and WorldView full scenes by defining two 

sub-scenes: i) One that covers a pure urban area, and ii) one that includes a sub-urban region 

showing both buildings and orchards. The pure urban QuickBird pair has the same reference 

image (𝑋1) as the simulated one, whereas the input image (𝑋2) is taken from the July 2006 

acquisition (Figure 5.b). The size of the input image is 1200×1200 pixels, and it totally covers 



 

 

the area of the reference one. The sub-urban sub-scene (Figure 6) is taken from the same pair of 

full scenes, but in a spatially disjoint region with respect to the urban one. The size of the 

reference (Figure 6.a) and input images (Figure 6.b) is 1000×1000 and 1200×1200 pixels, 

respectively. The WorldView sub-scenes represent the same urban and sub-urban areas covered 

by the QuickBird ones in order to validate the effectiveness of the proposed method in similar 

conditions, but with different sensors. The reference image (𝑋1) of the WorldView urban sub-

scene is a 1000×1000 pixels subset of the August 2010 image (Figure 5.c), whereas the input 

image (𝑋2) is a 1200×1200 pixels subset of the May 2011 one and covers the entire reference 

image (Figure 5.d). The sub-urban reference image is 1200×1200 pixels (Figure 6.c), and the 

input one is 1400×1400 pixels (Figure 6.d). 

 

 
 

(a) (b) 

 
 

(c) (d) 

Figure 5. Pure urban sub-scene, city of Trento, Italy. QuickBird pair: (a) Reference image (October 2005), (b) 

Input image (July 2006). WorldView pair: (c) Reference image (August 2010), (d) Input image (May 2011). 

 



 

 

In the preprocessing, all images were pansharpened by the Gram-Schmidt method [39]. In the 

simulated dataset, neither registration nor radiometric corrections were applied since the 

reference and input images were generated from the same QuickBird scene. Images in real 

datasets should be both registered and radiometrically corrected before applying the proposed 

approach instead. For minimizing the radiometric differences, a rough radiometric correction 

was applied by subtracting the mean value to each spectral band [27].  

 

 
 

(a) (b) 

 
 

(c) (d) 

Figure 6. Sub-urban sub-scene, south of the city of Trento, Italy. QuickBird pair: (a) Reference image 

(October 2005), (b) Input image (July 2006). WorldView pair: (c) Reference image (August 2010), (d) Input 

image (May 2011). 

 

B. Performance evaluation indexes 

As discussed, distributed object representative points are important to construct the reliable non-

rigid transformation model [15]–[17]. For evaluating object representative points (or CPs) 



 

 

quality, we use a Distribution Quality (DQ) index [41]. It assesses the distribution quality of 

points by generating triangulation. DQ considers the area and shape of the triangles formed by 

the object representative points. The area descriptor 𝐷𝐴 and shape descriptor 𝐷𝑆 can be defined as 
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 𝐷𝑆 = √
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𝑛 − 1
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3Max (𝐽𝑖)

𝜋
 (15) 

where n denotes the number of triangles, 𝐴𝑖  denotes the area of the triangle i, and Max (𝐽𝑖) 

denotes the radian value of the largest internal angle of the triangle i. The DQ is defined as  
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(16) 

The smaller the value, the better the distribution of object representative points (or CPs). 

Concerning the simulated dataset, where the reference and the input images are generated from 

the same QuickBird acquisition, the two images are expected to be identical when small 

simulated distortions are corrected. Therefore, the correlation coefficient (𝜌) can be employed as 

the representative similarity measure to evaluate the registration accuracy. The correlation 

coefficient 𝜌 between images 𝑋1 and 𝑋2 is calculated as: 

 𝜌(𝑋1, 𝑋2) =
𝜎𝑋1𝑋2

√𝜎𝑋1
𝜎𝑋2

 (17) 

where 𝜎𝑋1𝑋2
 denotes the covariance between the two images, and 𝜎𝑋1

 and 𝜎𝑋2
 denote the 

standard deviations of the two images. 𝜌 has range from -1 to 1, with 1(-1) indicating perfect 

positive (negative) correlation. 



