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Abstract—The classification of urban areas in polarimetric
SAR (PolSAR) data, is a challenging task. Moreover, urban
structures oriented away from the radar line of sight pose an
additional complexity in the classification process. The charac-
terization of such areas is important for disaster relief and urban
sprawl monitoring applications. In this paper, a novel technique
based on deep learning is proposed which leverages a synthetic
target database for data augmentation. The PolSAR dataset is ro-
tated by uniform steps and collated to form a reference database.
A stacked auto-encoder network is then used to transform the
information in the augmented dataset into a compact represen-
tation. This significantly improves the generalization capabilities
of the network. Finally, classification is performed by a multi-
layer perceptron network. The modular architecture allows for
easy optimization of the hyper-parameters. The synthetic target
database is created and classification performance is evaluated on
an L-band airborne UAVSAR dataset and L-Band space-borne
ALOS-2 dataset acquired over San Francisco, USA. The proposed
technique shows an overall accuracy of 91.3% . An improvement
over state of the art techniques is achieved, especially in urban
areas rotated away from the radar line of sight.

Index Terms—Deep Learning, Autoencoder, Deep Neural Net-
works, Polarimetric SAR, Classification, Urban Remote Sensing,
Representation Learning.

I. INTRODUCTION

Remotely sensed images acquired by space- or airborne
sensors have revolutionized Earth observation allowing an
unprecedented ability to image and observe large areas with
high temporal repetivity. The active properties of Synthetic
Aperture Radar (SAR) data are increasingly exploited in
monitoring applications. SAR sensors form an image by trans-
mitting radar pulses either in horizontal or vertical polarization
and receiving coherently [1]. These sensors are not dependent
on external sources for illumination. They have cloud cover
penetrating capabilities thus operate without restriction of
time and season. Polarimetric SAR (PolSAR) imaging is an
advancement made on single polarization SAR imaging [2].
The polarization of the incident wave is controlled so that it is
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restricted alternatively to either h or v transmission. Similarly,
reception is performed alternatively in h or v polarizations, so
that for every imaged pixel, four combinations of polarization
(i.e. hh, hv, vh, and vv) are captured. PolSAR imaging
can capture more information about the physical properties
of the target than single or dual polarization imaging, and
consequently, it can lead to better target characterization and
classification [3]. However, it introduces unique challenges
in the characterization of urban areas, which is increasingly
becoming important for systematic monitoring.

The first attempt at the classification of PolSAR images
was made in [4]. The authors proposed a maximum likelihood
based classification method for a PolSAR image based on a
complex Gaussian distribution and showed that the addition
of phase information from multiple channels improves the
classification accuracy. Subsequently, a neural network clas-
sifier for SAR data was proposed in [5], where a feed-forward
network with a single hidden layer having sigmoidal activation
functions was showed. It was observed that polarimetric and
machine learning theory were complementary. However, at
that time neural networks were considered computationally
intensive and would not be widely adopted until subsequent
advancements in computing technology [6] were made.

A popular classification scheme was proposed in [7], which
uses a maximum likelihood classifier based on the Wishart
distribution to perform terrain classification. Various studies
have explored the effect of speckle and sensing frequency on
the accuracy of this technique [8]. An unsupervised scheme
also based on the Wishart distribution was proposed in [9].
This has been extended by using several techniques for urban
classification. In [10] the Chernoff and in [11] the Jeffries-
Matsushita distance measures are used in conjunction with the
complex Wishart distribution. The complex Wishart distribu-
tion model for the covariance or coherency matrices is valid
for homogeneous areas. However, in extremely heterogeneous
regions, like urban areas, the Wishart assumption is seldom
true. Hence, in this case, it is desirable to use a non-parametric
classification scheme.

Polarimetric scattering power decomposition parameters can
serve as low-level features in classification [12]. Both super-
vised [13] and unsupervised [9] schemes have been proposed
that perform urban area segmentation based on decomposition
parameters. Despite the availability of several sophisticated
methods, the selection of an appropriate decomposition ap-
proach for a scene is not a trivial task [14]. An alternative
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strategy for urban classification is to use the textural infor-
mation in the SAR images [15], [16]. However, in texture
based schemes, the rich scattering information available from
polarimetry is often not considered.

Interest in neural networks was renewed with improvement
in technology. In [17] a Karhunen-Loeve transform is used to
extract features from a fully polarimetric dataset and a neural
network is used to perform classification of the scene into
urban, vegetation and terrain classes. A study about the land-
cover and soil type mapping capabilities using a probabilistic
neural network was reported in [18] using L-Band space-borne
data. Multi-temporal/multi-frequency datasets were exploited
using a neural-statistical kernel in [19] for urban classification.
An adaptive resonance theory neural network was shown to
perform computationally efficient classification of urban areas
using polarimetric data. Hybrid approaches such as combina-
tion of neural networks and fuzzy logic were demonstrated
to have good performance for SAR classification in [20] and
later specifically for identification of urban areas in [21]. A
system for classification of multitemporal SAR images based
on the integration of the SAR system physics and a radial
basis function neural network architecture is proposed in [22].
Another multi-temporal approach using single channel SAR
datasets to monitor urban land cover in major Italian cities is
proposed in [23].

Hinton et. al. introduced the concept of deep learning
in [24], which found successful application in multiple ar-
eas [25]–[28] establishing it as a new field of machine learning
research. The motivation lies in the capability of neural net-
works to break down complex learning problems into simpler
representations. Deep Learning has been recently adopted by
the remote sensing community for improved performance in
several applications [29]–[31]. Multiple natural land cover
classes were identified from a hyperspectral dataset in [32],
while objects detection was performed in optical datasets
in [29] using deep learning techniques. Additional information
is often added to the classification scheme from auxiliary data
sources like optical and multi-spectral areas [33], [34]. Deep
learning techniques are quickly gaining popularity to perform
multi-sensor data fusion as well [35], [36]. A deep learning
based approach can simplify feature and classifier design, and
allow the utilization of augmented datasets. This can help
mitigate some of the challenges faced in the classification of
urban areas from PolSAR data.

The classification of urban areas in PolSAR data-sets is
especially challenging, because of the problems related to
orientation of targets with respect to the radar line of sight.
When targets that exhibit even bounce scattering are oriented
away from the radar line of sight, the co-polarized return
is reflected away from the sensor, while the cross-polarized
return level remains the same [37], [38]. This makes such
areas hard to distinguish from natural targets like forest
and vegetation. This represents a major challenge for the
classification algorithm. In [39] a polarimetric matrix rotation
theory framework was proposed which develops a physically
significant set of rotation angle parameters. An approach based
on the rotation of the coherency matrix was proposed in [40]
to compensate for the over-estimation of volume in rotated

urban areas. In [41] a link is established between eigen-
decomposition method and model based decomposition meth-
ods to also solve the overestimation of the volume scattering
power problem. Another decomposition technique proposed
in [42] uses a mapping to create an improved representation
and further help improve target characterization. Alternatively,
some approaches utilize a separate class for identifying rotated
targets, and then merge them with the non-rotated class as a
post classification step. However, this makes it mandatory to
input training samples from rotated target areas, which may not
always be possible. The generalization ability and autonomy
of such an approach is therefore low.

