
 1 

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained  

for all other uses, in any current or future media, including reprinting/republishing this material for  

advertising or promotional purposes, creating new collective works, for resale or redistribution to  

servers or lists, or reuse of any copyrighted component of this work in other works.  

  

  

  

  

Title: Novel Automatic Method for the Fusion of ALS and TLS LiDAR Data for Robust Assessment of Tree Crown 

Structure 

  

This paper appears in: IEEE Transactions on Geoscience and Remote Sensing  

Date of Publication: 2017  

  

Author(s): Claudia Paris, David Kelbe, Jan van Aardt, Lorenzo Bruzzone,  

  

  

Volume:  

  

Page(s):  

  

DOI:10.1109/TGRS.2017.2675963 

 

  

 
 

http://ieeexplore.ieee.org/document/7907286/


 2 

 

Abstract— Tree crown structural parameters are key inputs to 

studies spanning forest fire propagation, invasive species 

dynamics, avian habitat provision, and so on, but these parameters 

consistently are difficult to measure. While airborne laser 

scanning (ALS) provides uniform data and a consistent nadir 

perspective necessary for crown segmentation, the data 

characteristics of terrestrial laser scanning (TLS) make such 

crown segmentation efforts much more challenging. We present a 

data fusion approach to extract crown structure from TLS, by 

exploiting the complementary perspective of ALS. Multiple TLS 

point clouds are automatically registered to a single ALS point 

cloud by maximizing the normalized cross correlation between the 

global ALS canopy height model (CHM) and each of the local TLS 

CHMs through parameter optimization of a planar Euclidean 

transform. Per-tree canopy segmentation boundaries, which are 

reliably obtained from ALS, can then be adapted onto the more 

irregular TLS data. This is repeated for each TLS scan; the 

combined segmentation results from each registered TLS scan and 

the ALS data are fused into a single per-tree point cloud, from 

which canopy-level structural parameters readily can be 

extracted.  

 
Index Terms— Airborne laser scanning (ALS), forest structure, 

forestry, light detection and ranging (LiDAR), registration, 

remote sensing, terrestrial laser scanning (TLS). 

 

I. INTRODUCTION 

REE canopy structure is defined as the spatial organization 

of the above-ground components of vegetation [1], and 

encompasses information about the position, quantity, type, and 

connectivity of both the foliage and supporting woody 

components [2]. While stand-level parameters provide 

relatively simple metrics over large areas, it is often of interest 

to understand object-level tree structure, for example, of the 

individual tree crowns, which comprise the forest canopy. Here, 

we distinguish an important note of scale and focus our review 

on the assessment of individual tree crowns, as opposed to the 

overarching forest canopies. 

Tree crowns have important implications to wild land fire 

dynamics [3], [4] avian habitat provision [5], [6], microclimates 

[6], and estimation of the fractal dimension of trees [7]. Within 

a tree crown, the net leaf surface area drives the size of the 

plant-atmosphere interface, which affects the rate and balance 

of biotic exchanges through photosynthesis and transpiration 

[8]. Likewise, the distribution of individual elements (e.g., 

leaves and branches) governs radiation penetration through to 

lower-canopy strata [9]–[11], with implications for forest 

growth and productivity [12], [13]. Accurate and precise 

measurement of crown structure is, therefore, an enviable goal 

for systematic characterization and modeling of forest 

productivity and related dynamics. 

However, explicit measurement of tree crowns using 

conventional techniques is complicated, due to the complex 

structure of irregular, natural surfaces. Despite a long history of 

forest mensuration, traditional methods for quantifying canopy 

structure remain limited in their ability to enable detailed, 

quantitative, and spatially explicit measurements [6], [14]. As a 

result, tree-level parameters are often restricted to coarse 

metrics, such as crown height, crown base height, and crown 

width, while more informative metrics are modeled based on 

lower level parameters [15]. Crown volume, in particular, has 

been reported as one of the more difficult parameters to obtain 

[16]. Traditional techniques rely on allometric equations to 

parameterize geometric primitives (e.g., cones and ellipsoids) 

and require species information and certain field-measured 

variables [15]. 

In contrast, laser scanning records range data based on an 

emitted laser pulse [17], thus providing nondestructive, high-

resolution, and repeatable 3-D surveys of individual tree 

crowns. Laser scanning has a demonstrated capability to 

address the limitations of traditional measurement approaches 

[18], both from airborne and terrestrial platforms. Airborne 

laser scanning (ALS) utilizes an across-track scanning 

mechanism, in conjunction with along-track aircraft movement 

[19], in order to sample a wide-area swath below the aircraft. 

While large-footprint sensors have focused on stand-scale 

parameters, e.g., mean canopy height [20], increasingly fine 

footprints (submeter) and point densities (>15 hits/m2) [21] 

have enabled the detection and measurement of individual tree 

canopy parameters, including crown volume. 

A common approach to ALS-based crown measurement is to 

fit assumed geometric shapes to light detection and ranging 

(LiDAR) point clouds [22], in order to derive basic tree crown 

parameters [23]–[27]. However, these methods rely on a priori 

species identification for parameterizing the appropriate 

geometric crown shape, information that is often unavailable 

from remote sensing data [16]. This is especially challenging 

for heterogeneous nonmanaged forest environments. Moreover, 

these simple geometric models are coarse when compared to 

the fidelity of ALS measurements. We, therefore, argue that due 

to the recent trend towards higher point density LiDAR 

collection, direct measurement of tree crowns should be 
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considered [16]. 

Several alternative approaches have been pursued for ALS, 

based on either graph-based segmentation or direct 

measurement. In [28] the authors used normalized cut 

segmentation to detect individual trees, including those below 

canopy, theoretically allowing for direct computation of 

volume, even though quantitative results were not presented. 

Similarly, in [29] the authors employed a graph-based 

segmentation algorithm with potential for crown volume 

assessment based on existing techniques. On the other hand, in 

[16], the authors developed a direct, wrapped surface 

reconstruction technique based on radial basis functions. 

Irregular tree crown shapes were validated using survey-grade 

equipment to assess goodness-of-fit. Among other reported 

metrics, the authors modeled crown volume at an R2 = 0.84/0.89 

for coniferous/deciduous trees. Finally, [22] used 

computational geometry to measure explicit crown volume 

using 3-D alpha shapes and convex hulls. These estimates were 

validated against field-measured values and modeled ellipsoids, 

with R2=0.83 (best), but significant underestimation (-24%, on 

average), attributed to insufficient LiDAR returns from the 

lower crown regions. 