 

 

The assertion above does not hold for real datasets where multitemporal images obtained at 

different dates show different radiometric properties. Therefore, the similarity-based indexes like 

correlation coefficient cannot be used for evaluating the registration performance. For the 

quantitative evaluation of performance on the real datasets, the RMSE and its standard deviation 

(STD) are calculated over checkpoints extracted by experienced image interpreters. Let 

(∆𝑥𝑖
𝑐, ∆𝑦𝑖

𝑐) be the residual difference in x- and y- directions on a checkpoint pair, the RMSE and 

its STD are estimated as 

 𝑅𝑀𝑆𝐸 = √
∑ ((∆𝑥𝑖

𝑐)2 + (∆𝑦𝑖
𝑐)2)𝑀

𝑖=1

𝑀
 (18) 

and 

 𝑆𝑇𝐷 = √∑ (√(∆𝑥𝑖
𝑐)2 + (∆𝑦𝑖

𝑐)2 − 𝑅𝑀𝑆𝐸)
2

𝑀
𝑖=1

𝑀 − 1
 

(19) 

where M is the number of checkpoints. 

 

C. Experimental setup 

First of all the simulated dataset was employed in the experimental analysis to test the sensitivity 

of the proposed method to the segmentation step when varying the segmentation parameters. 

After that, the effectiveness of the proposed approach was assessed by comparing its registration 

performance with the ones computed: 

i) Before applying registration. 

ii) After applying state of the art (SoA) manual registration. To this end, 15 CP pairs were 

manually selected by photointerpretation for each dataset, and used for estimating the 

affine transformation for warping the input image to the reference one. 



 

 

iii) After applying the SoA automatic SIFT-based registration [7]. In this case, the affine 

transformation was estimated by applying the RANdom SAmple Consensus (RANSAC) 

on CP pairs detected by the SIFT method [40]. The input image was warped to the 

coordinates of the reference one according to the estimated transformation.  

iv) After applying a fine-registration approach to automatically pre-registered image pairs 

based on regular blocks [31]. This experiment aims at assessing the effectiveness of using 

the object adaptive spatial information carried out by segments. This is achieved by using 

regular blocks (instead of segments) that do not account for the spatial correlation and 

spectral homogeneity of objects in the images. One hand, blocks may include more than 

one object leading to poor estimation of the warping function. On the other, one object may 

divide over more blocks and different parts of the same object may be associated to 

displacements with different direction and intensity values. This may lead to a large local 

distortion of the object. Since blocks are not object representative, the matching is 

estimated on RN pixels which are usually clustered together on object boundaries. This 

induces geometric distortions when they are used to construct a transformation model for 

warping. Moreover, blocks include shadows which affects the registration process (see Sec. 

II.C). 

In addition, for the urban sub-scene an analysis was conducted on the impact of performing or 

non-performing the shadow removal step when the proposed segment-based fine-registration 

approach is employed. 

 

IV. EXPERIMENTAL RESULTS 

The proposed method requires fixing some parameters. Their values have been selected based on 



 

 

empirical experiments and our previous work [31]. In detail, CVA for RN identification was 

conducted on the red and NIR bands of the VHR images [26]. For the multiscale decomposition 

necessary for estimating the RN distribution, three levels (N=3) were computed by a Daubechies-

4 non-decimated Stationary Wavelet Transform (SWT) [42]. The threshold T for the magnitude 

variable was automatically selected by applying the Bayesian decision rule for minimum error 

according to [43] and 𝑇𝑅𝑁  was set to 10−4 . The set of displacement values Ω𝑑  to estimate 

residual misalignment was determined by translating the input image in both 𝑥 and 𝑦 directions 

from -5 to +5 pixels with 0.5-pixel interval. The distorted input images are resampled to the same 

size of the reference one by a bilinear interpolation. 

A. Results: Simulated dataset 

SLIC segmentation technique was applied to the reference image 𝑋1 [32]. There are two main 

parameters to be selected for the segmentation: L (number of initial centroids) and m 

(compactness parameter). The parameter L is related to the size of segments directly. The 

parameter m describes the weight of spatial proximity versus that of color similarity when 

generating objects. In order to assess the impact of the segmentation step on the proposed fine-

registration approach, we carried out experiments with various values of L and m parameters. 

Note that the average size of buildings in Trento is around 25×20𝑚2 [44]. Thus the optimal 

number of segments is expected to be around 700 (one for each building in the considered scene). 

