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An Internal Crown Geometric Model for Conifer
Species Classification with High Density LiDAR

Data
Aravind Harikumar, Student Member, IEEE, Francesca Bovolo, Senior Member, IEEE, and Lorenzo

Bruzzone, Fellow, IEEE

Abstract—The knowledge of the tree species is a crucial
information that governs the success of precision forest man-
agement practice. High density small footprint multi-return
airborne Light Detection and Ranging (LiDAR) scanning can
collect a huge amount of point samples containing structural
details of the forest vertical profile, which can reveal important
structural information of the forest components. LiDAR data
have been successfully used to distinguish between coniferous and
deciduous/broadleaved tree species. However species classification
within a class (e.g., the conifer class) using LiDAR data is a
challenging problem when considering the tree external crown
characteristics only. This paper presents a novel method for
conifer species classification based on the use of geometric
features describing both the internal and external structure of
the crown. The Internal Crown Geometric Features (IGFs) are
defined based on a novel internal branch structure model which
uses 3D region growing and Principal Component Analysis (PCA)
to delineate the branch structure of a conifer tree accurately.
Internal crown geometric features are used together with external
crown geometric features (EGFs) to perform conifer species
classification. Three different Support Vector Machines (SVM)
have been considered for classification performance evaluation.
The experimental analysis conducted on high density LiDAR data
acquired over a portion of the Trentino region in Italy proves
the effectiveness of the proposed method.

Index Terms—Conifers, Tree Species, Feature Extraction, Sup-
port Vector Machines (SVM), Airborne Laser Scanning, Light
Detection and Ranging (LiDAR), Forestry.

I. INTRODUCTION

FORESTS are an extremely important natural resource and
need to be preserved for obvious environmental and eco-

nomic reasons. An efficient forest management and planning
is essential for effective forest preservation [1]. However such
planning demands an accurate and periodic collection of forest
inventory data like tree height, stem diameter at breast height,
canopy density, crown cover, and biomass at individual tree
level. Most of the above mentioned parameters are species
specific. Thus the knowledge about tree species is fundamental
for activities such as forest ecological studies, biodiversity
studies [2], and climate change studies [3].

Conventional forest inventory methods require huge efforts
in terms of time and costs, whereas it is widely assessed that
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remote sensing technologies allow a reduction of both the
amount of human intervention for data collection [4] and the
overall cost. Light Detection and Ranging (LiDAR) is one of
the most effective and widely used remote sensing technology
for acquiring data about forest structure [5], [6]. Airborne
Laser Scanning (ALS) acquisitions conducted with the help
of Global Positioning System (GPS) and Inertial Navigation
System (INS) make it possible to obtain very accurate three-
dimensional (3D) measures of forest structure. However, tra-
ditional LiDAR systems with relatively low laser sampling
rate (and thus low sample density) are often not good enough
for estimating biophysical parameters with sufficient accuracy.
Accordingly, such low density airborne LiDAR data are often
used for tree species classification together with information
provided by other sources such as optical remote imaging
sensors [7]. However, recent improvements in sampling rate
of small footprint airborne LiDAR systems allow to sample
laser returns at a finer time interval over a smaller field-
of-view (FOV). As a result, they capture multiple returns
from a small area (i.e., 0.2 - 1.2m2), and thus ensure the
availability of a higher number of data points per unit area (i.e.,
high density). These kind of LiDAR systems are optimal for
studying forests at the single tree level. Modern small footprint
multi-return airborne LiDAR scanners, such as Leica ALS80
and RIEGL LMS-Q680i, can produce dense point clouds.
For example, in multi-return mode, Leica ALS80 can record
more than 50 samples/m2 in a single scanning pass conducted
from a height of about 1km and at a ground speed of 100
km/h. Hence data acquired by these systems contain a large
amount of information on both the tree crown characteristics
and the branch characteristics within the crown. The large
amount of spatial information obtained by small footprint
high point density multi-return airborne LiDAR scanners over
forest areas allows to perform an accurate classification of
tree species [8] and to better estimate parameters such as tree
height, crown area, and biomass [5]. Such LiDAR systems also
record the intensity of the laser return along with its time of
reception. The intensity information is also useful for studying
the spectral characteristics of trees, and thus is often beneficial
for species classification [9], [10].

Many algorithms have been developed for individual tree
delineation and biophysical parameters estimation from Li-
DAR data only. Some of them take advantage of combining
information in LiDAR data with the ones obtained from
complementary data sources such as Hyperspectral [11], Mul-
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tispectral [12], Very High Geometrical Resolution (VHR)[13],
and Synthetic Aperture Radar (SAR) images [14]. However,
using multi-sensor data is complex, often costly and sometimes
impossible. For example, one has to consider the need for
accurate multi-source data coregistration in that case. Hence,
it becomes interesting to optimize information extraction tech-
niques that can work with data acquired by a single sensor
such as the high resolution airborne LiDAR. Although, data
acquired from multispectral/hyperspectral sensors are useful
for generating good spectral signatures based models, they
show poor capability in modelling the 3D structure of forest.
Among the single sensor based species classification studies
in the literature, several uses high density LiDAR data [9],
[10]. This is due to the recent realization on the importance
of the crown structure (both internal and external) for accurate
species classification [15], [10]. However, methods for identi-
fying the species of a tree belonging to the same taxonomic
class (e.g., conifers) are lacking. Accordingly, here we focus
on developing an effective technique for extracting crown
structural information using small footprint high point density
multi-return airborne LiDAR data.

In this paper, considering the fact that conifers are very
important from an ecological point of view and dominate the
European forests, we introduce a novel method that utilizes
the structural/geometric information present in small footprint
high point density multi-return airborne LiDAR data for iden-
tifying the species of trees belonging to the conifer class (i.e.,
Pinopsida). Conifer species classification using LiDAR data is
challenging due to the high similarity in their external crown
shape (i.e., the external crown characteristics). Concerning
the internal crown characteristics (i.e., the branch structure
inside crown), conifers have a linear main stem with branches
growing outward from the stem, in an approximately linear
fashion, almost perpendicular to the stem. The separation
between conifer branches increases as we move from the stem
toward the external part of the crown. This makes the branches
more distinguishable near the exterior of the tree crown
(see Fig. 1). However, each conifer species shows specific
stem/branch attributes that makes it different from the others.
Accordingly, the objectives of this paper are: (1) to develop a
robust method to model the internal structure of a coniferous
tree from the LiDAR data; (2) to define robust, efficient
and scale invariant geometric features representing the branch
level characteristics of conifers based on the proposed internal
crown structure model; (3) to demonstrate the relevance of
internal crown geometric features; and (4) to perform effec-
tive conifer species classification. Experimental analysis was
conducted on a LiDAR dataset acquired by an airborne high
density LiDAR system by conducting multiple passes over a
study area located in the north west part of the Trentino region
in Italy. Validation was concentrated on four major European
conifer species, i.e., the Norway Spruce (NS), the European
Larch (EL), the Swiss Pine (SP) and the Silver Fir (SF).
However, the method can be extended to the classification
of other conifer species. In our experiments, linear Sparse C-
SVM, non-linear C-SVM, and non-linear multi-kernel C-SVM
(MK C-SVM) classifiers were used. Linear Sparse C-SVM
is used for feature relevance analysis. This is because linear

Sparse C-SVM has the capability to assign larger weights (i.e.,
hyperplane parameters) for relevant features, while smaller
weights are assigned to the remaining features. Accuracy
assessment was conducted by comparing classification results
achieved by the three above mentioned classifiers. The rest
of the paper is organized as follows. Section II presents the
state-of-the-art techniques for tree species classification using
LiDAR data. Section III describes the proposed method to
model the internal branch structure and briefly illustrates the
theory of SVM classifiers involved in the experiments. Section
IV introduces the dataset and the study area, and provides
experimental results. Section V draws the conclusion of this
work.

