
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

1 

© © 2016 IEEE. Personal use of this material is permitted. Permission  from IEEE must be obtained for all 

other uses, in any current or future  media, including reprinting/republishing this material for advertising or 

promotional purposes, creating new collective works, for resale or  redistribution to servers or lists, or reuse 

of any copyrighted  component of this work in other works. 

 

 

 

 

Title: Edge-Based Registration Noise Estimation in VHR Multitemporal and Multisensor Images 

This paper appears in: IEEE Geoscience and Remote Sensing Letters 

Date of Publication: 28 June 2016 

 

Author(s): Y. Han, F. Bovolo, L. Bruzzone, 

 

Volume: 13, Issue: 9 

 

Page(s): 1231 - 1235 

 

DOI: 10.1109/LGRS.2016.2577719 

  



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

2 

EDGE-BASED REGISTRATION NOISE ESTIMATION IN VHR 

MULTITEMPORAL AND MULTISENSOR IMAGES 

 

Youkyung Han1, Member, IEEE, Francesca Bovolo1, Senior Member, IEEE, and Lorenzo Bruzzone2, 

Fellow, IEEE 

1Fondazione Bruno Kessler, Center for Information and Communication Technology, Trento, Italy 

2Dept. of Information Engineering and Computer Science, University of Trento, Trento, Italy 

 

Abstract— Even after co-registration, Very High Resolution (VHR) multitemporal images acquired 

by different multispectral sensors (e.g., QuickBird, WordView) show a residual misregistration due to 

dissimilarities in acquisition conditions and in sensor properties. Residual misregistration can be 

considered as a source of noise and is referred to as Registration Noise (RN). Since RN is likely to have 

a negative impact on multitemporal information extraction, detecting and reducing it can increase 

multitemporal image processing accuracy. In this paper, we propose an approach to identify RN 

between VHR multitemporal and multisensor images. Under the assumption that dominant RN mainly 

exists along boundaries of objects, we propose to use edge information in high frequency regions to 

estimate it. This choice makes RN detection less dependent on radiometric differences and thus more 

effective in VHR multisensor image processing. In order to validate the effectiveness of the proposed 

approach, multitemporal multisensor datasets are built including QuickBird and WorldView VHR 

images. Both qualitative and quantitative assessments demonstrate the effectiveness of the proposed 

RN identification approach compared to the state-of-the-art one. 

 

Index Terms— Registration noise, very high resolution images, multitemporal multisensor data, co-

registration 
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I. INTRODUCTION 

ince Earth observation satellites equipped with Very High Resolution (VHR) sensors (e.g., QuickBird, 

GeoEye, WorldView, etc.) have been launched, the availability of images with a spatial resolution less than 

1m has increased. As satellites periodically acquire images on the Earth surface, multitemporal images 

acquired from various sensors play a crucial role in a wide range of applications. However, in order to 

effectively exploit multitemporal images, they should be geometrically aligned each other. Therefore, image 

co-registration, which is defined as the process of spatially overlaying two or more images of the same scene 

[1], is a prerequisite. When multitemporal images show a high co-registration level, a better performance in 

multitemporal information extraction is possible.  

Many studies exist on VHR multitemporal images co-registration [2]–[4]. However, even after co-

registration, multitemporal images still show a residual misregistration caused by dissimilarities in the 

acquisition conditions such as stableness of the acquisition platform, off-nadir acquisition angles of the sensor, 

geometrical properties of the considered scene, and so on. The most critical component of misregistration 

arises from spatially corresponding pixels belonging to different objects at two dates (i.e., the border region 

of objects or the high frequency area in the images) [5]. Residual misregistration can be considered as a 

source of noise, referred as Registration Noise (RN) [5]–[7], and it has a negative impact on multitemporal 

information extraction. For example, it reduces the accuracy of change detection with an increase of false 

alarms [8], and of multitemporal data fusion or segmentation [9] as well. Accordingly, a proper detection of 