In this work, a novel technique based on the target scattering
properties along with a deep learning approach is proposed for
urban area classification using PolSAR data. The properties of
polarimetric scattering are used to generate synthetic targets,
which simulate the effects of rotation about the radar line
of sight in uniform angular steps. In general, polarization
orientation angle shifts are observed in polatimetric SAR
data which are induced by terrain slopes and complex scat-
tering in urban areas. In turn, polarization orientation angle
shifts can be induced by appropriate Euler rotations to form
synthetic targets. They can be suitably leveraged for better
generalization in machine learning algorithms. The process
is used to generate a database containing simulated urban
targets. The synthetic urban target database is used to train
and extract features from a sparse stacked auto-encoder. Thus,
the information about the targets and rotation is accounted
for in the classification scheme, which helps to discriminate
rotated urban areas without requiring explicit representation
in the training stage. The advantage of using a deep learning
based scheme is that, the network can be trained incrementally
on a large volume of data, and subsequently used as a
generalization for unseen data. This leads to a computationally
efficient and fast classification phase. Given the commercial
interests in deep learning at large scale, several GPU based
specialized peripherals have been developed. These can be
used to further speed up calculations and drastically reduce
the training time over CPU bound computation.

The urban synthetic target database generation technique
applied to simulate the effects of rotation about the radar
line of sight (Section II-A). This forms the mid-level features
which then act as input to a stacked auto-encoder stage. The
training of this stage is carefully monitored using metrics
derived from information theory (viz. cross-entropy error) to
prevent over-fitting. After the training phase, the extracted
features are described and discussed in section II-B. Finally, a
multi-layer perceptron is used to perform the final supervised
classification using both the extracted features and estimated
statistical parameters (Section II-C). The overall stage-wise
procedure allows an efficient tuning of hyper-parameters for
optimizing the classification. The technique is demonstrated on
PolSAR data acquired over the city of San Francisco by the
UAVSAR and ALOS-2 platforms (Section III). It is shown that
both rotated and non-rotated urban areas can be discriminated
with an overall accuracy of about 91.3%. Moreover, the
proposed approach shows a better qualitative and quantitative
performance when compared with contemporary techniques.
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Fig. 1. Pauli composite generated from UAVSAR polarimetric data-take
acquired over Oakland, CA is show along with optical data from Google
Earth. Area A is oriented with the radar line of sight while area B is not.

II. PROPOSED CLASSIFICATION APPROACH

The proposed approach for pixel classification of PolSAR
data is shown in Figure 2. The polarimetric channels can
be considered as low-level input features that describe the
geometry and dielectric properties of the target. However,
these features are not robust enough to obtain accurate and
stable classification performance. A pre-processing step is
applied to transform them into more robust mid-level features,
but this expands the data volume many-fold. A deep learning
network is used to extract high-level features which are both
efficient and robust with respect to the mid-level ones. In

literature both supervised structures such as CNNs [43] and
unsupervised structures such as auto-encoders [32], DBNs [44]
are used to this end. The mid- or low-level features are given
as input to the network at the bottom layer and features are
extracted from either the top or intermediate layers. The fea-
tures are then classified using a suitable supervised classifier.
In general, there are two kinds of classifiers. Hard classifiers
such as SVMs which directly produce the classification label
as output at every pixel, and soft classifiers such as logistic
regression that can fine-tune the whole pre-trained network and
predict the class labels as a probability. The proposed method
aims at classifying PolSAR images to identify urban areas
and separate them from their surrounding land-cover classes,
forest, bare-soil and water bodies. Segmented urban area maps
can subsequently be used to characterize urban density, land-
area usage, urban sprawl, and land cover change in temporal
data amongst other applications.

The difficulty in the classification of urban areas from
PolSAR data arises because of the complex scattering of
the polarized radar pulse from urban structures [45]. This
is especially pronounced when they are oriented away from
the radar line of sight. Range and azimuth slopes can cause
the polarization to rotate about the radar line of sight, which
causes the erroneous identification of the scattering mecha-
nism. For instance, scattering observed from urban structures
oriented away from the radar line of sight exhibit high cross-
polarization as shown in Figure 1. This presents a confusion
between urban areas and vegetation leading to incorrect classi-
fication. To overcome this challenge, a novel synthetic rotation
based approach is proposed which simulates other rotated
synthetic targets based on those present in the scene. This
allows the machine learning algorithm to better generalize, be

Fig. 2. Framework for pixel classification of PolSAR images using a deep learning architecture.

Fig. 3. Block diagram of the proposed approach.
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Fig. 4. Schematic diagram of the PolSAR data pre-processing and physics based generalized urban target database generation step.

more robust and successful in discriminating oriented urban
areas.

The classification process consists of three stages as shown
in Figure 3. The first stage deals with the pre-processing of
the PolSAR data and the generation of a generalized synthetic
urban target database by transforming the input data to obtain
a more general representation of the target (sub-section II-A).
The second stage is an unsupervised feature learning step,
which automatically learns an optimal representation of the
generalized database using a stacked auto-encoder network
(sub-section II-B). Finally, the third stage extracts optimal
features from the previous stages, along with some statistical
parameters and performs a supervised classification by using
a multi-layer perceptron (MLP) network (sub-section II-C).

A. Generation of Generalized Synthetic Urban Target
Database

Measurement by a fully PolSAR system commonly involves
the transmission of horizontally (h) and vertically (v) polarized

radar pulses followed by their coherent reception. The polar-
ization state of an incident electromagnetic wave is altered
on scattering from a complex radar target. This alteration is
a function of the physical and geometrical properties of the
target itself, which in turn can serve to characterize it. This
scattering (or Sinclair) matrix is in the (h, v) polarization basis
and has the form:

S =

[
Shh Shv

Svh Svv

]
(1)

The full polarimetric scattering matrix is available for each
imaged pixel and consists of four independent measurements
(hh, hv, vh and vv), with the phase relations between them
recorded [46]. Generally, in polarimetriy it is assumed that the
targets are reciprocal. In the case of symmetric mono-static
scattering, we can thus constrain the scattering matrix to be
symmetric, i.e. Shv = Svh.