II. TREE-SPECIES CLASSIFICATION WITH LIDAR DATA

Obtaining tree species information from small footprint
single-return low sampling rate (i.e., low point density) air-
borne LiDAR systems is difficult due to their inability to
capture enough samples from the interior of trees. In re-
mote sensing based forest survey, the availability of small
footprint high sampling rate multi-return airborne (i.e., high
point density) LiDAR data is a major achievement which has
the potential to trigger a paradigm shift in the inventorying
approach, from the stand based [16] to the individual tree
based one [8], [17]. The latter is particularly advantageous
for studying forests in detail, as it allows to obtain detailed
information on the crown structure, the height, the diameter
at breast height and the biomass of individual trees. However,
algorithms working at the individual tree level require that
the LiDAR data corresponding to individual tree crowns are
accurately delineated prior to providing them to the species
classification algorithm.

In the case of fully automatic species classification and
biophysical parameter estimation techniques, the efficiency
in individual tree crown delineation is very critical for any
downstream processing. Initial success in individual tree crown
detection was achieved using segmentation of Landsat-TM
(optical) data [18]. However, segmentation conducted on high
resolution airborne optical sensors [19], [20] and Very High
Resolution (VHR) satellite borne optical sensors [21] were
found to provide more accurate results. Attempts to delineate
trees using LiDAR data proved to be relatively more successful
than using optical data, as LiDAR data contain information
about the vertical profile of forests, while optical data provide
only the 2D canopy level information. Several methods [22],
[23], [24] that use LiDAR data only for individual tree crown
delineation also exist in the literature, and most of them
provide a relatively better performance than optical data. The
underlying assumption while using LiDAR data is that the
local maxima in Canopy Height Model (CHM) [5] correspond
to tree-tops. Delineation of individual tree crowns from CHM
is achieved in LiDAR data by applying algorithms such as
active contour [5], watershed segmentation [25], and region
growing [22]. Alternatively, Falkowski, et al. [26] used two-
dimensional (2D) spatial-wavelet analysis to detect individual
tree crowns and estimate their crown diameter in a mixed
conifer forest. Low density LiDAR data have been found
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(a) (b) (c) (d)

Fig. 1: Examples of the four different coniferous species considered in the study; (a) Norway spruce (Picea abies), (b) European
larch (Larix decidua), (c) Swiss pine (Pinus cembra), and (d) Silver fir (Abies alba).

reliable only in the case of simple forests with little or no
undergrowth, while, with high density LiDAR data much
better accuracies were reported in tree crown delineation [24],
[8]. In [27], a hierarchical approach to 3D segmentation of
multilayered forests is provided that delineates both dominant
and sub-dominant trees very accurately for a study area in
Trentino, Italy. However, undergrowth is still a problem with
most single tree delineation algorithms [17], [28]. In [29] and
[30] it is demonstrated that improvements in tree detection
can be achieved by jointly exploiting the complementary
information of passive imaging sensors and high density
LiDAR data. However, practical issues such as unavailability
of multi-sensor data, increased multi-sensor data acquisition
and processing (e.g., data coregistration) complexity are often
a problem.

Once the data corresponding to individual trees are delin-
eated, any of the several algorithms in the literature can be
used for tree species classification depending on the data-
type (e.g., VHR optical images, LiDAR data). Many attempts
have been performed for tree species classification with optical
remote sensing images by extracting branch structure [31] and
external crown shape features [32]. Törmä [33] was among
the first ones to test the usability of low point density small
footprint airborne LiDAR data for deriving species proportions
in forest stands by using features that characterize the vertical
distribution of the laser measurements. However, the study
reports a low classification performance. Later researchers
investigated the effectiveness of multi-return LiDAR data for
species classification. For example, Pyysalo and Hyyppä [25]
proved that the profile of distance of LiDAR points from the
stem along the vertical direction provides hints on the tree
species. In [34], the height difference between the first and
last pulse from a small footprint high sampling rate multi-
return LiDAR system has been identified as a good feature
for differentiating deciduous trees from conifers during leaf-

off conditions. The underlying assumption here is that the
last laser return is reflected from within the deciduous tree
crown, while the same would get reflected back from crown-
top in case of conifers. The small footprint high sampling-
rate multi-return LiDAR systems collect a large number of
high resolution samples per square meter, thus improving the
possibility of performing accurate species classification by ac-
quiring fine structural details of forest components. Holmgren
[35] extracted information such as the spatial distribution of
point samples, an approximate external crown geometry, and
the return intensity, from a high density LiDAR point cloud, to
discriminate between pine and spruce, obtaining an accuracy
of 95.0%. The possibility of using LiDAR intensity data
and crown-structure features in differentiating conifers from
broadleaved has been analyzed in [36], where combining leaf-
off and leaf-on data provided accurate results. Even though
the technique is able to exploit the variations in annual
spectral reflectance of trees for increasing species classification
accuracy, it requires data acquisition in two seasons, resulting
in high operational costs.

Despite the fact that multi-sensor data assimilation is a
costly and complex affair, some researchers studied the effect
of combining complementary information for an accurate
forest inventory. High resolution Near-infrared (NIR) images
have been identified as a valuable source of complementary
information for improving the performance of LiDAR based
conifer-deciduous classification [37]. Some authors [21], [38]
studied the use of high resolution multispectral images to
derive species specific details. However, the low spectral
resolution of these data is a bottleneck for an efficient species
classification. Instead, the fine spectral sampling achieved
by hyperspectral sensors enables the discrimination of sev-
eral species but at a lower spatial resolution. Hyperspectral
data have been used in several studies alongside airborne
LiDAR data [11], [29]. Sugumaran et al. used LiDAR and
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hyperspectral data jointly for tree species classification in
urban scenarios [39]. In [14], the effectiveness of combining
data from LiDAR, SAR, Landsat ETM+, and Quickbird data
for forest parameter estimation was investigated. Their joint
use was found to be more effective than using LiDAR data
only. However, the same study points out that LiDAR is the
best single sensor for estimating the canopy height and the
biomass of trees with good accuracy. This understanding was
a motivation for many studies [36], [30], [15] on species
classification using only LiDAR data.