The observed challenges in crown volume assessment with 

ALS [30] underscore several fundamental system limitations of 

ALS. A first limitation is the reduced capability to sample sub-

canopy structure. Discrete-return ALS, for example, records 

only the first and last, or perhaps a few, e.g., up to five, 

backscattered returns for each emitted laser pulse. As a result, 

limited information from the inner or lower canopy is obtained 

[18], [31]. While waveform-digitizing LiDAR [32] offers 

potential to rectify this gap, the systems are still poorly 

understood, and there remains a measurement gap due to dead 

time in the temporal digitization of the return pulse. A second 

limitation is related to measurement characteristics: as a result 

of limited incidence angles constrained to predominantly nadir, 

and finite footprint sizes on the order of 0.1-0.5 m, ALS may be 

unable to detect small canopy gaps [6], [33], [34], or other fine-

scale structures. Finally, when acquired with low laser sampling 

density, these data do not allow for a comprehensive 

representation of the crown structure. 

Recent studies have hinted at the potential to address these 

concerns via fusion with a complementary upward-looking 

laser ranging system, i.e., terrestrial laser scanning (TLS) [35]. 

TLS provides hemispherical scanning from a ground-based 

platform, and thus samples different parts of the forest structure. 

In [31] the authors examined the voxel column percentile 

distributions of point returns for both ALS and TLS and 

demonstrated that a higher percentage of laser pulses intercepts 

the top of the canopy for ALS, with limited returns within the 

canopy and understory. Likewise, TLS exhibited a higher 

number of returns from the lower canopy, but had fewer returns 

in the upper canopy. This complementarity has prompted a 

growing interest in utilizing TLS to complement the strengths 

of ALS [36], [37], and thus link ground-level structural 

measurements with the synoptic perspective of ALS.  

However, there has been limited research in this area, in part 

due to the difficult prerequisite of registration [38]–[42]. Even 

for TLS acquisition, a primary limitation is the need to position 

reference targets to register the multiangular scans, which often 

requires time-consuming manual refinements, although 

marker-free techniques have been developed [38],[43]. 

However, ALS data, which provide uniform sampling of the 

upper canopy surface, may provide the necessary linkage for 

registration of TLS and ALS data. In this paper, we propose a 

novel and automatic method for the fusion of ALS and TLS 

LiDAR data in open woodland forest toward a more 

comprehensive and robust assessment of the tree crown 

structure. By exploiting the synoptic perspective of ALS and 

TLS data, we obtain a more comprehensive representation of 

the crown structure by automatically registering and 

segmenting the TLS data via the proxy of ALS data. The main 

objectives of this work are to: 1) employ the ALS to 

automatically register and segment multiple TLS and 2) 

integrate the 3-D LiDAR point clouds of both the ALS and TLS 

data for quantitative measurements of tree crown structure. 

The paper is organized as follows. Section II presents the 

architecture of the proposed data fusion approach and describes 

all the phases of the method in detail. Section III illustrates the 

considered data set by presenting the study area, the TLS 

measurement setup, and the ALS data. Section IV presents the 

obtained experimental results, and Section V provides the 

conclusion and outlook. 

 

II. PROPOSED APPROACH 

In this paper, we present a novel approach to exploit the 

complementary LiDAR data coverage acquired from different 

viewpoint perspectives, specifically ALS and TLS, in order to 

accurately characterize 3-D structure of individual tree 

crowns. The proposed method is separated into three main 

phases: 1) preprocessing; 2) segmentation of the TLS data, 

driven by the ALS segmentation results; and 3) automatic 

registration and fusion of ALS and TLS LiDAR scans. Fig. 1 

shows the block scheme of the proposed data fusion method. 

In the following, we describe in detail each phase of the 

proposed method. 

 

 

A. Preprocessing 

 

The first phase, preprocessing, seeks to extract rasterized 

canopy height models (CHMs) from the airborne and terrestrial 

LiDAR data, in addition to a crown segmentation image, 𝑆𝑎, 

obtained from the ALS data. Assume N evenly distributed 

terrestrial point clouds and a single ALS point cloud acquired 

over the same area. Each point cloud is first normalized by the 

ground elevation (extracted from each point cloud), such that 

the 𝑧 coordinate now represents the height above ground for 

that x-y coordinate. Let 𝑃𝑡,1 … 𝑃𝑡,𝑛 … . 𝑃𝑡,𝑁 be the normalized 

terrestrial point clouds, and let 𝑃𝑎 be the normalized airborne point 

cloud. Then, rasterized CHMs (𝐼𝑎 and 𝐼𝑡,1 … 𝐼𝑡,𝑛 … . 𝐼𝑡,𝑁 for the 

airborne and terrestrial data, respectively) are generated by 

gridding the highest point within each cell. The next step is to 



 4 

extract a segmentation image, 𝑆𝑎, representing the set of tree 

crowns, obtained from the ALS data. Because of the 

comprehensive, uniform sampling of the upper canopy 

structure, provided by the airborne acquisition (ALS), the 

detection and the delineation of the individual tree crowns are 

performed based only on the airborne LiDAR data. Since we 

aim to assess the effectiveness of fusing ALS and TLS data, in 

the considered implementation, the crowns were manually 

delineated on the ALS CHM. However, any automatic 

segmentation method can be employed to delineate the 

individual tree crowns [44]-[48].  

The obtained segmentation result is used to drive the 

segmentation onto the TLS CHMs, after appropriate 

registration of the ALS data to TLS scans (second stage; 

Section II-B). At the end of this stage, the segmented crowns 

are registered into a common coordinate system and fused 

directly to the 3-D point cloud space (third stage; Section II-C). 

B. ALS-Driven TLS Segmentation 

The second stage, TLS Segmentation, seeks to automatically 

delineate the crown boundaries in the TLS scans by taking 

advantage of the ALS data characteristics. Note that TLS data 

usually require time-consuming manual canopy segmentation, 

based on visual inspection of the 3-D LiDAR data, due to the 

side-view scanning, which typically does not measure the 

horizontal structure of the forest [44]. Few studies have focused 

on individual tree segmentation using TLS [49],[50]; moreover, 

the majority of studies have conducted experiments for urban 

forests characterized by almost no canopy overlap [51],[52].  