The corresponding kp-target vector is expressed as,
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Fig. 5. Auto-Encoder block scheme with Layer 4 extracted as the output feature-set.

kp =
1√
2

[
Shh + Svv Shh − Svv 2Shv

]T
(2)

where the superscript T denotes transpose. In the mono-static
backscattering case, we can construct a 3×3 coherency matrix,
T, as

T = k.k∗T (3)

T =

t1 t2 t3
t∗2 t4 t5
t∗3 t∗5 t6

 (4)

where

t1 = |k1|2 =
1

2
|Shh + Svv|2

t2 = k1k
∗
2 =

1

2
|(Shh + Svv)(Shh − Svv)∗|2

t3 = k1k
∗
3 = (Shh + Svv)S∗hv

t4 = |k2|2 =
1

2
|Shh − Svv|2

t5 = k2k
∗
3 = (Shh − Svv)S∗hv

t6 = |k3|2 = 2|Shv|2

(5)

L independent and identically distributed samples are av-
eraged to enhance the signal-to-noise ratio while forming the
3× 3 L-looked T as,

T =〈[T]〉 =
1

L

L∑
i=1

kpi .k
∗T
pi

(6)

where 〈...〉 denotes temporal or spatial ensemble averaging,
under the assumption that the signal is ergodic. Radar images,
as a consequence of their coherent nature, are subject to a
speckle pattern. Multilooking allows the exploitation of the
second order statistical information while providing prelimi-
nary speckle suppression. A refined Lee filter [47] is applied to
the dataset as a pre-processing step to further suppress speckle
and improve classification performance. This filter is based on

the local statistics of the data and has a good edge preservation
ability allowing the retention of details.

The orientation of the target from the radar line of sight, or
the presence of azimuth slopes can induce Polarization Orien-
tation Angle (POA) shifts. These can lead to misinterpretation
of the scattering characteristics of the target. This is especially
common in urban areas oriented at an angle with respect to the
radar line of sight and affects the classification performance.
The rotation of the T can help to optimize and extract more
polarimetric information which, in-turn helps to improve the
characterization of the target scattering mechanism [12]. If we
consider a target which is symmetrical about the radar line of
sight, the rotation of such a target about the radar line of sight
can be represented by the unitary rotation of T by a matrix
rotation model expressed as

T(θ) = R(θ)TR(θ)−1 (7)

where the special unitary rotation matrix R(θ) is given by

R(θ) =

1 0 0
0 cos 2θ sin 2θ
0 − sin 2θ cos 2θ

 (8)

The orientation angle θ is estimated either by minimizing the
t6 element given in (5) [48] or by maximizing a stochastic
distance measure between the t6 and the t4 [49].

Conversely, if the T matrix is rotated using unitary rotation
as in (7), it would simulate the effect of physically rotating
the target while measuring it with a polarimentric antenna.
That is, the result of rotating the target T by R(θ) is the T
matrix that would be obtained with target having orientation
θ from the radar line of sight during measurement. Thus,
it is expected that by synthetically rotating and storing the
rotated T, we can generate a database of synthetic targets
based on those detected in the scene. The rotations are done
in discrete steps as show in Figure 4 before being collated
in a database. The granularity of the rotation steps is directly
proportional to the size of training dataset and the capacity of
generalization. If the rotations are closely spaced, the database
will require more memory, but the generalization ability will
be enhanced. However beyond a point, the gain in performance
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is not justifiable by the rise in computational cost. Therefore a
step of 3◦ is selected as a trade-off between performance gain
and memory requirement, but other choices are possible. When
these are used in the training of the learning algorithm, they
improve the generalization capability of the network, allowing
it to recognize targets with orientation not present in the
original training data. Thus, the rotation based synthetic target
database creation strategy in conjunction with a deep learning
network architecture improves the classification accuracy of
urban areas.

The 3 × 3 coherency matrix T, which is hermitian by the
nature of its construction, contains complex valued quantities
in its off-diagonal elements. In the complex-number space the
solution of differentiation is not guaranteed to be analytic.
This poses a problem in the back-propagation step while using
neural networks. An alternative approach would be to separate
the real and imaginary parts of the elements of T and use
them as input for the network. However, splitting a complex
number to process in real-valued neural networks leads to a
sub-optimal representation of the domain of the problem [50].
To get around it, we convert the complex valued T matrix
to the real valued Mueller representation. The Mueller matrix
M is a 4 × 4 real matrix, that can be obtained by a linear
transformation of the T matrix as

M = 1
2


t1 + t4 + t6 t2 + t∗2 t3 + t∗3 −i(t5 − t∗5)
t2 + t∗2 t1 + t4 − t6 t5 + t∗5 −i(t3 − t∗3)
t3 + t∗3 t5 + t∗5 t1 − t4 + t6 i(t2 − t∗2)
−i(t5 − t∗5) −i(t3 − t∗3) i(t2 − t∗2) −t1 + t4 + t6

 (9)

M is a real valued matrix with 16 elements, which reduces
to 10 unique real elements assuming reciprocity conditions.
This property makes the representation suitable for the purpose
of feature learning by neural network structures. Additionally
the Mueller matrix is also closely related to the physical
properties of a target [51]. This makes it a reasonable choice
for identifying the scattering mechanism from targets. In this
work, each rotated T matrix is thus converted to its M
representation. M matrices are then collated together as a
database of synthetically generated generalized urban targets to
serve as input to subsequent stages of the learning algorithm.

B. Unsupervised Feature Extraction from a Stacked Auto-
Encoder Network

The second stage of the proposed classification method
consists of an unsupervised sparse stacked auto-encoder (AE)
which is represented in Figure 5. An AE is a feed forward,
fully connected, non-recurrent neural network with an input
layer, an output layer and one or more hidden layers as shown
in Figure 6. The output layer has the same number of nodes as
the input layer. During the learning phase the AE is trained to
reconstruct for each pixel i the input Xi in the output X ′i
The error is back-propagated and minimized over multiple
iterations.

The collated synthetic urban target database from the pre-
vious stage is made available to the AE as input. The training
is carried out in an unsupervised manner. At the end of the
training phase, the weights Wr of the central hidden layer

Fig. 6. Structure of a general auto-encoder with fully connected hidden layers.

Z, are extracted to form an efficient feature representation of
the dataset. This stage takes the n × 10 dimensional collated
target dataset X , where n is the number of synthetic rotations,
and reduces it to an m dimensional feature set Wr, where m
is the number of nodes in the representational layer Z and
m < n × 10. In practice the AE stage integrates information
about the rotational response of the target and encodes it into
a compact representation. Thus AE acts as an unsupervised
feature learning stage and is able to automatically extract an
optimized feature set from the input data. This self-learning
of the features based on the training data is a hallmark of
deep-learning based architectures. This step gives the network
greater generalization ability allowing it to respond to different
orientation configurations of the targets. Thus once trained on
a target that is perpendicular to the radar line of sight, it can
respond to the same target encountered at an orientation, even
if such a configuration was not present in the training samples.