Holmgren et al. distinguished Norway spruce from Scots
pine (both conifers) using small footprint high point density
airborne LiDAR data and features derived from laser return
proportions and point height distributions. They achieved an
overall accuracy of 95.0% [35] for Remningstorp area located
in Sweden. However, the authors state lack of confidence in
obtaining such accuracy in other areas. Kim et al. showed
that height percentile value and features derived from fitting
simple geometric shapes such as cylinder, cone and sphere, on
the tree crown are very useful for classifying deciduous and
evergreen trees [36]. However, the use of leaf-off and leaf-on
data increases computational complexity and operational cost
[9]. In [15], Ko et al. pointed out the importance of internal
crown geometric features derived from LiDAR to perform
tree species classification. They derived six geometric features
from a small footprint high point density multi-return airborne
LiDAR data, including two internal and four external ones, for
species classification. The classification of pine (coniferous),
poplar (coniferous) and maple (broad-leaved) trees achieved an
overall accuracy close to 90.0%. Whatsoever, it is worth noting
that the study reports low classification accuracies within the
conifer class. This is because the Merge and Split K-means
based model used in the study is not able to accurately model
the individual conifer branch clusters and hence produces
unreliable feature values, ultimately leading to poor classi-
fication performance. In [10], the authors have demonstrated
that point-space distribution, laser return intensity, and internal
and external tree geometric features are effective in boreal tree
species classification. Concerning classification tools, most
studies on tree species classification agree that Support Vector
Machines (SVM) are highly effective classification technique
for LiDAR data [11], [40].

III. CONIFER SPECIES CROWN STRUCTURE
CHARACTERIZATION AND CLASSIFICATION

Here, we propose an effective method for conifer species
classification based on the structural properties of conifers
derived from small footprint high point density multi-return
airborne LiDAR data. The approach assumes that the LiDAR
point clouds corresponding to individual conifer trees have
been isolated (see example in Fig. 3(a)). Any method available
in the literature (e.g., [23], [41], [27]) can be employed to this
purpose. Starting from the individual tree LiDAR point cloud,
two sets of crown geometric features are derived that describe
the tree crown from two complementary perspectives: i) the
external one; and ii) the internal one. The former set includes
six External Crown Geometric Features (EGFs) that capture

the external behaviours of crown structural characteristic of
conifers. The latter set includes six novel Internal Crown
Geometric Features (IGFs) that model the internal behaviour
of conifers crown. This is achieved by exploiting the branch
structure. The twelve features are used for conifer species
classification. In our experiments SVM has been employed
to this end with different kernels and architectures [42], [43].
The block scheme of the proposed approach is given in Fig.
2.

Fig. 2: Block scheme of the proposed approach to conifer
species classification.

A. Internal Crown Structure Characterization

In order to properly model the internal crown structure
of conifers crown, let us observe that: i) conifers have a
linear/vertical central stem; ii) branches grow from the stem
outward; and iii) branches are linear and compact and have
a direction which is almost perpendicular to the stem and
reach the maximum distance from each other at branch tips.
The internal crown structural characteristics of conifers can
be defined by studying their branch characteristics such as the
branch length, the branch symmetry and the branch density.
Thus, individual branches of conifers need to be identified.

We have assumed the following notations to describe Li-
DAR data at the tree level. Let P = {p1, p2 . . . , pN} be the
LiDAR point cloud representing a single tree, where pn ∈ P
is the spatial position of each point belonging to the tree in
the small footprint high density multi-return LiDAR cloud.
pn is fully described in a 3D Euclidean feature space by its
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xn, yn and zn Cartesian coordinates. Let MT be the central
stem and B the total number of branches that constitutes the
conifer skeleton. In the LiDAR point cloud of a singel tree,
each branch can be modeled as a cluster of points (referred
to as branch cluster) cb = {pn;n ∈ Ib}, where Ib is the
index set of all the LiDAR points belonging to cb. The set
C = {cb, b ∈ [1, B]} of B branch clusters obtained by
grouping LiDAR points in P represents the entire conifer tree
crown. It is worth noting that the laser sampling can be non
uniform from the spatial point of view (thus different trees may
show a large difference in the numbers of LiDAR samples)
and that the number of reflections is relatively large near the
external part of the tree crown and relatively smaller towards
its interior (i.e., near the stem).

Considering these properties, we developed a conifer branch
modelling technique that applies 3D region growing [44] to
the data and identifies LiDAR points associated with each
branch. However, the accuracy of region growing (and in-turn
the accuracy of the internal crown structural model), highly
depends on the seed point initialization. Here, we consider
the LiDAR points most proximal to the actual conifer branch
tips as the optimal seed points for three reasons: 1) the
structural properties of conifer branches (i.e., compact and
having tapering tips) allow an accurate identification of branch
tips in high density LiDAR data; 2) conifers branch tips are
prominent in high density LiDAR point cloud; 3) maximum
separation between branches occurs at the branch tip (i.e., near
the exterior of the crown), and this ensures that the seed points
are uniformly separated or at least not confusingly close to
each other. We refer to the region growing seed points as the
branch tip points.

In case of conifers, it is highly likely that the boundary
points of LiDAR point cloud are also the branch tip points. In
this paper, branch tip detection is achieved by the boundary
detection algorithms in [45]. The algorithm finds the indices
of those LiDAR points which define the smallest surface
enveloping the entire point cloud. The compactness of the
surface is controlled by a variance parameter that can take
values between 0 and 1. When the parameter is set to 0, the
surface becomes the least compact, and the surface becomes
the most compact when the parameter is set to 1. Due to
high density of LiDAR points, often multiple points near the
same branch tips are selected as boundary points. However,
only the most distant point (among the multiple boundary
points) from the stem is considered as the optimal branch tip
point. The space spanned by the candidate boundary points
is dependent on the species. Moreover, the branch width/size
varies along the height of the tree, i.e., the lower branches
are larger and wider than the branches near the tree top.
Hence we use an adaptive thresholding calculated using an
inverse linear function of the branch tip point value zi. The
adaptive threshold takes into account also the variation in
branch width/size along the height of the tree, i.e., the lower
branches are larger and wider than the branches near the tree
top. A convex hull formed from the boundary points is shown
in Fig. 3b, and the boundary points after thresholding are
shown in Fig. 3c.