We adapt the segmentation result, 𝑆𝑎, obtained from the 

airborne data (see Section II-A) and apply it to the TLS data to 

accurately delineate the crown boundaries visible in the 

terrestrial scans, thereby taking advantage of the availability of 

the ALS data. In other words, because of the comprehensive 

sampling of the upper canopy from a nadir perspective, the 

ALS segmentation result is more accurate than any result 

automatically obtained from TLS data. To leverage this 

complementarity, spatial alignment of the ALS and TLS data is 

required. However, instead of registering all N TLS scans 

directly to the ALS data, we choose to separately align the ALS 

data to each of the N TLS point clouds or scan locations. This 

condition allows us to preserve the shape of the crowns 

measured by the TLS system, and to adapt the ALS 

segmentation result to the fine resolution crown profile, 

measured via the TLS data. Note that the proposed method does 

not superimpose the crowns polygons delineated in the ALS 

data onto the TLS data, but rather fits the segmentation result to 

the terrestrial data due to the Euclidean transformation applied 

to the ALS segmented image to fit the TLS scan. 

Because of the different acquisition perspectives, the terrestrial 

point clouds (𝑃𝑡,1 … 𝑃𝑡,𝑛 … . 𝑃𝑡,𝑁) and the airborne point cloud 

(𝑃𝑎) sample different surfaces of the forest structure, and thus 

cannot be automatically registered (see Fig. 2) [53]. This has 

been addressed in several ways in the literature [36]. Here, we 

present a novel approach, by taking advantage of the fact that 

for certain forest conditions, e.g., open woodland savanna, the 

measured forest structure (i.e., spatial distribution of the trees) 

is similar in both the airborne and terrestrial LiDAR data. We 

acknowledge that this is not always the case, especially for 

closed canopies where a terrestrial instrument is unable to reach 

the upper canopy. However, the proposed method can be 

adapted to the closed canopy case by considering further 

structural features, since the two data types still represent the 

same forest structure (i.e., the stems measured by the TLS data 

correspond to the tree tops visible in the ALS). 

For open woodland study areas, e.g., the study area in our 

case, it is possible to take advantage of the correlation between 

the 2-D height profiles of the horizontal forest structure (i.e., 

the CHM’s 𝐼𝑎 and 𝐼𝑡,1 … 𝐼𝑡,𝑛 … . 𝐼𝑡,𝑁), as measured by the ALS 

and the TLS instruments, in order to determine appropriate 

registration parameters. In other words, we leverage the 

consistent representation of the spatial distribution of canopies 

in order to align ALS data to the TLS scans via correlation-

based image registration between the appropriate CHMs.  

 
 

Fig. 1. Block scheme of the proposed data fusion approach to the accurate reconstruction of the 3-D structure of the crown. The three main phases of the method 

are highlighted in bright colors. The TLS point clouds, 𝑃𝑡,1 … 𝑃𝑡,𝑛 … . 𝑃𝑡,𝑁, and the ALS point cloud, 𝑃𝑎, are preprocessed to generate the CHMs, 𝐼𝑡,1 … 𝐼𝑡,𝑛 … . 𝐼𝑡,𝑁 and 𝐼𝑎, 

respectively, and the segmented ALS image, 𝑆𝑎 . First, the ALS is registered to the TLS scan to segment the single tree crowns in the terrestrial data, i.e., 

𝑆𝑡,1 … 𝑆𝑡,𝑛 … . 𝑆𝑡,𝑁. Then, the method registers the TLS scans the ALS data to fuse the segmented crown in the 3-D point cloud. 
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Let us consider the nth scan 𝐼𝑡,𝑛 and let 𝑀×𝐿 be the pixels 

size of 𝐼𝑡,𝑛. In the first step, parameters of a planar Euclidean 

transformation, 𝐸𝑎,𝑛, are estimated in order to register the ALS 

CHM, 𝐼𝑎, to the TLS CHM, 𝐼𝑡,𝑛. Initial estimates for the three 

degrees of freedom of  𝐸𝑎,𝑛 were obtained from coarse in situ 

GPS measurements at each scan location and nominal 

orientation during data collection. In other words, the CHM of 

the airborne data, 𝐼𝑎, is first centered to the GPS coordinates of 

the TLS scan, 𝐼𝑡,𝑛  (i.e., so that initial translation estimates are 

zero), and cropped to keep the approximate portion of the 

airborne CHM, 𝐼𝑎, thus representing the same forest area 

present in 𝐼𝑡,𝑛. Parameter optimization of a planar Euclidean 

transformation matrix,  𝐸𝑎,𝑛 [see (1)], is then performed in the 

context of a gradient descent optimization framework [54], 

[43]. The planar Euclidean transform applied to 𝐼𝑎,𝑛 maps the 

image from its original coordinate system to the coordinate 

system of the reference image 𝐼𝑡,𝑛, that is 

 
 𝐸𝑎,𝑛(𝑥, 𝑦) = (

𝑐𝑜𝑠𝜙 −𝑠𝑖𝑛𝜙
𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙

) (
𝑥
𝑦) + (

𝑡𝑥

𝑡𝑦
) 

 

(1) 

 

where 𝜙 is the rotation angle and [𝑡𝑥, 𝑡𝑦 ] the translation vector. 

Gradient descent optimization seeks to estimate the three 

unknown parameters by minimizing the sum of squared 

differences (SSD) between the terrestrial CHM, 𝐼𝑡,𝑛, and the 

registered airborne, CHM 𝐼´𝑎,𝑛, as follows: 

𝑆𝑆𝐷𝑚𝑖𝑛 = min
𝜙,𝑡𝑥,𝑡𝑦

∑ ∑ [𝐼𝑡,𝑛(𝑥𝑖 , 𝑦𝑗) − 𝐼𝑎,𝑛 (𝐸𝑎,𝑛(𝑥𝑖 , 𝑦𝑗))]
2

𝐿

𝑗=1

𝑀

𝑖=1

 

    = min
𝜙,𝑡𝑥,𝑡𝑦

∑ ∑[𝐼𝑡,𝑛(𝑥𝑖 , 𝑦𝑗) − 𝐼´𝑎,𝑛(𝑢𝑖 , 𝑣𝑗)]
2

𝐿

𝑗=1

𝑀

𝑖=1

 

 

(2) 

where 𝑢𝑖 = (𝑥𝑖 ∙ 𝑐𝑜𝑠𝜙 − 𝑦𝑗 ∙ 𝑠𝑖𝑛𝜙) + 𝑡𝑥 and 𝑣𝑗 = (𝑥𝑖 ∙

𝑠𝑖𝑛𝜙 + 𝑦𝑗 ∙ cos𝜙) + 𝑡𝑦. For each nth terrestrial scan we can 

 
 

Fig. 2. Visual representation of the different surfaces sampled for the same tree scanned by ALS and multiangular TLS. Due to the different measurement 

perspectives, the LiDAR point cloud data are not directly comparable. 