Figure 7 provides the behavior of estimated correlation coefficient values by varying L and m 

parameters, and thus the number of segments. As one can see, the less the number of segments 

the worse the registration performance. This is because more than one object fits into a single 

segment. When the segment number becomes larger and thus closer or greater than the average 

building size, the correlation coefficient value becomes higher. Concerning the value of the 



 

 

compactness parameter m, higher values generally showed slightly better and stable results, 

meaning that segments having compact shape work better. However, as the size of segments 

becomes small enough, the registration performance showed to be less dependent on the 

compactness. According to these experimental results, the value of L and m was set to 800 and 

40, respectively, and all the experiments in the following were carried out with these values. This 

leads to 807 segments for the simulated dataset. It is worth to recall that the number of initial 

centroids and final segments might be different due to the SLIC procedure that merges 

unassigned isolated pixels to the nearest cluster and creates a new cluster if a large number of 

adjacent pixels remain unassigned. Figure 8 presents an example of the object representative 

points (yellow crosses) and boundaries of segments. As one can see, object representative points 

are located inside the segments, as segments tend to have a compact shape. They are also well-

distributed and do not cluster to each other. 

 

 

 
Figure 7. Correlation coefficient behaviors by varying segmentation parameters (simulated dataset). 

 



 

 

 
Figure 8. Segmentation result (white boundary) and object representative points (yellow crosses) (simulated 

dataset). 

 

Once fine registration is complete, visual assessment can be performed by observing the 

chessboard image where the blocks of the reference and the warped input images are repeatedly 

interlaced (Figure 9.b). For the visual contrast on the chessboard image, the blocks of the 

reference image are displayed as true-color composition, whereas the blocks of the warped input 

image are displayed as false-color composition (i.e., NIR, red, and green bands of the warped 

input image were assigned respectively to the red, green, and blue channels). The chessboard 

image of the simulated dataset before registration was also generated for visual comparison 

(Figure 9.a). From the quality of alignment on the boundaries among adjacent blocks, we can 

appreciate better the level of registration accuracy. White circles in Figure 9 highlight where the 

quality of the registration performance can be better observed. As one can see, lines and shapes 

were precisely aligned in the chessboard image generated by the proposed method (see Figure 

9.b), whereas they were not aligned properly in the original dataset (see Figure 9.a). 

The impact of the distribution of object representative points can be judged by DQ values (Table 

I). The block-based fine registration achieved a DQ of 2.29, which is even worse than the value 



 

 

achieved by automatic detection approach. This is because RN pixels tend to cluster along 

boundaries of objects. The object representative points detected by the proposed method sharply 

reduced the DQ value to 0.27, which is even better than the one achieved by the manually 

selected CPs (i.e., 0.56). This confirms that better registration performance can be obtained by 

applying the non-rigid transformation (i.e., piecewise linear function in this paper). In terms of 

registration performance (Table I), the automatic SoA method was unable to increase the ρ value 

compared with the original non registered simulated data and the manual approach slightly 

improved it only, whereas both the fine-registration methods could considerably increase it. The 

proposed approach showed the highest ρ value as 0.997 (which is close to one) meaning that 

local distortions introduced in the simulated image have been corrected. From the visual and 

numerical evaluations, the two VHR images were precisely registered by the proposed approach 

under the condition that only local geometric distortions affect the data. This shows that the 

proposed approach is able to improve the local alignment even if registration is good over the 

entire scene.  

  
(a) (b) 

Figure 9. Chessboard images generated (a) before applying the proposed technique and (b) after applying the 

proposed technique (simulated dataset). 

 



 

 

 

TABLE I. DQ AND 𝛒 QUALITY INDEXES (SIMULATED DATASET). 

Registration method DQ 𝛒 

No registration - 0.810 

SoA manual 0.56 0.838 

SoA automatic 1.12 0.810 

Block-based fine registration 2.29 0.994 

Proposed approach 0.27 0.997 

B. Results: Real datasets 

To further validate the proposed approach, experiments were performed on the four pairs of real 

VHR multitemporal images. After radiometric and geometric preprocessing, the proposed 

method was applied. The parameters are the same as the ones established for the simulated 

dataset. The threshold 𝑇𝑆 for the shadow map generation was set to 200 and 215 for QuickBird 

and WorldView pairs, respectively. The chessboard images generated from the reference and 

warped input images are shown in Figure 10 (urban sub-scene) and Figure 11 (sub-urban sub-

scene), respectively. By observing the boundaries of adjacent blocks, one can see that the two 

images look precisely registered. 