The branch tips obtained using [45] are the most external

LiDAR points in every branch cluster. To define branches,
a region growing is performed by progressively grouping
LiDAR points, seeding from the identified branch tip points,
according to a proximity criterion in the Euclidean space.
The proximity calculation is performed on a four dimensional
vector including the spatial coordinates of the LiDAR points,
and the neighbourhood point density Sn. The neighbourhood
point density Sn of the nth LiDAR point sample pn and can
be calculated for each LiDAR point as:

Sn =
YB∑K

i=0 Dni
(1)

where YB is the number of nearest neighbours (a constant)
of the nth LiDAR point pn ∈ P , and Dni is the Euclidean
distance between the nth and the ith LiDAR point. Thus, Sn

will be large for those points which have close neighbours
and viceversa. However, the LiDAR point density becomes
considerably low towards the interior of the tree [24], [17],
and as a result the inter-point distance (i.e., Dni) becomes
large, resulting in low Sn value. In effect, the closer to the
stem, the more unreliable is the 3D region growing procedure.
Hence, the growth process is stopped when the inter-point
density difference becomes larger than a certain threshold.
This threshold has been derived empirically by experimental
analysis accomplished on a large set of conifers. Thus, samples
close to the stem are not assigned to any branch cluster yet.
Branch clusters with small number of points (i.e., < 10 points)
were found to provide unrealistic branches and hence are not
modeled. Such branch clusters mainly occur near the tree tops
(due to small branch length) and also near the bottom (due to
low point density).

Each incomplete branch cluster is usually highly correlated
and linear in the 3D Eucleadian space. This is evident since
its overall shape can be approximated with a highly oblige
ellipsoid (see Fig. 5). Accordingly, the geometrical properties
of individual branches can be approximated to the ones of
the ellipsoid. To estimate the parameters of the bth ellipsoid,
Principal Component Analysis (PCA) is applied to the LiDAR
points of branch clusters cb, b = [1, . . . , B] (e.g., see yellow
points in Fig. 5) thus obtaining three principal components
(PCs). PC1 is the axis along which data show the maximum
variance and thus it is usually directed towards the stem of
the tree. The angle between PC1 and the stem corresponds to
the slope of the branch. PC2 and PC3 (i.e., the second and
third largest variance components) provide information about
the branch’s horizontal and vertical width. Eigenvalues λb

1,
λb
2 and λb

3 associated with the three PCA axis represent the
ellipsoidal dimensions and thus the branch cluster dimensions.
For each branch cluster, a regression line can be fitted in the
3D Euclidean space, which closely represents the wooden part
of the branch. We refer to this as the branch line and it gives
an approximate direction of the branch. For the purpose of
cluster completion, all the points near the stem that were not
allocated previously, are now assigned to one of the B branch
clusters based on the proximity of the point to the branch line.
Such points are very small in number and do not have much
influence on the branch parameters.
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(a) (b) (c)

Fig. 3: Internal crown structure modelling of conifers. (a) Input LiDAR point cloud for a tree (green dots). (b) The convex
hull formed on the cloud. (c) Detected branch tips points (red dots).

Fig. 4: Conifer branch skeleton

The branch lines together with the stem provide a repre-
sentation of the internal crown structure of a conifer (i.e.,
the conifer skeleton) (see Fig. 4). Accordingly, the skeleton
can be used to extract Internal Crown Geometrical Features
(IGFs) that model the tree branch structure and are useful in

distinguishing species.

Here, we define a set of six IGFs at tree level that depends
on six corresponding branch-level features that derive from
the proposed internal crown model. The set of branch-level
features is as follows:

(a) Branch length Lb: distance between the bth branch tip
and the tree stem computed along the direction of its
respective PC1.

(b) Branch slope αb: angle between the direction of the PC1
of the bth branch cluster and the stem.

(c) Branch compactness Kb: average of the perpendicular
distance of LiDAR points in the branch to the correspond-
ing branch line.

(d) Branch width Wb calculated as the Eigenvalue along PC2
i.e., λb

2.
(e) Branch symmetry Sb: ratio between eigenvalues λb

2 and
λb
3. If the value is 1, the symmetry of the branch is

considered to be maximum, whereas when the value tends
to ∞ (i.e., λb

2 >> λb
3) the branch is considered to be

completely asymmetric or flat.
(f) Branch density Db: number of LiDAR points associated

with the bth branch cluster cb. Although, the feature does
not capture the actual branch density, the feature value is
directly correlated to the actual branch density.

The six IGFs are calculated for each branch and a feature-
wise averaging is performed, thus obtaining values of the six
features at the tree level. These features form half the number
of feature that are given as input to the classifier in the final
step of the proposed approach. Table I gives the analytical
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definition of the six tree level IGFs derived from the internal
branch structure model. Trees at various stages of their growth
will have different branch lengths and hence we normalize the
features such as Bl, Bk and Bw by the Tree Height HT . The
average branch density Bn is divided by N in order to filter
out variations caused by point cloud density.

TABLE I: Proposed Internal Crown Geometric Features

Feature Id Description Equation

Bα Average branch slope
B∑
b=1

αb

B

Bl Average branch length
B∑
b=1

Lb

B·HT

Bk Average branch compactness
B∑
b=1

Kb

B·HT

Bw Average branch width
B∑
b=1

Wb

B·HT
=

B∑
b=1

λb
2

B·HT

Bs Average branch symmetry
B∑
b=1

Sb

B
=

B∑
b=1

λb
2

λb
3

B

Bn Average branch density
B∑
b=1

Db

B·N

Fig. 5: Illustration of the proposed branch model and of the
related parameters.

B. External Crown Structure Characterization

High density LiDAR data also provide detailed level knowl-
edge about the external shape of tree crown (see Fig. 3a).
Among the state-of-the-art algorithms for extracting informa-
tion about the external crown geometry, shape fitting and
convex hull based are the most popular. EGFs, which are
derived using parameters of a regression-fitted geometric shape
[46] and convex hull [47], obtained against the point cloud of
a tree, are effective for tree species classification [15]. Fitting

geometric shapes allows to have an idea of the general crown
shape, whereas convex hull provides the smallest 3D surface
that contains all the data points of a tree and thus provides
information such as the crown volume, the surface area and
the density. Conifer species have a similar typical conical
crown shape that in some studies has been described with
a generalized cone or paraboloid [48] [13]. For this study,
we assume a simple cone shape and focus on features that are
derived after shape-fitting. Whatsoever, considering the similar
conical crown shape of conifers, it is expected that external
crown geometrical features (EGFs) are less informative than
IGFs, for species classification.