To understand the action of the AE let us consider a
learning problem where a labeled training set (Xi, li) is
available, where Xi represents the input vector and li is the
corresponding label for the ith pixel. The label is not required
for the unsupervised AE stage, but it is necessary for the
subsequent classification. The network consists of individual
neurons that are interconnected such that it is possible to define
a complex, non-linear, non-parametric hypothesis hW,b(x). W
is the weight matrix and b is the vector of bias terms for
the network. Both these parameters are fitted to the data over
the training process. A neuron is a computational unit that
takes as input Xn

i = X1, X2...Xn and an intercept term
b, and produces the output, called hypothesis, hW,b(X) =
f(W ᵀx) = f(

∑n
i=1Wixi + b), where f : < ⇒ < is called

the activation function or nonlinearity.
Traditionally the sigmoid σ(x) = 1/(1+e−x) has been used

as the activation function. It takes a real-valued number x and
returns a value within [0, 1], according to the magnitude of
the input. In practice this has some drawbacks. The output
of the sigmoid saturates at either tail of 0 or 1 and the
gradient at these regions tends to zero, which causes a very
small output to be back-propogated. Additionally, if the initial
weights are large, the neuron can quickly become saturated
during training. The sigmoid function also is not zero centered.
During back-propogation if the input data to the neuron is
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always positive, i.e. x > 0, then the gradient weights will
either become all positive, or all negative. This could introduce
undesirable oscillation dynamics in the gradient updates for
the weights. To overcome the non-zero centering problem one
may use the tanh activation function, f(x) = tanh(x) =
(ex− e−x)/(ex + e−x) which has the limits [−1, 1]. However
this function is subject to saturation when the input has a
large dynamic range as it is common in SAR data. A non-
saturating nonlinearity like the Rectified Linear Unit (ReLU)
activation function [52] can be used to overcome the saturation
problem. The ReLU f(x) = max(ε, x) simply thresholds the
data at ε, typically ε = 0. The differentiation of the function
is defined as df

dx = {1 : x > ε, 0 : x < ε} Another
advantage is that the training time for saturating activation
functions is larger with the gradient descent algorithm than
for its non-saturating counterparts [53]. Since deep learning
algorithms use several layers, faster training of ReLU units
(as compared to sigmoid or tanh) translates to multi-fold
reduction in training times [54]. Also, the computation of the
output of a ReLU is simple as it does not involve evolution
of exponentials like in the sigmoid and tanh, allowing for
in-place computation and requiring less computer memory.
A disadvantage of ReLU units is that, when subjected to
large gradients they can update their weights to such a state
that they can not be activated by subsequent inputs. The
neuron is said to ’die’ in the training. To overcome this, the
ReLU units can be modified to include a ‘leakage’ term ε,
f(x) = 1(x < ε)(αrx) + 1(x ≥ ε)(x). This modification
causes the units to have a small negative slope, αr when
the input is below the threshold, i.e. x < ε. This allows the
neuron to recover even if its weight has been updated to a
high value by a particular input, over subsequent inputs. The
differentiation can be defined as

df

dx
=

{
1 : x > ε
αr : x ≤ ε

The data must be given as input into the AE in random
order to prevent it from memorizing the sequence in which the
data are presented. The cross-entropy error in each iteration
between the output of the AE and the input data is used to
monitor the training. A progression towards zero indicates
that the network is properly learning, while a stable value
indicates that the learning stage is complete. The rate of
adaptation of the network is determined by the set learning
rate (α). α is gradually reduced as the training progress. This
is done by multiplying it by a set size multiplier (Γ). After
a given number of iterations α is updated as α = α × Γ.
The sparsity of the network is controlled by setting ρ, which
is the expected activation of a hidden unit averaged across
the training samples. As ρ → 0 the representation becomes
increasingly sparse, controlled by the adjustment of b. The
performance of the stochastic gradient descent algorithm can
be improved by introducing of a momentum term (µ). Deep
architectures tend to have steep slopes in the objective function
near the local optima. This causes the gradient descent to
oscillate and leads to a slow convergence. By introducing the
µ term, these oscillations are dampened.

Fig. 7. Stage 3: Final classification is done using a Multi-Layer Perceptron
network with parameters extracted from the data.

The AE structure is now a close representation of the
input data, and the internal nodes of the AE can be used as
features in the classifier. The weights of the representation
layer Wr of the AE are used as features after completion
of the training phase. They are made available as input to the
subsequent stage of the method. Wr is a sparse representation
incorporating possible rotations of the targets present in the
scene. This gives it a better generalization ability over the
original data-space. A sparse representation also simplifies
subsequent classifier design and improves accuracy due to
improved inter-class separation [55].

C. Classification using Multi-layer Percepton Network

The third stage of the method consists of a multi-layer
percepton (MLP) fully connected feed forward neural network
(Figure 7). The network is trained by a supervised learning
algorithm that takes training data and labels as input and
attempts to classify unlabeled additional unseen data-points.
Here, the input to the MLP are the features Wr extracted
from the previous stage and two statistical parameters α0

ij and
γ0ij computed from the data. These parameters are generated
by fitting the G0I distribution to the hh, vv and hv intensity
bands [56] over a moving window for each pixel (i, j) in
the image. The three αpq

ij and γpqij parameters are averaged
to compute the final values:

α0 = (αhh
ij + αvv

ij + αhv
ij )/3 (10)

γ0 = (γhhij + γvvij + γhvij )/3

Here pq represents the individual polarization bands hh, hv, vv
and parameters αpq

ij and γpqij ∈ R. These statistical parameters
add textural context to the classification step improving the
accuracy. The α0

ij < 0 serves as a measure of the homogeneity
(smoothness) of the area while the γ0ij is the scale parameter
of the distribution and thus is related to the brightness of the
area [57]. For values of α0

ij near zero, the imaged area is very
heterogeneous, as in the case of urban areas. The value of α0

ij

diminishes to its lowest value for homogeneous areas. The
parameter γ0ij can help further discriminate between various
type of targets.

The training labels are derived from ground truth infor-
mation about the area. A three layer network is used to
generate the final classification. The network weights and
biases are randomly initialized at each iteration using the
‘Xavier’ strategy [58]. Since the inputs to this stage have
smaller dynamic range, and because the goal is to classify the
data into labels, we use sigmoid saturating nonlinearities. The
network undergoes a training phase using the labeled samples,
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extracted features and the statistical parameters. It is iterated
to maximize the training accuracy on the test samples. Once
the network weights are finalized, the unlabeled pixels in the
dataset are classified to generate the thematic map.