For the quantitative assessment, the RMSE and its STD have been calculated on 20 manually 

checkpoints extracted from each image (it is worth nothing that these CPs are independent from 

the ones employed for the manual registration). The DQ value is also computed to evaluate the 

distribution quality of object representative points (and CPs). Table II and Table III show the 

registration performance calculated over checkpoints for urban and sub-urban sub-scenes, 

respectively. 

On the urban sub-scene, SoA manual and automatic registration resulted in RMSE values of 2.76 

and 3.70, and 1.52 and 2.25 pixels for the QuickBird and the WoldView datasets, respectively. 

Both fine-registration approaches could improve this performance. The registration accuracies of 

the block-based approach provided 2.08 and 1.36 RMSE values for the QuickBird and the 

WorldView datasets, respectively. Whereas, the proposed method resulted in subpixel RMSE 



 

 

values, i.e., 0.70 and 0.89, 0.75 and 0.84 pixels with manual and automatic pre-registration for 

QuickBird and WorldView datasets, respectively. The results point out the effectiveness of the 

proposed approach, which allows to accurately register the images obtaining the highest 

accuracy both when manual and automatic pre-registration is applied. In the urban sub-scene, a 

high occurrence of shadows due to buildings can be observed. Thus, it was used to evaluate the 

impact of the shadow removal step on the proposed fine-registration performance. This is 

achieved by performing segment-based fine-registration without applying shadow removal. As 

one can see in Table II, registration becomes less accurate. RMSE increased from 0.89 to 1.40, 

and from 0.84 to 0.94 pixels for the QuickBird and WorldView datasets, respectively. Figure 12 

shows a detail of the chessboard images obtained for the QuickBird urban sub-scene by 

neglecting the shadow removal step (Figure 12.a) and by considering it (Figure 12.b). In the case 

when neglecting the shadow removal step, it is possible to observe that the two buildings in the 

upper part of the images show some distortions along the top borders close to the shadow area 

and are aligned with slightly less accuracy. 

Similar conclusions hold for the sub-urban sub-scene. The proposed method achieved an RMSE 

of 0.82 and 1.15, and of 0.80 and 0.85 pixels with manual and automatic pre-registration for the 

QuickBird and WorldView pairs, respectively. The RMSE reduction when compared to the 

results of the block-based fine registration is of 0.83 and 0.50, and 0.30 and 0.25 pixels, 

respectively. The improvement on sub-urban sub-scene is slightly less with respect to the one of 

the pure urban sub-scene. This is due to the fact that object representative points detected in 

orchard part are less representative than those in the urban one. In order to independently check 

the impact of the proposed fine approach on building and orchard areas of the sub-urban sub-

scene, we estimated RMSE values from the CPs extracted on building and orchard areas, 



 

 

respectively. For the QuickBird images, the proposed method significantly improved the 

registration in the part of the sub-scene with buildings by reducing the RMSE from 3.94 and 1.72 

for the SoA automatic and block-based fine-registration approaches, to 1.5 for the proposed one. 

It achieved performance slightly higher than the block-based fine registration approach in the 

orchard part, instead. The RMSE was reduced from 1.71 for the SoA automatic approach to 0.80 

and 0.99 for the block-based fine-registration approach and for the proposed one, respectively. 

Similar results were shown in the WorldView sub-scene. In the part of the sub-scene with 

buildings, the RMSE was reduced from 3.10 and 1.10 for the SoA automatic and block-based 

fine-registration approaches, to 0.86 for the proposed approach. Whereas, in the orchard part, the 

RMSEs for the SoA automatic and block-based fine-registration approaches were reduced from 

1.97 and 0.74, respectively, to 0.68 for the proposed one.  

In addition, it is worth nothing that for both sub-scenes, the proposed approach achieved a more 

uniform accuracy over the entire scene. This is confirmed by the smaller STD values (Table II 

and Table III).  