In order to fit a cone to the LiDAR point cloud of a tree,
four cone parameters need to be estimated. These include the
three coordinates of the cone vertex Vc = [xc, yc, zc], and the
cone angle a = tan(α) = r

h , where the angle α is the opening
angle (semi-vertical angle),and r and h are the base radius and
height of the cone (i.e. conifer in this case) respectively [49].
The general equation of a cone can be written as

(xi − xc)
2 + (yi − yc)

2 = (zi − zc)
2a2,∀i ∈ [1, N ] (2)

where, xi, yi, zi are Euclidean coordinates of the ith LiDAR
point sample in the tree. The parameters of the best fitting cone
(see Fig. 6a) can be obtained by fulfilling the least square
condition:

â = argmin
a

N∑
i=1

ϵ2i = argmin
a

N∑
i=1

(ai − a)2

where,

ai =

√
(xi − xc)2 + (yi − yc)2

(zi − zc)2

(3)

â is the optimal parameter value, obtained by fulfilling the
least square condition, defining the best-fit cone that represents
the external crown shape for the tree approximately. The initial
vertex coordinates can be chosen to be the spatial coordinates
of the highest LiDAR data point in the cloud. The optimal
vertex can be different from the initial coordinate and is
updated accordingly with ai (see equation 3) . Among the
several EGFs available in the literature, we selected the six
least correlated EGFs mentioned in [15]. The features are
derived from the parameters of best fitting cone and convex
hull. For each tree LiDAR point cloud. They include the
following parameters:
(a) Volume of convex hull Vhull, divided by the number of

points within the tree crown N .
(b) Difference between the convex hull volume and the fitted

cone volume Vcone, to the convex hull volume.
(c) Regression error RMSEcone associated with the cone

fitting. It can be computed by solving the
(
ATA

)−1
ATQ,

where A is the matrix derived from the derivatives of
the Taylor expansion (which is applied to linearize the
non-linear equation of the cone) of ai around the cone
vertex, Vc. The equation of a can be derived from (2), and
Q is (a1, a2, a3, ..., aN ). The regression error associated
with the least square cone fitting is a species dependent
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feature, as it does not consider only the general shape of
the tree, but also the point density and distribution inside
the canopy of the tree.

(d) Average of the distance of each point dn, to the closest
facet of the convex hull.

(e) Standard deviation of distances from each point to the
closest facet of the convex hull.

(f) Ratio between the crown height HC and tree height HT .
Table II summarizes the considered external crown geomet-

ric features and provide their equations.

TABLE II: External Crown Geometric Features

Feature Id Description Equation

Tv

Volume of the convex hull by
the number of points within
the crown [50].

Vhull
N

Td

Difference between the
convex hull and fitted cone
volumes compared to the
convex hull volume [50].

Vhull−Vcone
Vhull

Tϵ
Root mean squared error from
regression fitting of cone [50].

RMSECone
N

Tl

Average of distance dn of
each LiDAR point to the
closest facet of convex hull
[50]

N∑
n=1

dn

N

Tσ

Standard deviation of
orthogonal distances from
each point to the convex hull
[50].

√√√√ N∑
n=1

(pn−Tl)
2

HT

Th
Crown height divide by Tree
height [50]

HC
HT

C. Conifer species classification
In the last step, IGFs (Table I) and EGFs (Table II) are given

as input to an automatic classifier that associates each tree
with its species. Although any classifier could be employed,
we use the Support Vector Machine (SVM) as it is very
efficient and versatile [51] and has been successfully used
in remote sensing applications. Three different SVM config-
urations has been used. Sparse C-SVM with linear kernel
enhances the magnitude of feature weights (i.e., the weights
of the relevant features are accentuated while the weights of
the non relevant ones are attenuated) and thus is good to
understand feature relative relevance. Both single and multi-
kernel SVM architectures using both linear and non-linear
kernels have been considered with the objective of achieving
the highest classification accuracy and hence used for feature
quality assessment in this paper.The rest of the section briefly
summarizes the theory of the above mentioned classifiers.

Let {v⃗i}NG

i=1 be the set of training feature vectors. NG

is the total number of training samples and v⃗i ∈ Rd,
d is the number of features. Let {ui}NG

i=1 be the set of
corresponding class labels in the training set, where ui

∈ {-1 1}. In our case, the input vector v⃗i is defined
as the normalized set of IGFs and EGFs, i.e., v⃗i =
[Bα, Bl, Bk, Bw, Bs, Bn, Tv, Td, Tϵ, Tl, Tσ, Th].

(a)

(b)

Fig. 6: Representation of (a) the regression cone fitting on the
LiDAR point cloud of a Norway Spruce tree, and (b) shows
the convex hull obtained for the same tree

.
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The SVM aims at estimating an optimal separating hyper-
plane defined by the parameters w⃗ and e, which are the normal
vector and the bias, respectively [43]. The estimates of w⃗ and
e, for the C-SVM and MK C-SVM are obtained by solving
the optimization problem in (4).

min
w⃗,ξ,e

1

2
t+ C

N∑
i=1

ξi,

subject to ui(w⃗
T f(vi) + e) ≥ 1− ξi, ∀i = 1, . . . , NG,

ξi ≥ 0,
(4)

The function f(v) for the C-SVM is a single kernel
K(v, v′), whereas for the MK C-SVM it is a multiple kernel
M∑

m=1
dmK(v, v′), where M is the number of kernels, and

M∑
m=1

dm = 1. K(.,.) is a given positive definite kernel asso-

ciated with a reproducing kernel Hilbert space. In our case we
use Radial Basis Function (RBF) kernel for both C-SVM and
MK C-SVM. The terms ξ and C in (4) are the slack variables
and the tuning parameter, respectively. Linear Sparse C-SVM
performs classification by exploiting the sparsity in the input
feature space, and emphasises the relevance of features (i.e.,
their weights), while reducing the relevance of noisy and/or
correlated features. In the case of Sparse C-SVM, the optimal
feature selection and the SVM learning processes are achieved
simultaneously. Although popular in other fields, Sparse C-
SVM has not been widely used in remote sensing and hence
we provide some details on it. The estimates of w⃗ and e are
obtained by solving the optimization problem in (5).

min
w⃗,ξ,e,t

1

2
t+ C

N∑
i=1

ξi,

subject to ui(w⃗
T f(vi) + e) ≥ 1− ξi, ∀i = 1, . . . , NG,

ξi ≥ 0,

||w⃗||22 ≤ t

||w⃗||21 ≤ rt
(5)

The Sparse C-SVM formulation shown in (5) is the same
as that of the C-SVM or MK C-SVM (4) except for the two
additional constraints on w⃗. The (5) is rather a simplified
version of the original optimization problem in [42]. The
simplification of the problem is achieved by replacing the
cardinality constraint in the original problem with a weaker
non-convex constraint, i.e., ||w⃗||21 ≤

√
r||w⃗||22 [42]. This

weaker non-convex constraint can be further relaxed to a
convex form by bounding the norm L2 constraint on w⃗ by a
variable t, and the L1 norm constraint on w⃗ by rt, where t is
a constant. Hence, the aforementioned non-convex constraint
can be split into the following constraints ||w⃗||22 ≤ t and
||w⃗||21 ≤ rt [42]. The L1 constraint on weight vector w⃗ allows
it to be Sparse (i.e., some values of w⃗ could be 0), while
the L2 constraint minimizes the number of elements of w⃗
to be shrunk to zeros. Hence, only few relevant features are
considered while generating the hyperplane. The individual

elements of w⃗ quantify the relative importance of a feature
with respect to the others.

Fig. 7: Illustration of the hyperplanes formed by the C-SVM
and the Sparse C-SVM in an R2 space. The Sparse C-SVM
ignores one dimension (i.e. Feature 2).