III. DATASET AND EXPERIMENT DESIGN

Two datasets are primarily used in this study. A subset
(image sub-fragment) of the UAVSAR L-band SAR dataset
has been used to study the experiment parameters and actions.
The classification is carried out on larger a ALOS-2 L-band
SAR image with extensive performance analysis.

A. Dataset description: UAVSAR L-Band dataset

The first dataset is a Single Look Complex L-Band
UAVSAR dataset acquired over the San Francisco bay area,
USA on November 13, 2012, with a resolution of 0.6 m in
azimuth and 1.6 m in range. The look angle ranges from 25◦

to 60◦ with a range swath of 20 km [59]. This is an air-
borne sensor capable of acquiring very high resolution images.
The data are multi-looked 3 times in range and 12 times in
azimuth to bring them to a resolution of 7.2 m in azimuth and
5 m in range to make them comparable in spatial resolution
to the space-borne ALOS-2 dataset. A 1000 × 1000 pixel
representative portion is used for these experiments. This data-
set is freely available and has similar properties to the space-
borne ALOS-2 sensor, so it was used to analyze the action of
the network. The subset has a prominent urban area rotated
with respect to the radar line of sight, which was used to check
the effectiveness of the technique.

B. Dataset description: ALOS-2 L-Band dataset

The second dataset is an ALOS-2 image acquired on March
24, 2015 over the city of San Francisco, USA with a resolution
of 3.2 m in range and 2.8 m in azimuth. The dataset is multi-
looked 3 times in range and 2 times in azimuth to generate
an image of resolution 9.6 m in range and 5.6 m in azimuth.
The radar operates in L-Band with λ = 24 cm. The area
is heavily urbanized and has high coverage with airborne
and space-borne polarimetric radar creating a sizable well
documented data-pool that can be exploited for various deep
learning techniques. Consequently, this area has been featured
in several studies on PolSAR [12], [60], [61].

By operating in L-Band, ALOS-2 has increased penetration
capability and is less susceptible to scattering due to surface
roughness. As a result, return from areas of smooth vegetation
such as parks and golf courses appear to have undergone spec-
ular reflection, and consequently have very low return power
levels. The average backscattered power in these areas for the
co-polarized channels, σ0

hh ≈ −16dB, and σ0
vv ≈ −15dB.

This is comparable to that of still water, which is about
σ0
hh ≈ σ0

vv ≈ −19dB and is much lower than the power
returned from forest areas, where σ0

hh ≈ 6dB and σ0
vv ≈ 7dB.

Consequently the areas having very low backscatter power
tend to be classified as belonging to the water class. This
phenomenon is a function of the incidence angle of the sensor
and the relative roughness of the surface with respect to the
sensing wavelength.

(a)

(b) (c)

Fig. 8. (a) A map with the dataset footprint shown with the (b) α0 and (c)
γ0 images extracted from a UAVSAR L-Band dataset collected over Oakland.
These serve as textural information to the classifier.

Fig. 9. Effect of layer depth on training of AE in terms of cross entropy
error versus the number of layers.

C. Experimental Set-Up

‘Urban’, ‘Forest/vegetation’ and ‘Water’ are the classes
chosen in this study. These classes are usually an important
input for various applications related to urban classification.
Disaster management studies, urban sprawl estimation, target
and infrastructure recognition are examples of applications
that benefit from accurate identification of these classes. The
urban class comprises of man-made structures which height
is equal to or greater than the sensing wavelength causing the
incident EM wave to undergo even number of bounces from
the surface surrounding the structure, and the structure itself
before returning back to the sensor. This includes structures
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like houses, walls, masts etc. These targets are characterized in
PolSAR data by a strong double bounce return because of their
constituent materials and geometry [62]. In the context of this
study, the ‘Forest / Vegetation’ class is used to refer to areas
of natural vegetation, open spaces between urban areas with
light to almost no vegetation, parks etc. In PolSAR, this class
is characterized by diffused scattering which does not change
significantly with rotation about the radar line of sight. The
‘Water’ class is made up of water bodies that are characterized
by specular or surface reflection depending on the condition
of the surface. At longer wavelengths, some smooth natural
areas have a very low return and tends to be misclassified as
water. The proportion of such pixels is however under 0.2%
of the total as estimated from the ground truth.

As a part of the SAR pre-processing, a refined Lee Filter
with a window size of 3× 3 is applied to the dataset after the
application of appropriate multi-looking for the suppression
of speckle. The areas under consideration have relatively flat
topography, and hence no radiometric terrain correction is
applied. Appropriate compensation [63] may be applied in
case of highly undulated areas. The synthetic target database
is generated by rotating T with a step size of 3◦ in the range
−22◦ to 22◦. Considering a finer sampling of 1◦ increases the
data volume many-fold without a corresponding appreciable
increase in classification accuracy.

The network used in stage 2 of the proposed method is
a six layer stacked sparse auto-encoder. To determine the
optimal number of layers the dataset was trained on different
AE topologies of increasing depth, but with the same hyper-
parameters (α = 0.01,Γ = 0.1, µ = 0.95). The cross-entropy
error at the end of training was analyzed to compare the
architectures. From the plot in Figure 9 it is seen that a 6-
layer auto-encoder is the most suitable for this dataset. From
input X to output X ′, the network has 1024, 512, 256 nodes
in layers 1, 2 and 3, respectively, forming the encoder, and
512, 1024 nodes in layer 5 and 6 forming the decoder. The
central 64 node layer 4 contains the learned representation.
The non-linearity of each encoder is a ReLU with a leakage
parameter αr = 0.01 allowing the handling of large dynamic
range input without saturating or becoming non-responsive
over many iterations. The sparsity hyper-parameter of the
network is set to ρ = 0.15 which ensures that the average
activation of each hidden neuron is approximately near 0. The
network weights and biases are randomly initialized at the
beginning of each iteration using the ‘Xavier’ strategy [58].
The network is iterated 200, 000 times with a batch size of
1000. This ensures that the complete data set is passed multiple
times though the auto-encoder for better generalization. To
ensure that the learning machine is not memorizing the order
in which the data are being fed, this order is randomized. The
base learning rate is set to α = 0.001 and the update step
multiplier is set to Γ = 0.1. The step-size is chosen to be
40, 000 to allow for sufficient number of epochs before the
learning rate is updated. The gradient descent momentum is
set to µ = 0.85. The value of batch size is adjusted depending
on the size of the image.