 

 
   

 (a) (b) (c) 

Fig. 3. Example of the registration of the TLS scans to the ALS coordinate system. For the same forest area, a false color representation of the CHM is shown 

for (a) ALS data, (b) original TLS scans merged, and (c) registered TLS scans merged. For each TLS scan, the best Euclidean transformation is calculated in 

order to match the horizontal structure of the forest represented in the ALS data. 
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Fig. 5. NEON PWS D17 is located in Central California. It contains one core 

site and two relocatable sites. The core site, the SJER, is an oak savanna. 

calculate the planar Euclidean transformation, 𝐸𝑎,𝑛, which 

allows us to register 𝐼𝑎,𝑛 to each 𝐼𝑡,𝑛. Therefore, TLS 

segmentation is performed by applying the ALS-derived 

segmentation result onto each TLS scan, after first 

registering the ALS data, 𝐼𝑎, to the coordinate space of each 

TLS data, 𝐼𝑡,1 … 𝐼𝑡,𝑛 … . 𝐼𝑡,𝑁, using the obtained transformation 

parameters. This condition enables us to adapt the 

segmentation performed on the ALS data to the TLS scans, 

thereby preserving the fine-resolution profile of the crown 

 
Fig. 6. (Left) False color representation of the ALS CHM. The approximate 

TLS measurement locations are marked in red along with the acquisition 

number. (Right inset) CHMs obtained for two examples of TLS scans are 

provided. 

shape. The result is a set of canopy segmentation maps for the 

TLS data, 𝑆𝑡,1 … 𝑆𝑡,𝑛 … . 𝑆𝑡,𝑁 , which correspond to that obtained 

from the ALS data 

 

C. Three-Dimensional Point Cloud Fusion 

The final phase, fusion, seeks to fuse the segmented 

crowns in the 3-D point cloud space. First, we need to align 

the ALS point cloud and the N TLS point clouds into a 

common coordinate system, i.e., those of the ALS data. Note 

    
 (a)  (b)  (c)  

    
 (d)  (e)  (f)  

 
  

 (g)  (h)  
Fig. 4. Example of the 3-D point cloud fusion step. For the same crown, a top view is shown for (a)-(f) TLS data, (g) ALS data, and (h) fused data. 
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 (a)  (b) 

  

  
 (c)  (d) 

Fig. 7. Qualitative example of TLS scan registration results. (a) False color 

representation of the original TLS CHM (pink patches) for the 75th scan of Site 

116. (b) False color representation of the ALS CHM (green patches) for the 
75th scan of Site 116. (c) Original TLS CHM (pink patches) is overlapped with 

the ALS CHM (green patches). (d) Registered TLS CHM (pink patches) is 

overlapped with the ALS CHM (green patches). Although the registration is 
accurately performed, the obtained correlation similarity measure Ψ is 0.62 

because of the missed detection of some trees by the TLS due to tree occlusions. 

 

that the comprehensive representation of the horizontal 

structure of the forest provided by the ALS data allows us to 

automatically register the TLS scans without the need for 

positioning reference targets on the ground during the data 

acquisition campaign (see Fig. 3). 

Similar to the previous case, we aim to estimate the planar 

Euclidean transformation that allows the registration of each 

TLS CHM, 𝐼𝑡,𝑛, to the ALS CHM, 𝐼𝑎. Thus, the considered 

transformation is the inverse of the previous transformation (1). 

Accordingly, the planar Euclidean transformation, 𝐸𝑡,𝑛, applied 

to 𝐼𝑡,𝑛 to match  𝐼𝑎 is defined as follows: 

 
 𝐸𝑡,𝑛(𝑥, 𝑦) = (

𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

) (
𝑥
𝑦) + (

ℎ𝑥

ℎ𝑦
) 

 

(2) 

 

where 𝜃 =  − 𝜙, ℎ𝑥 =  −𝑡𝑥  , and ℎ𝑦 = −𝑡𝑦. To evaluate the 

effectiveness of the registration process, we compute the 

normalized cross correlation similarity measure between  𝐼𝑎,𝑛 

and 𝐼´𝑡,𝑛. The value of the correlation image 𝐼𝑐𝑜𝑟𝑟  at the 

position (𝑤, 𝑙) is computed as follows: 
 

 𝐼𝑐𝑜𝑟𝑟(𝑤, 𝑙)

=
∑ [𝐼𝑎,𝑛(𝑥, 𝑦) − 𝜇𝑎,𝑛][𝐼´𝑡,𝑛(𝑥 − 𝑤, 𝑦 − 𝑙) − 𝜇𝑡,𝑛]𝑥,𝑦

√∑ [𝐼𝑎,𝑛(𝑥, 𝑦) − 𝜇𝑎,𝑛]
2

∑ [𝐼´𝑡,𝑛(𝑥 − 𝑤, 𝑦 − 𝑙) − 𝜇𝑡,𝑛]
2

𝑥,𝑦𝑥,𝑦

 

 

(3) 

 
 

where  𝜇𝑎,𝑛 and  𝜇𝑡,𝑛 are the mean values, i.e., height, of  𝐼𝑎,𝑛 
and 𝐼´𝑡,𝑛, respectively. Automatic validation of the registration 

result is achieved by checking the resulting normalized 

correlation matrix, 𝐼𝑐𝑜𝑟𝑟 , obtained at the end of the registration 

step. In other words, we can confirm if the position of the peak 

(𝑋𝑝 , 𝑌𝑝  ) is the center of the correlation matrix (i.e., [0 0]) 

and the value of the peak Ψ ∈ [-1, 1] is higher than a positive 

threshold. The segmentation results obtained in the image 

domain, i.e., 𝑆𝑡,1 … 𝑆𝑡,𝑛 … . 𝑆𝑡,𝑁 and 𝑆𝑎, then are transferred to the 

3-D point cloud space.  

For each delineated 3-D crown belonging to the nth TLS 

scan, we apply the obtained transformation, thus registering the 

data to the airborne coordinate system. At the end of the 

registration phase, the proposed method performs the fusion of 

the ALS and TLS point clouds per crown (according to the 

registered ALS and TLS segmented maps) to generate the set 

of final fused 3-D segmented point clouds. Fig. 4 shows a 

qualitative example of the result obtained by fusing the 3-D 

ALS and TLS segmented point clouds.  