Fig. 7 shows an illustration of the hyperplanes obtained
with a standard linear SVM and a linear Sparse C-SVM for
a 2-class 2D problem. C-SVM considers both the features 1
and 2 to define the hyperplane, whereas linear Sparse C-SVM
creates the hyperplane based on the feature 1 only. Similar
considerations hold for a higher dimensional feature space.
Using a subset of the original features makes the process
computationally more efficient, at the cost of a small decrease
in the classification accuracy w.r.t. C-SVM or MK C-SVM.
If a multi-class problem needs to be solved, one-against-one
or one-against-all approaches can be employed as for standard
linear SVM [52].

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Study Area and Data Set

The study area is located in the Italian Alps, in the mu-
nicipality of Pellizzano at about 40 km northwest of Trento
(a city in the North of Italy). The area contains valleys and
mountainous terrains. The approximate extent of the area is
about 3200 ha, and the altitude varies from 900 to 2000 m
above the sea level. The forest in this region is heterogeneous
with both coniferous and broad-leaf species. The dominant
coniferous species include the Norway Spruce (Picea abies),
the European Larch (Larix decidua), the Swiss Pine (Pinus
cembra) and the Silver Fir (Abies alba). Minority coniferous
species are European Black Pine (Pinus nigra) and Scots
Pine (Pinus sylvestris). Among the broadleaf species European
Beech (Fagus sylvatica L.) dominates over Sycamore Maple
(Acer pseudoplatanus L.), Hop Hornbeam (Ostrya carpinifo-
lia Scop.), Field Elm (Ulmus campestris), and Sessile Oak
(Quercus petraea Liebl). Here attention is devoted only to
the four major coniferous species. The LiDAR data were
acquired between 7th and 9th September 2012 from an air-
borne platform flying at an altitude of 660 m with a speed
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of 100 Km/Hr. The acquisition sensor is a Riegl LMSQ680i.
The frequency of the laser scanner is 400 KHz and up to
four returns were recorded. The point density varies from 10-
50 points per meter squared due to the mountainous terrain
of the study area. The flight was repeated several times to
generate a dense point cloud with density varying from 50
to 200 points/m2. As expected, a high density point cloud is
observed below the flight path (i.e., near nadir) whereas the
density of the point cloud decreases off-nadir. The density of
LiDAR points is maximum in the crown region and reduces
toward the interior section of the trees. Further, point density
is maximum near the tree top and minimum at the bottom.
The ground sample collection was conducted in the same
month as that of the data acquisition. Among them, a set
of 200 reference trees, manually delineated from the point
cloud, was created, that includes 50 trees each of the Norway
Spruce (NS), the European Larch (EL), the Swiss Pine (SP)
and the Silver Fir (SF) species. On the one hand, the NS, EL,
and SF are relatively tall trees and are geometrically more
similar to the assumed conifer characteristics. On the other
hand, the SP is shorter with slightly different characteristics.
SP class is included in the study as: a) it is one of the major
species in Europe, and 2) it allows to evaluate the robustness
of the proposed modelling technique. Table III shows the
tree and crown height statistics of the tree samples. In order
to validate the effectiveness of the proposed internal crown
model and of the features derived from it, the crown of trees
in the reference set was manually detected. In this way, the
validation procedure does not suffer from: 1) propagation
of error due to automatic tree delineation techniques and,
2) the presence of structurally damaged trees (as this is
not investigated in this research). However, for operational
use, automatic segmentation methods [5], [25], [27] can be
employed, followed by a noise filtering to avoid isolated points
around the crown. LiDAR points corresponding to understory
vegetation were manually removed (but automatic methods
from the literature can be employed as well [53], [27]) since
they do not follow the conifer crown model. Selected trees
show in average 12000 points from multiple scanning passes.

TABLE III: Basic statistics of the structural characteristics of
the sample conifer on the considered dataset

Tree Number Tree height (m) Crown height (m)
Species of Trees Max Min Mean Max Min Mean

NS 50 44.97 22.36 31.51 35.0 19.0 26.31
EL 50 37.64 16.92 28.32 30.0 15.0 21.84
SP 50 39.57 13.49 30.35 34.0 10.0 24.52
SF 50 23.66 10.51 17.56 20.0 9.56 15.53

B. Experimental Results and Discussion

A direct evaluation of the performance of the proposed
internal crown modelling technique would require reference
information at the branch level. However this is not feasible
as it would require a very accurate branch level field data
collection. Thus, we adopted a validation set that includes
qualitative analysis and an indirect quantitative assessment.
The results obtained using the proposed internal crown model

are compared with the ones obtained by relying on a state-
of-the-art (SoA) one. Merge and Split K-means clustering
approach to internal crown structure modelling is used as the
SoA method [15]. It applies k-means clustering to LiDAR data
with random seed initialization, and performs a merging and
splitting operations on the cluster to identify final valid branch
clusters. In our experiments, the k has been set to be equal
to the number of branch-tips identified using the proposed
technique. For each tree, the branch tips were identified using
the convex hull based technique with the variance parameter
set to 0.5. The threshold (at crown bottom height) for multiple
branch tip removal was set to 2.0, 3.8, 2.8 and 1.9 for NS, EL,
SP and SF, respectively. In this way, we give clear advantage
to the reference technique that has not the intrinsic capability
to estimate the number of expected branches. The reader is
referred to [15] for further details on the merge and split
k-means based branch detection approach. In our method,
the branch clusters were identified using the region growing
performed on the point cloud, starting from the identified
seed points. The growing is stopped when the neighbourhood
threshold density becomes lower than the 0.3% of the density
near the branch tip (where the density is likely to be the
maximum). K was set to 5 for all the cases.

From the qualitative point of view, a visual comparison of
the internal crown model obtained with the proposed model
and with the SoA one was conducted for several trees in the
reference set. Figures 8, 9, 11, 10 show examples of: a) the
tree LiDAR point cloud, b) the branch model obtained with
the SoA approach, and c) the branch model obtained with the
proposed approach, for each of the four considered species.
It can be observed that the proposed model is able to better
capture the branch structure for all the considered species. This
becomes more clear in the upper right part of Fig. 8. It can
be observed that all the branch clusters have been correctly
captured by the proposed method, whereas the SoA method
fails to do so. The poor modelling capability of the SoA model
is mainly caused due to isotropic groping preferences and
random initialization of the k-means clustering. This choice,
combined with the complexity of the LiDAR point cloud, often
make it difficult to identify valid branch clusters. The proposed
model overcomes the drawbacks by employing the convex hull
based technique. Recalling that IGFs are attributes associated
to the branches, their reliability depends on the branch model
accuracy. Accordingly, it is expected that IGFs extracted from
the SoA branch model are less reliable than the ones extracted
from the proposed one while classifying species.