In stage 3, a three layer MLP network consisting of 256
hidden nodes in the first layer, 512 in the second layer and

8 in the last layer is used for the final classification. When
common PolSAR visualization techniques (i.e. Pauli RGB)
and decompositions are applied, vegetated and rotated urban
areas appear to be visually similar. This makes it more difficult
to successfully discriminate and delineate rotated urban areas
in a scene as compared to areas that are perpendicular to the
radar line of sight. Hence no training areas are considered
from areas which do not show dihedral (red) scattering in the
Pauli RGB image.

The weights from the representational layer of the previous
stage are given as input to the MLP along with and two
statistical texture parameters, α0 and γ0 (Figure 8). A window
of 9 × 9 has been used for extraction of the parameters. The
size of the window is determined by the resolution of the
image and dimensions of the targets on the ground. These add
more texture information to the classification scheme helping
discern urban areas better. For this network α = 0.01 (not
to be confused with the statistical parameter α0

i,j), Γ = 0.1
and µ = 0.95. About ∼ 5% of the total pixels in the data-set
is used for training the MLP. The MLP network is iterated a
maximum of 100,000 times.

Five experiments are carried out on UAVSAR and ALOS-2
datasets. First, the impact of textural parameters is examined.
The AE is trained and the weights of the representational
layer are extracted. The MLP classification is performed both
with and without the introduction of textural parameters. The
difference in classification performance is evaluated in Section
IV-A. Second, the impact of the synthetic target generation is
studied. The AE is trained on T as usual. After the completion
of training the weight update is stopped and a T matrix rotated
synthetically by 5◦ and 9◦ degrees is given as input. The
activation pattern of the neural network in the case of permuted
data is compared with the pattern when no rotation is applied
(Section IV-B). Third, classification and performance analysis
is conducted on the ALOS-2 dataset (Section IV-C). Accuracy
assessment is performed both quantitatively and qualitatively.
Fourth, the response of one node of the representational layer
is extracted from the AE and plotted to visualize the learned
representation (Section IV-D). Fifth, the results of the proposed
method are compared with other classification techniques
(Section IV-E).

IV. RESULTS

The impact of textural parameters and synthetic rotation
for target generation on the performance of the network are
examined on a subset of the UAVSAR dataset. The analysis
of classification performance using the proposed method was
conducted on the full ALOS-2 scene along with the analysis
of the learned representation. Finally, the performance of
the proposed technique was compared with state of the art
classifiers for PolSAR data.

A. Impact of Textural Parameters

One of the advantages of the deep-learning based approach,
is that useful parameters can be included in the later stages
of the process. This is in contrast to approaches, where the
information must be included at the beginning, causing an
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(a)

(b)

Fig. 10. Classified map derived from an UAVSAR full polarimetric L-Band
dataset (a) with and (b) without the use of α0 and γ0 as textural features.

increase in dimensionality and classification difficulty, making
a feature selection step necessary [64], [65]. Although the
inclusion of the textural parameter only slightly improves the
overall classification accuracy its inclusion can help discern
low-density oriented urban targets. In Figure 10 the classifi-
cation map of the UAVSAR data-set is presented, both with
and without the inclusion of the textural parameters α0 and γ0
in the MLP stage. The overall improvement in classification
accuracy due to the inclusion of textural parameters is small
(∼ 3%). However, for areas of low density sub-urban housing
interleaved with vegetation and streets, an improvement is
observed (black box in Figure 10) because of benefit from
the neighborhood information.

B. Impact of Synthetic Rotation

A histogram of measured orientation angles in the UAVSAR
dataset is shown in Figure 11. It can be seen that most of
the targets are oriented between −10◦ and 10◦. The average
orientation angle of this subset is approximately 5◦. The
orientation angle is computed by the estimation method given
in [48]. To visualize the action of synthetic rotation, T is given
as input to the trained AE stage after rotation by 0◦, 5◦ and
9◦ degrees separately. As an example, the 11th element of the
feature vector is extracted, after completion of the training
stage of the AE and is presented in Figure 12. In the case of
the pixels in which the synthetic rotation angle matches the
actual target orientation on the ground, the reconstruction error
of the AE is lower than the average one over the scene. The

Fig. 11. Distribution of the estimated Orientation angles of the region imaged
in the UAVSAR L-Band dataset acquired over Oakland, USA.

(a) (b) (c)

Fig. 12. A section of the UAVSAR image is trained using the auto-encoder
network and the extracted features are plotted when input corresponds to a
synthetic rotation of (a) 0◦ (b) 5◦ (c) 9◦ respectively. The actual value of the
output of the ReLU node has been scaled from 0 to 1 for representation as
an image.

areas on the ground that actually correspond to the synthetic
rotation (0◦, 5◦ and 9◦) are closer to zero. The AE was only
trained on the input dataset. However it is able to provide an
appropriate response when an unseen and arbitrarily rotated
version of the input data is introduced. This implies that the
application of synthetic rotation to a target is equivalent to the
case when such an oriented target is actually present in the
training data. Thus the generalization capability of the AE is
improved.

C. Analysis of Classification Performance

The Pauli composite image generated from the dataset is
shown in Figure 15 along with the training areas superimposed
on it. They are derived from the interpretation of aerial
imagery (ESRI/Bing Maps), topographical maps (USGS) and
the Pauli composite and are marked with red polygons for
urban areas, green for forest/vegetation areas, and blue for
water. The pixels enclosed in these polygons form the ground
truth. The proportion of ground-truth pixels in each class is
approximately the same, and in total, they constitute less than
∼ 10% of the total pixels in the image. These are randomly
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Water Forest Urban

Fig. 13. Classified map of San Francisco derived from an ALOS-2 full
polarimeteric L-Band dataset.

divided into three groups: training, test and validation. Pixels
in the training set are used in the training of the network. At
regular intervals within the training iterations, the process is
halted and the test pixels are used to evaluate the accuracy
of the network. The difference between the training and test
accuracy is used to ensure that the training phase is progressing
without over-fitting or memorization. To quantify the final

TABLE I
CONFUSION MATRIX AND ACCURACY STATISTICS FOR ALOS-2 SAN

FRANCISCO, CA DATASET USING THE PROPOSED SUPERVISED
CLASSIFICATION SCHEME INCORPORATING TEXTURAL INFORMATION

Urban Water Forest Prod. Acc.
Urban 84.20 0 4.39 95.45
Water 1.3 96.86 3.41 96.00
Forest 14.5 3.14 92.20 84.41
User Acc. 84.85 96.97 92.93
OA 91.63 %
Kappa 0.85

performance of the classifier, validation pixels are employed.
The confusion matrix is and is presented in Table I.