III. DATA SET DESCRIPTION 

The study area for the project is the National Ecological 

Observatory Network (NEON) Pacific Southwest (PWS) 

Domain 17 (D17) core site, located in the San Joaquin 

Experimental Range (SJER; 37°6'43,77’’ N, 119 44°11',85''), 

near Fresno, CA, USA. The SJER is oak savanna woodland (see 

Fig. 5). The dominant species are blue oak (Quercus 

Douglasii), interior live oak (Quercus Wislizeni), and grey pine 

(Pinus Sabiniana). Ground reference data were collected in 

June 2013 for 27 trees in the considered study area. The height, 

species, diameter at breast height (DBH), and crown width of 

each tree were measured at each sample location. 

ALS data were obtained from the NEON airborne 

observation platform (AOP), which operates an Optech 

Airborne Laser Terrain Mapper (ALTM) Gemini LiDAR 

system. The 1064nm, four-return-per-pulse system was 

operated at a 100 kHz pulse repetition rate at 1000 m above-

ground-level (AGL), for an average point density of 2 hits/m2. 

The ALS overflight was executed coincident with the TLS field 

measurement campaign, during the period of June 9-21, 2013. 

We used a second-generation, low-cost terrestrial LiDAR 

system, integrated from commercial-off-the-shelf components 

by Rochester Institute of Technology in collaboration with 

University of Massachusetts Boston [55]. This TLS is dubbed 

the canopy biomass LiDAR, and is based on a design first 

implemented by a team at the Katholieke Universiteit Leuven, 

Belgium [56]. Unlike many commercial scanners that provide 

for high-density point cloud data, lower-cost systems are geared 

toward efficient and fast sampling of structural data, often at a 

much lower resolution or point spacing. This system has a 

minimum angular step width of 4.36 mrad, and a beam 

divergence of 15 mrad, both approximately two orders of 

magnitude coarser than comparable commercial 

instrumentation [55].  

The sensor head consists of a SICK LMS-151 laser scanner, 

which is compact, lightweight (1.1 kg), and weather-resistant 

(SICK, 2009). A 905 nm laser is pulsed at 27 kHz with range 

measurement recorded based on time of flight; up to two returns 

per outgoing pulse are digitized. The laser pulse is deflected by 

a rotating mirror to sample a 270° arc, swept out in elevation 

angle. This sensor head is coupled to an azimuthal rotation 

stage, which provides coverage of the full hemisphere above the 

instrument and a portion of the hemisphere below, i.e., 270° in  
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.measurement recorded based on time-of-flight; up to two the 

 

   
    

 (a) ALS (Site 117) (b) Original TLS scans merged (c) Registered TLS scans merged 

 
   

    

 (d) ALS (Site 36) (e) Original TLS scans merged (f) Registered TLS scans merged 

    

    

 (g) ALS (Site 116) (h) Original TLS scans merged (i) Registered TLS scans merged 

 
   

    

 (j) ALS (Site 916) (k) Original TLS scans merged (l) Registered TLS scans merged 

Fig. 8. Final registration results. (Left column) ALS data. (Middle column) Original TLS data merged. (Right column) Registered TLS data merged. 
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the zenith (vertical) and 360° in the azimuth (horizontal) planes. 

A BeagleBone computer and power tool battery are mounted to 

the unit, while sensor control is achieved via a wireless mobile 

application. 

Six plots of 40 m × 40 m, 25 scans per plot, were collected 

along an equally spaced grid at 10 m increments (see Fig. 6). 

Among the 150 terrestrial scans collected, 19 of them were 

discarded due to acquisition problems, such as no-data scans. 

No artificial targets were placed in plots to aid the terrestrial 

data acquisition and registration. The plots were laid out by 

means of the traditional tape-and-compass method, following a 

GPS measurement of plot center. This regular sampling 

acquisition setup allowed us to acquire fast but consistent data 

coverage. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

In this section, first we analyzed the global registration 

results obtained when we align the 𝑁 TLS scans to the ALS 

data. This was done by reprojecting the TLS scans into the ALS 

coordinate system (Section II-C). Then, we evaluate the crown 

parameter estimation performed on the obtained set of 3-D 

fused crowns. Both these analyses are presented from a 

qualitative and a quantitative perspective. 

A. Registration Results 

Fig. 8 shows the ALS data and the composition of the TLS 

scans, before and after the registration, for each site of the 

considered data set. Fig. 8 graphically demonstrates the 

importance of performing the registration phase, since the 

original TLS scans are shifted with respect to the ALS data 

because of the inaccurate GPS position estimation and the 

different acquisition perspectives. This misalignment is clearly 

visible when merging the original TLS data with respect to the 

registered TLS scans. In contrast, the horizontal structure of the 

forest, represented by the fusion of the registered TLS scans, is 

coherent with the structure represented in the ALS data using 

the proposed technique. 

For quantitative evaluation, we compared the normalized 

cross correlation between ALS data and TLS scans before and 

after the global registration procedure. In particular, the 

evaluation was performed by considering both the value Ψ and 

the peak position (𝑋𝑝 , 𝑌𝑝  ) of the resulting normalized 

correlation image. Table I reports the minimum, median, and 

maximum values of Ψ and (𝑋𝑝 , 𝑌𝑝  ) summarized per site, while 

in Tables II and III, the correlation similarity metrics are 

presented per terrestrial scan. The proposed method always 

improves the correlation coefficient values with respect to the 

initial registration given by the coarse GPS measurements of 

the TLS scans center (Table I). The obtained similarity peak, Ψ, 

is characterized by an overall median value of 0.73, in contrast 

to the 0.65 median value of the initial registration result. 

However, for some scans the value of the correlation peak is 

lower than 0.55, even though the Euclidean transformation 

accurately registers the ALS and the TLS data. These results are 

due to the different acquisition perspectives that lead to the 

presence  of  specific  differences  in the  ALS and TLS CHMs 

 
   

    
 (m) ALS (Site 952) (n) Original TLS scans merged (o) Registered TLS scans merged 

 
   

    

 (p) ALS (Site 824) (q) Original TLS scans merged (r) Registered TLS scans merged 
 

Fig. 8. (Continued) Final registration results. (Left column) ALS data. (Middle column) Original TLS data merged. (Right column) Registered TLS data merged. 
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Fig. 9. (a)-(f) Qualitative example of TLS scan registration results. The final 

boundaries of the TLS segmented crowns are highlighted in white and 
overlapped with the false color representation of the TLS CHMs.  