 

 

 

 



 

 

 
(a) 

 
(b) 

Figure 10. Chessboard images generated with multitemporal datasets after applying the proposed fine-

registration approach:  (a) QuickBird and (b) WorldView images (urban sub-scene).  

 



 

 

 
(a) 

 
(b) 

Figure 11. Chessboard images generated with multitemporal datasets after applying the proposed fine-

registration approach: (a) QuickBird and (b) WorldView images (sub-urban sub-scene).  

 



 

 

TABLE II. REGISTRATION RESULTS (URBAN SUB-SCENE). 

Registration method 

QuickBird dataset WorldView dataset 

DQ 
RMSE 

(pixels) 

STD 

(pixels) 
DQ 

RMSE 

(pixels) 

STD 

(pixels) 

No registration - 16.87 2.13 - 21.95 8.24 

SoA 
manual 0.75 2.76 1.61 1.01 1.52 0.61 

automatic 2.00 3.70 2.21 1.54 2.25 1.51 

Block-based fine registration 2.08 1.52 0.60 2.13 1.36 0.69 

Proposed 

segmentation-

based fine 

registration 

SoA manual 

pre-registration 
0.41 0.70 0.32 0.36 0.75 0.38 

SoA automatic 

pre-registration 
0.40 0.89 0.37 0.35 0.84 0.32 

SoA automatic 

pre-registration without 

shadow removal 

0.28 1.40 0.71 0.27 0.94 0.48 

 

 

  
(a) (b) 

Figure 12. A detail of the chessboard images generated with multitemporal urban sub-scene after applying 

the proposed fine-registration approach: (a) without the shadow removal step; and (b) with the shadow 

removal step (QuickBird). 

 

TABLE III. REGISTRATION RESULTS (SUB-URBAN SUB-SCENE). 

Registration method 

QuickBird dataset WorldView dataset 

DQ 
RMSE 

(pixels) 

STD 

(pixels) 
DQ 

RMSE 

(pixels) 

STD 

(pixels) 

No registration - 25.51 1.66 - 37.14 7.81 

SoA  
manual 1.20 2.14 1.02 1.20 1.78 0.85 

automatic 0.81 3.77 1.51 1.75 3.01 1.82 

Block-based fine registration 2.17 1.65 0.82 2.32 1.10 0.49 

Proposed 

segmentation-based 

fine registration 

SoA manual 

pre-registration 
0.19 0.82 0.28 0.31 0.80 0.34 

SoA automatic 

pre-registration 
0.19 1.15 0.53 0.34 0.85 0.45 

 

V. CONCLUSION 

In this paper we proposed an approach to fine registration of multitemporal images that aims at 



 

 

correcting local residual misalignments after standard registration. The method defines a set of 

object representative points that accounts for the spatial correlation and the spectral homogeneity 

of pixels in the reference image. This choice results in distributed object representative points 

and allows for an accurate chasing of the local behaviors of residual misalignment. The 

displacement of object representative points is established by a multiple displacement analysis of 

residual local misalignment. The quality of object representative points is improved by 

employing shadow information. Both qualitative and quantitative experimental results 

demonstrated that the proposed approach is able to improve the registration accuracy with 

respect to the literature registration approaches if residual misalignment exists. Despite the 

approach is general and can be applied to any kind of multitemporal images, it becomes 

particularly suitable for those scenes that show a large number of objects (and thus borders) 

where standard methods tend to generate larger local distortions. This is the case of VHR 

multitemporal images acquired over urban areas, but also of medium resolution images that 

contain sharp edges. On the opposite, scenes with a small number of objects (and thus borders) 

suffer less of local misalignments after registration and thus the registration improvement by the 

proposed method is smaller. In our experiments, both kinds of scenes have been considered and 

the proposed method guaranteed a registration accuracy smaller than one pixel with a RMSE 

standard deviation smaller than those obtained by state-of-the-art methods. This confirms that the 

registration performance is better over the entire image at both average and local level. 

It is worth noting that the proposed approach may become less effective when scenes show very 

tall elements captured with large off-nadir angle. In such situations, as it happens for standard 

registration approaches, additional ancillary data (i.e., precise DSM) are required to improve the 

results.  



 

 

As a future work, we plan to design an approach to mitigate the impact of heterogeneous 

segments and to improve the robustness of the proposed method for the use with multisensor 

images. 
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