The dataset is classified with an overall accuracy of 91.63%
and a Kappa coefficient of 0.85. Urban areas are classified with
an accuracy of 84.2%. The urban class is mostly confused with
the forest class. This is primarily due to the fact that both,
urban areas rotated with respect to the radar line of sight and
vegetation have higher cross-polarized return. Certain small,
smooth vegetated areas like parks. have been misclassified as
the water class, contributing to the error of 3.14% due to the
low backscattered power as previously highlighted.

The resultant map is presented in Figure 13. Reference
aerial photographs are given in Figure 16. We can see a
close correspondence between the areas that appear to be
urban in the optical aerial images and the classification result.
Detail subsets from selected areas of the classification output
along with the corresponding aerial imagery, representing the
ground truth, are shown in Figure 14. This demonstrates the
performance of the proposed algorithm on the considered
dataset. The resolution of this imagery is ∼ 0.3m and is
significantly higher than that of the classified map. However,
reasonable correspondence can be seen between the two.

The subset shown in Figure 14a represents a dense urban
area that is oriented at an angle ∼ −20◦ from the radar line
of sight, marked as Area ‘A1’ in the image. Due to this large
orientation, this region is often misclassified [66], however it

(a) (b) (c) (d) (e)

Fig. 14. Crops of the classified map shown alongside corresponding aerial imagery courtesy ESRI/Bing Maps.
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is classified correctly using the proposed method. The subset
shown in Figure 14b shows the Golden Gate bridge, marked
as ‘A2’ and some surrounding areas. Apart from the return
from the bridge itself, multi-path returns from reflections from
the bridge and the water surface can also be seen. The radar

Fig. 15. Pauli RGB image constructed from the ALOS-2 dataset collected over
San Francisco, USA is shown with the ground-truth areas. The urban class is
enclosed in red, the forest/vegetation in green and water in blue polygons.

echoes from the vicinity of the bridge are quite strong and have
a high value of γ0. This causes the third stage of the classifier,
which takes γ0 as an input, to classify this pixels immediately
under the bridge as forest. Figure 14c shows a lake surrounded
by urban and vegetated areas. This is marked with a white
outline on the aerial images and classification maps. It can be
seen that the lake is well discriminated from other classes. As
discussed earlier, the smooth vegetated surfaces near the lake

Fig. 16. Aerial imagery collected over San Francisco, USA depicting the
extent covered by the ALOS-2 dataset courtesy of ESRI/Bing Maps.

(a) Proposed (b) SVM RBF (c) SVM Polynomial (d) Wishart with POC (e) Wishart

Fig. 17. Comparison of common classification techniques with the proposed method.
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Fig. 18. Extracted feature map for one of the internal nodes in the
representation layer from the trained AE.

are misclassified as water due to near specular reflection at
L-band frequencies and low incidence angles.

The area marked as ‘A3’ in the subset shown in Figure 14d
consists of a park between two regions of high density urban
areas. It can be seen that the area of vegetation is well
identified. The high resolution of ALOS-2 allows the faithful
classification of small features in this park as well. To further
exploit high resolution datasets like ALOS-2 for classification
of fine details, it is possible to avoid filtering operations in
the SAR pre-processing step. Since, the proposed technique
is pixel based, it does not cause a degradation in resolution.
Subset shown in Figure 14e is of a jetty. The white arrow
marks a pier structure which has interleaving perpendicular
cylindrical masts. This shows a high double bounce return
which does not reduce with rotation of the target about the
radar line of sight. This enables the classifier to correctly
identify this structure.

D. Analysis of the Learned Representation

To understand the information encoded in the representa-
tional layer of the AE, the response of one of the nodes
it is extracted and shown in Figure 18 after the completion
of the training phase. This is one of the many internal
representations encoded by the network. Since the network
is initialized randomly, the exact position of the internal node
containing information and its encoding will change each time
the network is trained. However, in general, it is observed that
each internal node learns a different encoding of the data-
set. The representation is sparse in nature with only small
percentage of nodes containing useful information for classi-
fication. Area ‘A4’ consists of urban areas both perpendicular
to and oriented away from the radar line of sight. Although
they appear distinct in the Pauli visualization (Figure 15),
the trained network evokes a uniformly strong response from
the area. Thus the AE is able to combine the information
from the synthetically rotated urban target database to form

TABLE II
CLASS-BY-CLASS TEST-AREA ACCURACY STATISTICS FOR ALOS-2, SAN
FRANCISCO, CA DATASET FOR THE PROPOSED TECHNIQUE, SVM WITH

RBF KERNEL, THE SVM WITH POLYNOMIAL KERNEL AND THE WISHART
SUPERVISED CLASSIFIERS.

Proposed SVM-
RBF

SVM-
Poly

Wishart
+ POC

Wishart

Urban 86.2 64.2 58.5 59.1 55.6
Water 98.1 96.4 96.3 92.1 92.1
Forest 86.1 84.2 83.6 83.2 82.8
OA 90.8 81.6 79.4 78.14 76.83

an internal representation that is independent of the target
orientation. This allows for the accurate classification of the
urban areas. In contrast, homogeneous areas like Area ‘A5’
have a lower response allowing them to be distinguished in
the final classification.

E. Comparison with State of the Art Classifiers

The proposed method is compared with other commonly
used SAR classification techniques. The same training areas
were used to train all classifiers.

The class-by-class accuracy is reported in Table II and the
results are presented in Figure 17. The SVM classifier was run
with two kernels: a polynomial kernel (SVM-Poly) and a RBF
kernel (SVM-RBF). The parameters of the RBF kernel were
determined by the method described in [67]. The polynomial
kernel used has a degree of 4. The Wishart classifier was run
both with Polarization Orientation Correction (Wishart+POC)
and without (Wishart). The proposed classifier has an urban
area classification accuracy of 86.2%. It outperforms the SVM-
RBF, SVM-Poly Wishart+POC and Wishart classifier which
have urban area accuracies of 64.2%, 58.2%, 59.1% and 55.6%
respectively. The POC is able to improve the discernibility.
However, targets that are oriented significantly with respect to
the radar line of sight are still misclassified.

The areas shown in the subset, marked ‘A’ and ‘B’, are
highly urbanized as seen in the optical image collected over
San Francisco (Figure 16). The cross-polarized return from
area ‘A’ makes it difficult to discern this from actual areas of
vegetation. However, due to the synthetic rotation the proposed
scheme is able to account for the orientation information and
more successfully classify the region than the other methods,
while maintaining high textural fidelity. The mean orientation
angle of area ‘B’ is almost perpendicular to that of area
‘A’, and the region is characterized by large open spaces
between man-made structures. The mixed nature of the pixels
makes classification more difficult. As seen in Figure 17a, the
proposed technique correctly classifies these structures while
largely preserving the texture. The other methods erroneously
classify most of this region with the RBF kernel SVM per-
forming better than the polynomial kernel SVM and Wishart
supervised classifier. Wishart+POC performs slightly better
than SVM with the polynomial kernel.