 

acquired over the same forest stand. While the ALS accurately 

represents the horizontal structure of the forest from a top-down 

perspective, the TLS may miss some trees present in the scene 

due to occlusion, caused by trees that surround the scanner [57]. 

However, the surrounding trees are sufficient to describe a 

specific forest structure that can be easily identified in the ALS 

data, i.e., the omitted trees, located in the background of the 

TLS scans, are not critical to algorithm performance. Fig. 7(a) 

and (b) represents the TLS CHM and the ALS CHM of the 75th 

scan of the 116th site, respectively. Although the registration is 

accurately performed [see Fig. 7(d)], the obtained correlation 

similarity measure, Ψ, is 0.57 because of the omission of some 

trees by the TLS due to tree occlusions. 

 
 

 
 

 (a)  (b) 

    

 (c)  (d) 

Fig. 10. Qualitative example of the complementary information provided by 

ALS and one single TLS scan. (a) Side view of the ALS data, (b) side view of 

the TLS data, (c) top view of the ALS data, and (d) top view of the TLS data 
for the same tree crown. While the airborne acquisition accurately represents 

the horizontal structure of the crown, the terrestrial scanner provides a very high 

resolution profile of the bottom part of the canopy. 

 

However, the location of the correlation peak is [0,0]. Note that 

for all the TLS scans, the correlation peak location obtained is 

almost [0,0], regardless of the stand forest structure measured 

(see Table III). This is different from the initial registration 

results (see Table II), which exhibit significant biases. It also is 

possible to verify that the resulting metrics are better than those 

obtained without performing any registration (i.e., from the 

original LiDAR data), over and above an assessment of the 

value of the correlation peak and its location.  

Moreover, it is important to consider that the proposed 

method is automatic and does not require any parameter tuning 

to perform the registration, since it is completely driven by the 

spatial distribution of the trees present in the scene. 

Furthermore, even though in the considered ALS data set we 

are employing low-density airborne LiDAR data (2 pts/m2), the 

use of the rasterized version of the LiDAR point cloud to 

perform the registration overcomes the limitations introduced 

by the relatively low laser sampling density. It thus follows that 

no strict laser density requirements are needed in terms of the 

acquisition of ALS data. 
 

B. Crown Parameter Estimation Results 

The final phase of the proposed method performs the fusion 

of the segmented ALS and TLS LiDAR point clouds in the 3-D 

point cloud space. Fig. 9 shows a qualitative example of the 

TLS crown segmentation result, obtained by registering the 

ALS crown boundaries to the TLS data. Due to the registration 

of the segmented ALS image to the TLS data, the crown 

boundaries delineated in the LAS data are adapted to the shape 

of the crown measured by the terrestrial laser scanner. 

 It is worth noting that the registration phase is not affected 

by the airborne segmentation result, which is performed on the 

original CHMs. In contrast, the accuracy of the TLS 

segmentation strongly depends on the ALS crown delineation 

 

 

 

 

 
 

 
 

 (a)  (b) 

 

 

 

 

 
 

 
 

 (c)  (d) 

 

 

 

 

 
 

 
 

 (e)  (f) 
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result. The ALS segmentation, due to the top view perspective, 

achieves higher segmentation accuracy when compared to the  

TLS, even though the terrestrial data provide a higher (finer) 

resolution point cloud. Moreover, based on the ALS 

segmentation result, the proposed method allows us to 

automatically extract the TLS crowns without performing any 

further analysis or refinement. 

Fig. 10 shows a comparison between the ALS data and one 

of the singular TLS scans, acquired for one of the trees of the 

considered data set. The presented results confirm the 

complementarity of ALS and TLS LiDAR data. The airborne 

data provide a comprehensive representation of the horizontal 

structure of the forest and of the entire uppermost part of the 

canopies, which allow us to drive the registration of the TLS 

scans in an automatic fashion and to perform crown delineation. 

However, due to the low laser sampling density and the top 

view acquisition perspective, ALS data alone do not adequately 

describe the below-canopy structure. TLS, on the other hand,  

TABLE I  

MAXIMUM, MINIMUM AND MEDIAN VALUES OF THE PEAK Ψ AND THE POSITION OF THE PEAK (𝑋𝑝 , 𝑌𝑝  ) OF THE RESULTING NORMALIZED CROSS 

CORRELATION SIMILARITY VALUES PER SITE OBTAINED BEFORE AND AFTER THE REGISTRATION STEP. 

  Not registered  Registered 

  Min Median Max Min Median Max 

Site 116 

Ψ 0.37 0.57 0.75 0.57 0.71 0.84 

𝑋𝑝 0 3 72 0 0 0 

𝑌𝑝 0 3 50 0 0 0 

Site 117 

Ψ 0.31 0.62 0.79 0.54 0.73 0.84 

𝑋𝑝 0 4 55 0 0 1 

𝑌𝑝 1 4 61 0 0 2 

Site 916 

Ψ 0.42 0.64 0.85 0.51 0.69 0.87 

𝑋𝑝 0 5 31 0 0 1 

𝑌𝑝 0 4 12 0 0 1 

Site 952 

Ψ 0.42 0.69 0.86 0.59 0.77 0.87 

𝑋𝑝 0 2 9 0 0 1 

𝑌𝑝 0 4 9 0 0 1 

Site 36 

Ψ 0.34 0.72 0.88 0.59 0.76 0.89 

𝑋𝑝 0 3 8 0 0 1 

𝑌𝑝 0 4 11 0 0 2 

Site 824 

Ψ 0.31 0.60 0.77 0.53 0.66 0.80 

𝑋𝑝 0 4 20 0 0 1 

𝑌𝑝 0 4 70 0 0 1 

All 

Ψ 0.31 0.65 0.88 0.53 0.73 0.89 

𝑋𝑝 0 3 72 0 0 1 

𝑌𝑝 0 4 70 0 0 2 
 

   
(a) (b) (c) 

  
 

(d) (e) (f) 
Fig. 11. (a)–(f) Qualitative examples of obtained fused crowns. 
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provides a high resolution profile of the bottom portion of the 

tree crowns. A more comprehensive representation of the crown 

structure therefore is available via the fusion of information 

from both the TLS and ALS data sets or perspectives.  

Fig. 11 shows select examples of 3-D fused point clouds, 

while Fig. 12 depicts the number of points per tree. These 

results point out that the proposed fusion method automatically 

leads to very high density LiDAR point clouds per crown.  