In order to quantitatively assess the above statement, IGFs
were extracted by employing both the proposed and the SoA
internal crown model. The EGFs were computed as well.
An indirect quantitative validation of both the internal crown
structural model and the proposed IGFs was achieved by
analyzing: i) the feature weights estimated during the Sparse
C-SVM training phase; and ii) the Sparse C-SVM, C-SVM
and MK C-SVM classification accuracy. The experiments were
conducted on the following feature combinations: i) External
Crown Geometric Features (EGFs); ii) IGFs extracted from
the state-of-the-art model (IGFs-SoA); iii) IGFs extracted from
the proposed internal crown model (IGFs-proposed); iv) IGFs
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(a) (b) (c)

Fig. 8: Example of results on a Norway spruce tree, (a) show the raw LiDAR data, (b) the results obtained by the SoA model,
(c) the results obtained by the proposed model.

(a) (b) (c)

Fig. 9: Example of results on a European larch tree, (a) show the raw LiDAR data, (b) the results obtained by the SoA model,
(c) the results obtained by the proposed model.
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(a) (b) (c)

Fig. 10: Example of results on a Swiss pine tree, (a) show the raw LiDAR data, (b) the results obtained by the SoA model,
(c) the results obtained by the proposed model.

(a) (b) (c)

Fig. 11: Example of results on a Silver fir tree, (a) show the raw LiDAR data, (b) the results obtained by the SoA model, (c)
the results obtained by the proposed model.
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(a)

(b)

(c)

(d)

(e)

Fig. 12: The Sparse C-SVM weights obtained when employ-
ing: (a) only EGFs, (b) only IGFs computed on the SoA model
(c) only IGFs computed on the proposed model, (d) the IGFs
from the SoA model together with the EGFs, and (e) the IGFs
from the proposed model together with the EGFs.

extracted from the state-of-the-art model and the EGFs (IGFs-
SoA and EGFs); and v) IGFs extracted by the proposed in-
ternal crown model and the EGFs (IGFs-proposed and EGFs).
For all the cases the better the performance, the better is the
considered set of features and thus the corresponding internal
crown model. The feature extraction step requires about 15
seconds for each tree on a 64-bit Windows 10 machine with
8.00 GB of RAM and Intel Xeon CPU E3-1240 V2. Thus,

for operational use, the performance can be improved using
parallel computing.

For all the classifiers, the training was conducted by means
of a 4-fold cross-validation. The 60% of the total samples (i.e.,
120 trees) were employed in the cross-validation procedure,
and the remaining 40% (i.e., 80 trees) was used for validation.
The validation set was selected such that 20 trees for each of
the four species were included. Considering that the sample
dataset size is small, the process was repeated 20 times and
the results are analysed as the average over the 20 runs.
The training procedure aimed at estimating: i) the optimal
C parameter for each classifier, and ii) the optimal kernel
parameters for C-SVM and MK C-SVM. Here an RBF kernel
was used, thus the spread γ of the kernel(s) was estimated. For
Sparse C-SVM, C values were considered in the range [10−6,
106] with an exponential step of 101. For all combination of
features, the best average accuracy on the validation set was
found for C = 105. For C-SVM, C was considered in the
range [2−15, 215] with an exponential step of 21, whereas
γ varied in the range [0.001, 10] with an exponential step of
101. The best average accuracy was achieved with C = 28 and
γ = 0.01 for the EGFs, the IGF-SOA and the IGF-Proposed
feature sets, and with C = 29 and γ = 0.01 for the remaining
sets. For MK C-SVM, C was considered in the range [2−15,
215] with an exponential step of 21 (like for the C-SVM), and
a total of 9 RBF kernels were selected. The 9 corresponding
γ values were selected by using the C-SVM optimal γ value
as a guideline. Accordingly, γ values for MK C-SVM were
selected close to 0.01 (i.e., 0.002, 0.004, 0.006 ,0.008, 0.010,
0.012, 0.014, 0.016 and 0.018). It is worth noting that the input
data are from a single source and hence large variations in γ
are not expected. The optimal C for MK C-SVM was found
to be 210. Feature values were normalized before giving them
as input to the classifiers [56].

Let us first analyse the feature relevance obtained as the
weights of the trained Sparse C-SVM (linear soft margin,
implemented using CVX [55]). The feature weights are a result
of the class separability analysis performed by the Sparse C-
SVM, i.e., a higher feature weight shows that the feature is
relatively more relevant when compared to the others [54].
The weight values for most EGFs are small and thus they
are less relevant for conifer species classification (see Fig.
12a). This behavior was expected as conifers have very similar
external crown characteristics. Nonetheless, the cone fit error
(Tϵ) and the average distance of LiDAR points to the closest
facade of the convex hull (Tl) showed to be promising features
and this agrees with our observation that the crown shape
and the point density variation around the stem are slightly
different for different species. Fig. 12c shows the normalized
features weights obtained in the proposed set up. The Sparse
C-SVM assigned maximum weights to the branch width Bw

and average branch compactness Bk. This is in alignment with
our visual examination (a close look at Fig. 8, 9, 11, 10 shows
that each tree species shows a unique branch width and branch
compactness). Both Bw and Bk are independent of variations
in both the point cloud density and the maturity of the tree, and
hence are good features for species classification. While the
average branch slope Bα, the average branch length Bl, the
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average branch symmetry Bs, and the average branch density
Bn, were assigned lower weights. This implies that the Bl

and Bα are less useful features at least for discriminating the
species considered in this study. In case of Bα, the low weight
value is a result of variation in branch slopes along its height.
The low weight values for Bl is connected to the fact that trees
of the same species and similar height can vary in their crown
diameter, and thus show different branch lengths. Although,
the average branch symmetry was expected to be a good
feature to classify tree species, the results proved that they
are less relevant for the four species considered in this study.
This is attributed to the fact that branches of different species
have similar ratio values. For example, the Norway spruce and
the Silver Fir seem to have different branch sizes. However
the ratio between the branch width and the branch height is
very similar. The average branch density is a good feature
for species classification if the LiDAR sampling density is
uniform throughout the acquisition, However in our case, the
large variation in the point cloud density makes it less relevant
with the current set of species.

It is worth noting at this point that the weight values show
only the relative importance of the features, and hence a
direct comparison of the values across experiments involving
different set of features is meaningless. However by jointly
providing as input the IGFs-proposed and the EGFs to the
Sparse C-SVM, it is possible to compare the importance of the
IGFs-proposed and the EGFs. The Fig. 12e shows the weight
obtained for this feature combination. It is evident that the
EGFs have been identified as relatively less important than
the IGFs-proposed.

The normalized weight values obtained for the IGFs-SoA
are shown in Fig. 12b. The features Bk and Bw have higher
values and hence are more relevant. This is in line with
our expectation for the same reasons mentioned previously.
Bl, Bα, Bs and Bn have relatively smaller weights. We
also tested the case in which the IGFs-SoA along with the
EGFs were provided as input to the Sparse C-SVM. The Fig.
12d shows the normalized feature weights. As one can see,
the EGFs were assigned higher weight values than any of
the features in the IGFs-SoA set. The box-plots in Fig. 13
confirm the quantitative separability analysis. It can be seen
that the highest weights are assigned to those features with
non-overlapping means and minimum variance.