V. CONCLUSION

Monitoring of urban areas for growth and disaster relief is
an important application of radar remote sensing. However the
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identification of urban areas from PolSAR data is challenging
due to the misclassification of urban targets which are not
perpendicular to the radar illumination. In this paper we have
proposed a novel technique based on a generalized synthetic
target database generated according to the principles of the
physics of scattering and a deep neural network architecture.
The dataset is synthetically rotated by steps of 3◦ and con-
verted to Mueller matrices. The transformation of the complex-
valued coherency matrix to the real-valued Mueller matrix is
done to simplify the computation during the back-propagation
of the neural network. The creation of the target database
serves as a data augmentation step which is integrated into
a unified and reduced feature representation by the AE. The
increase of information content improves the generalization
ability of the network. As a result, it can successfully classify
urban targets rotated with respect to the radar line of sight,
even though such examples are not presented in the initial
training phase.

The generalization ability is demonstrated on a portion of
an UAVSAR L-band SAR image. The network is trained
on the generalized urban target database, which was created
synthetically by simulating the response of targets in the scene
through a range of orientation angles. For testing, the data
were rotated to a known angle artificially and applied as
input. Hence, it is observed that areas on the ground that
have a certain artificially rotated input angle have a stronger
network response. Thus the synthetic rotation is linked to
the physical properties of the target and can be exploited
for improving the generalization ability. The performance
of the classification scheme is demonstrated on an ALOS-
2 L-band SAR image acquired over San Francisco. Overall
accuracy is about 91.63% for the datasets considered. The pro-
posed approach qualitatively and quantitatively outperforms
contemporary classification techniques commonly used for
PolSAR data. The computation is efficient and fast using
GPU techniques and has a potential for further speed up by
upcoming hardware improvements. There is no limitation to
the size of the dataset as training can proceed in small mini-
batches which can be scaled to fit the available GPU memory.

In the future, with the advent of sensors capable of multi-
frequency and multi-squint angle sensing the synthetic target
database generation step can be expanded. Target information
at different frequencies and squint angles can be similarly
integrated by a modified AE architecture to further improve
generalization and classification ability. The angle step size can
be adjusted adaptively depending on the scene heterogeneity
and data spatial resolutions. The methodology can also be
adapted to evaluate its ability to learn efficient representations
of other polarimetric parameters. The final classifier stage can
also be modified to incorporate spatial relations allowing for
better context sensitive classification.
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degree from the Télécom ParisTech, Paris, France,
and the Ariana Research Group, Institut National
de Recherche en Informatique et en Automatique
(INRIA), Sophia Antipolis, Nice, France. He is
currently an Associate Professor at the Centre of
Studies In Resources Engineering, Indian Institute of
Technology Bombay (CSRE, IITB). Before joining
IITB, he was a Canadian government research fellow

at the Canadian Centre for Remote Sensing (CCRS) in Ottawa, Canada. He has
received the Natural Sciences and Engineering Research Council of Canada
(NSERC) visiting scientist fellowship at the Canadian national laboratories
from 2008 to 2011. His current research includes SAR polarimetry, statistical
analysis of polarimetric SAR images, machine learning and pattern recog-
nition. He is an Associate Editor of the IEEE GEOSCIENCE AND REMOTE
SENSING LETTERS. He is the founding chairman of the IEEE Geoscience
and Remote Sensing Society (GRSS) of the Bombay chapter. At present, he
is leading the Microwave Remote Sensing Lab (www.mrslab.in) at CSRE,
IITB.



17

Francesca Bovolo (S’05 – M’07 – SM’13) received
the Laurea (B.S.), the Laurea Specialistica (M.S.)
degrees in telecommunication engineering (summa
cum laude) and the Ph.D. in Communication and
Information Technologies from the University of
Trento, Italy, in 2001, 2003 and 2006, respectively
where she has been a research fellow until June
2013. She is the founder and the head of the Remote
Sensing for Digital Earth unit at Fondazione Bruno
Kessler (FBK), Trento, Italy and a member of the
Remote Sensing Laboratory (RSLab) in Trento. Her

main research activity is in the area of remote-sensing image processing.
Her interests are related to multitemporal remote sensing image analysis and
change detection in multispectral, hyperspectral and SAR images, and very
high resolution images, in particular. She conducts research on these topics
within the context of several national and international projects. She is a
referee for several international journals. Dr. Bovolo ranked first place in the
Student Prize Paper Competition of the 2006 IEEE International Geoscience
and Remote Sensing Symposium (Denver, August 2006). Since January 2011
she is an associate editor of the IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing. She has been guest editor for the
Special Issue on Analysis of Multitemporal Remote Sensing Data of the
IEEE Transactions on Geoscience and Remote Sensing. She is the Technical
Chair of the Sixth International Workshop on the Analysis of Multi-temporal
Remote-Sensing Images (MultiTemp 2011). From 2006 to 2013, she has
served on the Scientific Committee of the SPIE International Conference on
Signal and Image Processing for Remote Sensing. Since 2014 she is co-chair
of the same conference. Since 2012 she is a member of the international
program committee of the conference on Pattern Recognition Applications
and Methods. She has served on the Scientific Committee of the IEEE Fourth
and Fifth International Workshop on the Analysis of Multi-Temporal Remote
Sensing Images (MultiTemp 2007 and 2009) and of the IEEE GOLD Remote
Sensing Conference in 2010, 2012, and 2014.

Subhasis Chaudhuri (M’99 – SM’02 – F’11) re-
ceived the B.Tech. degree in electrical from the In-
dian Institute of Technology, Kharagpur, Kharagpur,
India, in 1985, the M.Sc. degree in electrical engi-
neering from the University of Calgary, Calgary, AB,
Canada, in 1987, and the Ph.D. degree in electrical
engineering from the University of California San
Diego, La Jolla, CA, USA, in 1990. He is currently
the KN Bajaj Chair Professor in the Department of
Electrical Engineering, Indian Institute of Technol-
ogy Bombay, Mumbai, India, where he was the Head

of the Department from 2005 to 2008 and the Dean (International Relations)
from 2009 to 2013. His primary research interests include pattern recognition,
image processing, computer vision, and haptics. Dr. Chaudhuri is a Fellow of
the science and engineering academies in India. He received the Bhatnagar
Prize in Engineering Sciences in 2004 and the GD Birla Award in 2011.