Note that the resolution (or point density) of the obtained 

crowns varies, depending on: 1) the number of associated 

TLS scans; 2) the distance of the laser from the crown during 

the acquisition; and 3) the topography of the scene, since the 

TLS acquisitions are not performed in homogeneous 

conditions for all the scans, e.g., on steep slopes, occlusion 

problems could arise. 

The considered TLS measurement setup was designed in 

order to have a fast and practical acquisition campaign and to 

obtain a regular sampling of the study area. However, to 

increase the point density and associated resolution for the 

fused tree crowns, the number of TLS acquisitions can be 

increased, multiple TLS scans can be acquired around each 

tree, and the ALS point density can be increased via adapting 

specific flight parameters, e.g., flight overlap, scan frequency, 

and pulse frequency.  

Fig. 13 and Table IV present the quantitative analysis of the 

crown parameter estimation, obtained from the set of fused 

crowns. For each tree, the height of the tree, the crown width, 

and the 90° crown width were compared with the ground 

reference data. The crown volume, calculated by using the 

alpha shape on the obtained fused data, furthermore was 

correlated with the measured DBH. We determine the two 

crown widths by considering the length of the major and the 

minor axis of the ellipse having the same normalized second 

central moments of the crown region, since the tree top height 

itself is associated with the highest LiDAR point belonging to 

that crown.  

We concluded from these results that the fusion accurately 

estimated the crown parameters by taking advantage of the 

TABLE II  

NORMALIZED CROSS CORRELATION SIMILARITY VALUES OF THE ORIGINAL LIDAR DATA (NOT REGISTERED). FOR EACH TERRESTRIAL SCAN THE OBTAINED 

CORRELATION COEFFICIENT Ψ ∈ [-1,1] AND THE POSITION (𝑋𝑝, 𝑌𝑝  ) OF THE CORRELATION PEAK ARE GIVEN. THE DESIRED POSITION OF THE CORRELATION 

PEAK IS [0,0], WHICH CORRESPONDS TO THE CENTER OF THE CORRELATION MATRIX. 
 

 Site116 Site117 Site916 Site952 Site36 Site824 

 Ψ 𝑋𝑝 𝑌𝑝 Ψ 𝑋𝑝 𝑌𝑝 Ψ 𝑋𝑝 𝑌𝑝 Ψ 𝑋𝑝 𝑌𝑝 Ψ 𝑋𝑝 𝑌𝑝 Ψ 𝑋𝑝 𝑌𝑝 

11 0.71 -6 6 0.56 -3 5 0.58 -3 4 0.64 5 0 0.70 3 1 0.60 -13 6 

13 0.54 3 1 0.69 -4 7 0.51 4 1 0.71 2 -1 0.34 6 4 0.33 15 18 

15 - - - 0.69 0 11 0.75 4 2 0.66 1 -2 0.40 8 2 0.48 4 -70 

17 0.61 2 -3 0.65 -3 2 - - - 0.68 1 -4 0.58 -4 4 0.31 -20 -31 

19 0.59 9 0 - - - 0.75 0 -1 0.71 3 -4 0.47 3 2 0.65 6 4 

31 0.39 -1 49 0.68 0 15 0.42 -5 -1 0.52 -5 -2 0.71 0 3 - - - 

33 0.56 -24 4 0.69 4 5 0.69 0 1 0.70 -1 1 0.57 5 -2 0.72 -6 -2 

35 0.72 -8 3 0.36 55 4 0.73 -7 5 0.66 -2 -4 0.64 2 1 0.60 -5 4 

37 0.55 -7 11 0.51 -47 -61 0.71 -8 0 - - - - - - 0.32 0 -53 

39 0.42 -72 50 0.59 6 3 0.54 5 -3 - - - 0.77 -1 -1 0.45 -5 0 

51 - - - 0.31 -4 1 - - - 0.77 -1 -4 0.72 3 4 0.54 -4 9 

53 0.67 -2 8 0.65 -8 2 0.55 0 6 0.77 -2 -5 0.70 2 -1 0.64 3 6 

55 0.71 3 -2 0.75 -4 6 0.85 0 3 0.73 -2 1 0.74 6 -7 0.73 0 3 

57 0.49 5 -2 0.62 -1 7 0.83 5 7 - - - 0.73 0 -4 0.77 0 0 

59 0.55 8 -1 0.79 0 4 0.73 2 -6 - - - 0.80 2 6 0.67 0 -3 

71 0.72 -9 -5 0.59 -7 6 0.53 -3 -8 0.75 -2 3 0.81 1 8 0.36 -4 8 

73 0.58 -3 -5 0.62 2 4 - - - 0.86 -9 6 0.82 1 5 0.60 -2 -4 

75 0.41 2 1 0.68 7 1 - - - 0.53 -2 -5 0.60 4 8 0.47 -4 -4 

77 0.52 3 3 0.53 13 1 0.52 31 12 0.44 -8 -4 0.66 -1 0 0.61 1 -1 

79 0.67 3 6 0.69 4 1 0.50 3 -4 0.79 -3 7 - - - 0.65 1 -1 

91 - - - 0.64 1 2 0.69 -5 2 0.65 1 0 0.73 1 11 0.50 -14 -36 

93 - - - 0.55 0 -1 0.56 -8 -4 0.60 0 -7 0.88 3 7 0.68 0 8 

95 0.58 0 0 0.44 3 5 0.56 -5 -12 0.78 0 -9 0.80 3 3 - - - 

97 0.75 0 -6 0.53 6 4 0.75 -4 0 0.84 -3 0 0.72 5 0 - - - 

99 0.37 12 2 0.68 0 4 0.59 11 9 0.42 7 6 0.77 4 4 - - - 
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combination of the complementary acquisition viewpoints, i.e. 

ALS vs. TLS. The proposed method obtained an average 

coefficient of determination (R2) of 0.98 on the tree-top height, 

0.86 on the crown width, and 0.77 on the 90° crown width by 

combining the two information sources. Moreover, the high 

resolution 3-D point clouds obtained enable an accurate   

 
Fig. 12. Number of LiDAR points per fused crown. 

 

  
(a) (b) 

  
(c) (d) 

Fig. 13. Crown parameter estimation results obtained on the set of fused ALS and TLS data sets. (a) Tree top height. (b) Crown width. (c) 90° crown width. (d) 

Correlation between the estimated crown volume and the measured DBH. 



 14 

estimation of the crown volume, as proved by the high R2 = 0.75 

value obtained with the measured DBH.  