Since EGFs are extracted independently of branch geometric
model, they can act as a benchmark for feature quality compar-
ison between the IGFs-SoA and the IGFs-proposed features.
By comparing weight assignments for the IGFs-SoA and the
EGFs, and IGF-proposed and the EGFs, one can see that the
IGFs-SoA have been identified as poor features in comparison
to the EGFs whereas the IGFs-proposed proved to be better
features than the same EGFs.

Let us now compare the average classification accuracy
computed over the 20 runs and obtained on the five feature
sets by using the Sparse C-SVM, the C-SVM (LIBSVM [57])
and the MK C-SVM (SimpleMKL Matlab tool [58]). Table IV
summarizes quantitative results. It is clear from Table IV that
the classification performance is higher when using the IGFs-
proposed set rather than the IGFs-SoA feature set, both with

and without the EGFs. This means that the proposed model is
more accurate than the SoA one. Therefore the features derived
from the proposed internal crown model are more effective.

TABLE IV: Average classification accuracy on the validation
set for different sets of features.

Feature Set
Classification Accuracy (%)

Sparse
C-SVM C-SVM MK

C-SVM

EGFs 68.5 72.2 71.5
IGFs-SoA 75.8 79.2 79.7
IGF-proposed 81.2 86.0 86.6
IGFs-SoA and EGFs 80.9 86.9 87.7
IGF-proposed and EGFs 85.3 89.1 89.5

Furthermore, IV points out that the MK C-SVM performs
better w.r.t the Sparse C-SVM and C-SVM. Thus, we evaluate
the species classification performance based on the accuracy
provided by the MK C-SVM. As expected, the use of the
EGFs only led to lower performance, i.e., an overall accuracy
of 71.5%. An increment of performance of about 8.0% and
15.0% was achieved when using the IGFs-SoA and the IGFs-
proposed feature sets, respectively. It is worth noting that
the use of the proposed internal structural model significantly
increased the overall classification accuracy, with respect to
the use of features derived from the state-of-the-art one. This
improvement confirms the effectiveness of both of the pro-
posed internal structural model and the proposed IGFs. When
both the IGFs and the EGFs are given as input to the Sparse
C-SVM, the classification accuracy increases further reaching
87.7% with the IGFs-SoA features, and 89.5% with the IGFs-
proposed features. The accuracy improvement achieved by
the joint use of EGFs and IGFs is of about 8.0% and 3.0%
when the state-of-the-art and the proposed model are used,
respectively. Tables V and VI show the confusion matrices
(including user’s accuracy (U.A.) and producer’s accuracy
(P.A.)) for the IGFs-SoA and the EGFs, and the IGFs-proposed
and the EGFs experiments, respectively. The best result over
the 20 runs was selected. As one can see, the number of errors
is smaller for all the species when using the IGFs-proposed
feature set.

TABLE V: MK C-SVM confusion matrix of the best case over
20 runs on using the IGFs-SoA and the EGFs feature set.

Classification Field Data U.A.%NS EL SP SF
NS 17 0 2 1 85.0
EL 0 19 1 0 95.0
SP 1 0 19 0 95.0
SF 2 0 1 17 85.0

P.A.% 85.0 100.0 100.0 82.6 O.A. 90.0 %

V. CONCLUSION

In this paper, we proposed a method for modelling the inter-
nal crown structure of the conifers from small footprint high
point density multi-return airborne LiDAR point clouds. The
internal crown structure modelling is performed using a set
of six novel features capable of characterizing the individual
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(a)

(b)

(c)

Fig. 13: Box plot analysis of (a) EGFs, (b) IGFs-SoA and (c) IGFs-proposed, for Norway spruce (red color), European larch
(green color), Swiss pine (light blue color) and Silver fir (purple color), respectively.

TABLE VI: MK C-SVM confusion matrix of the best case
over 20 runs on using the IGFs-proposed and the EGFs feature
set.

Classification Field Data U.A.%NS EL SP SF
NS 18 1 0 1 90.0
EL 0 19 0 1 95.0
SP 0 0 20 0 100.0
SF 2 0 0 18 90.0

P.A.% 90.0 95.0 100.0 90.0 O.A. 93.7 %

branch. The six proposed features are jointly used with six
external crown geometric features taken from the literature for
improving the classification accuracy by modelling also the ex-
ternal crown geometry of the trees. Accuracy assessment was
performed by using three different SVM classifier including

the Sparse C-SVM, the C-SVM, and the MK C-SVM. A set
of five experiments were conducted to study the individual
and the joint performance achieved by using the proposed and
standard features taken from the literature. All experiments
were conducted on a set of 200 tree samples belonging to the
four major European conifer species (i.e., the Norway Spruce,
the European Larch, the Swiss Pine, and the Silver Fir).
Experimental results point out that the proposed internal crown
model leads to the generation of more effective features with
respect to the state-of-the-art one. Furthermore, the joint use of
the proposed internal crown geometric features together with
standard external crown geometric features provides sharply
higher classification accuracies in conifer species classification
than the use of external crown geometric features only. This
proves the effectiveness of the proposed method that makes it
possible to obtain satisfactory results in species classification
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without the use of any multispectral or hyperspectral image.
As future works, we plan to design additional internal crown
geometric features to improve conifer species classification
accuracy and to consider the effects of crown-overlap and
under-story vegetation on the modelling process and hence on
the final classification accuracy. Moreover, we plan to extend
the method to characterize partially damaged trees (e.g., trees
with missing branches and/or having unsymmetrical crown
shapes).
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[5] J. Hyyppä, O. Kelle, M. Lehikoinen, and M. Inkinen, “A segmentation-
based method to retrieve stem volume estimates from 3-d tree height
models produced by laser scanners,” IEEE Trans. Geosci. Remote Sens.,
vol. 39, no. 5, pp. 969–975, May. 2001.

[6] M. J. Falkowski, J. S. Evans, S. Martinuzzi, P. E. Gessler, and A. T.
Hudak, “Characterizing forest succession with lidar data: An evaluation
for the inland northwest, usa,” Remote Sens. Environ., vol. 113, no. 5,
pp. 946–956, May. 2009.

[7] M. Dalponte, H. O. Ørka, L. T. Ene, T. Gobakken, and E. Næsset, “Tree
crown delineation and tree species classification in boreal forests using
hyperspectral and als data,” Remote sensing of environment, vol. 140,
pp. 306–317, 2014.

[8] T. Brandtberg, “Classifying individual tree species under leaf-off and
leaf-on conditions using airborne lidar,” ISPRS J. Photogramm. Remote
Sens., vol. 61, no. 5, pp. 325–340, Jan. 2007.

[9] S. Kim, T. Hinckley, and D. Briggs, “Classifying individual tree genera
using stepwise cluster analysis based on height and intensity metrics
derived from airborne laser scanner data,” Remote Sens. Environ., vol.
115, no. 12, pp. 3329–3342, Dec. 2011.
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