 

V. CONCLUSION AND DISCUSSION 

In this paper we have presented an automatic method for the 

fusion of ALS and TLS data to accurately reconstruct forest 

structure. The proposed method is suited for localized forest 

analysis, which aims to accurately measure especially the 

crown parameters at the individual tree level. The main novelty 

of the presented work is related to the following:  

1) the use of the ALS data for the automatic registration of 

multiple TLS scans; 

2) the efficacy of TLS crown delineation performed using 

the ALS segmentation results;  

3) the improvement in forest structure modeling after the 

fusion of the ALS and TLS point clouds.  

The proposed method does not require any reference target 

during the acquisition of the TLS scan, thus leading to efficient 

and practical TLS acquisition campaigns. Moreover, by 

.TABLE III  

NORMALIZED CROSS CORRELATION SIMILARITY VALUES OBTAINED AFTER THE REGISTRATION STEP. FOR EACH TERRESTRIAL SCAN THE OBTAINED 

CORRELATION COEFFICIENT Ψ ∈ [-1,1] AND THE POSITION (𝑋𝑝, 𝑌𝑝  ) OF THE CORRELATION PEAK ARE GIVEN. THE DESIRED POSITION OF THE CORRELATION 

PEAK IS [0,0], WHICH CORRESPONDS TO THE CENTER OF THE CORRELATION MATRIX. 
 

 Site116 Site117 Site916 Site952 Site36 Site824 

 Ψ 𝑋𝑝 𝑌𝑝 Ψ 𝑋𝑝 𝑌𝑝 Ψ 𝑋𝑝 𝑌𝑝 Ψ 𝑋𝑝 𝑌𝑝 Ψ 𝑋𝑝 𝑌𝑝 Ψ 𝑋𝑝 𝑌𝑝 

11 0.75 0 0 0.82 0 0 0.58 0 1 0.81 0 0 0.72 0 -1 0.66 0 0 

13 0.84 0 0 0.78 0 0 0.67 -1 0 0.76 0 0 0.59 0 0 0.68 0 0 

15 - - - 0.74 0 0 0.83 0 0 0.72 0 1 0.62 0 0 0.64 0 0 

17 0.77 0 0 0.80 0 0 - - - 0.77 0 1 0.73 0 0 0.53 0 0 

19 0.78 0 0 - - - 0.79 0 0 0.78 0 0 0.62 0 0 0.65 0 0 

31 0.69 0 0 0.73 0 0 0.67 0 0 0.62 1 0 0.79 0 0 - - - 

33 0.71 0 0 0.73 0 0 0.70 0 0 0.78 0 0 0.65 0 0 0.75 0 0 

35 0.76 0 0 0.76 0 0 0.64 -1 0 0.76 0 1 0.67 0 0 0.60 1 0 

37 0.68 0 0 0.66 1 -2 0.74 0 1 - - - - - - 0.72 0 0 

39 0.59 0 0 0.75 0 0 0.55 0 0 - - - 0.80 0 0 0.70 0 0 

51 - - - 0.54 0 0 - - - 0.84 0 0 0.80 0 0 0.54 0 0 

53 0.72 0 0 0.73 0 0 0.65 0 0 0.82 0 0 0.82 0 0 0.67 0 0 

55 0.73 0 0 0.75 0 0 0.87 0 0 0.75 0 0 0.81 0 0 0.75 0 0 

57 0.62 0 0 0.71 0 0 0.81 0 -1 - - - 0.82 0 0 0.80 0 0 

59 0.60 0 0 0.82 0 0 0.75 -1 -1 - - - 0.72 1 -2 0.79 0 0 

71 0.81 0 0 0.66 0 0 0.61 0 0 0.82 0 0 0.79 0 0 0.57 0 0 

73 0.79 0 0 0.68 0 0 - - - 0.87 0 0 0.88 0 0 0.62 0 0 

75 0.57 0 0 0.71 0 0 - - - 0.59 1 0 0.72 0 0 0.60 0 0 

77 0.60 0 0 0.70 0 0 0.76 0 1 0.62 0 0 0.70 0 0 0.64 1 -1 

79 0.65 0 0 0.78 0 0 0.54 -1 1 0.80 0 0 - - - 0.73 0 0 

91 - - - 0.67 0 0 0.75 0 0 0.68 0 0 0.80 0 0 0.65 0 0 

93 - - - 0.58 0 0 0.68 0 0 0.74 0 0 0.89 0 0 0.73 0 0 

95 0.72 0 0 0.84 0 0 0.63 1 1 0.80 0 0 0.84 0 0 - - - 

97 0.79 0 0 0.68 0 0 0.76 0 0 0.87 0 0 0.70 0 0 - - - 

99 0.60 0 0 0.72 0 0 0.67 -1 0 0.78 0 0 0.73 0 0 - - - 

 

TABLE IV 

MEAN ERROR (ME), MEAN ABSOLUTE ERROR (MAE), ROOT MEAN SQUARE 

ERROR (RMSE), AND COEFFICIENT OF DETERMINATION (R
2) OF THE CROWN 

PARAMETERS ESTIMATION RESULTS OBTAINED ON THE FUSED SET OF 

CROWNS. 

 Height (m) Crown Width (m) 
90° Crown Width 

(m) 

ME 0.04 -0.42 0.68 

MAE 0.30 1.06 1.41 

RMSE 0.39 1.46 1.68 

R2 0.99 0.86 0.77 
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registering the ALS segmented image to the TLS scan, we 

accurately delineate single tree crowns present in the terrestrial 

data without requiring manual analysis or refinement. The 

registration validation strategy, based on the normalized 

correlation matrix, enables automatic detection of possible 

residual misregistration, due to potential problems related to the 

TLS scan acquisition.  

The obtained results verify that the proposed method 

accurately matches the TLS and ALS data by using the spatial 

distribution of the trees in an open woodland forest. We 

furthermore concluded that the fusion of these data leads to a 

more comprehensive representation of the tree crowns. In 

particular, we determined that the 3-D structure of the crown is 

accurately reconstructed from the fused data. The resolution of 

the obtained fused data varies, depending on the number of 

terrestrial scans and the distance of the terrestrial scanner from 

a target. However, in our experiments the fusion resulted in 

accurate crown parameter estimation due to the use of the two 

complementary data sources.  

As future developments of this work, we will investigate the 

estimation of other forest parameters from the set of fused, 

segmented crowns. We also intend to extend the method to 

forests that are characterized by different tree densities and 

forest structures.  
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