RN can improve the multitemporal image processing performance. To the authors’ knowledge only one study 

exists on the analysis of RN properties and its identification [5]. The approach is based on Change Vector 

Analysis (CVA) in polar domain applied to spectral bands, and assumes that multitemporal images show 

similar radiometric behaviors. Thus radiometric differences can be associated to real changes on the ground 

or misregistation effects, only. This is reasonable when multitemporal single sensor VHR images are 

considered. However, the assumption is seldom satisfied in multisensor multitemporal datasets where 

radiometric properties are intrinsic due to the acquisition sensors.  

S 
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In this paper, we aim at designing an automatic method for identifying RN in VHR multitemporal and 

multisensor images. The proposed method is based on the assumption that RN appears as thin linear features 

along object borders. We thus work on edge magnitude images (instead of spectral bands) generated by 

applying the Difference of Gaussian (DoG) filter. The high edge magnitude pixels on both images are first 

extracted, after which the pixels not involved in border regions of objects are estimated as RN pixels by using 

the difference of edge magnitude between the two images. In order to assess the proposed approach, 

QuickBird and WorldView VHR multitemporal multisensor data are employed. RN extraction results by the 

proposed approach are compared with the ones obtained according to [5].  

This letter is organized into five sections. Section II explains background of the CVA-based RN extraction 

approach and drawbacks when it is applied to VHR multitemporal images acquired by different sensors. 

Section III describes the proposed RN extraction approach. Section IV illustrates the dataset and reports 

experimental results. Section VI presents the conclusion of this letter. 

II. CVA-BASED REGISTRATION NOISE IDENTIFICATION 

In [5], RN pixels are identified in multitemporal images acquired by the same VHR sensor by means of CVA 

in polar domain applied to spectral bands. Let 𝑋1 and 𝑋2 be two VHR multispectral images acquired over the 

same area at different times 𝑡1  and 𝑡2 , respectively. The multispectral difference image 𝑋∆  consists of 

Spectral Change Vectors (SCVs) defined as 

 𝑋∆ = 𝑋2 − 𝑋1 (1) 

In a 2D feature space, the change information can be described by the magnitude 𝜌 and the direction 𝜗 of 

SCVs: 

 𝜌 = √(𝑋∆,1)
2

+ (𝑋∆,2)
2

, 𝜌 ∈ [0, 𝜌𝑚𝑎𝑥] (2) 

 𝜗 = 𝑡𝑎𝑛−1 (
𝑋∆,1

𝑋∆,2
) , 𝜗 ∈ [0,2𝜋) (3) 
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where 𝑋∆,𝑏 represents the bth spectral band of 𝑋∆ (𝑏 = {1,2}) and 𝜌𝑚𝑎𝑥 is the highest magnitude value of 

SCVs in the image. 

In the polar domain, unchanged SCVs have a low magnitude and cluster around the origin, whereas changed 

SCVs have a high magnitude and cluster far from the origin [10]. Therefore, the magnitude variable can be 

used to distinguish between change and no-change SCVs according to 

 𝑋∆(𝑥, 𝑦) ∈ {
𝑐ℎ𝑎𝑛𝑔𝑒,          𝑖𝑓 𝜌(𝑥, 𝑦) ≥ 𝑇  
𝑛𝑜 𝑐ℎ𝑎𝑛𝑔𝑒,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     

 (4) 

where T is a threshold value.  

In this feature space, dominant RN pixels behave like changed pixels, they are likely to show magnitude 

above T and to be detected as changes [5]. However, [5] demonstrated that changed samples have a stable 

behavior along the direction variable when scale decreases, whereas the dominant RN noise ones do not. 

Thus, a multiscale analysis of the direction variable allows one to discriminate between RN and changed 

pixels. Let us assume that (𝑋1
𝑁 , 𝑋2

𝑁) is a low-resolution version of the original (𝑋1, 𝑋2) image pair. The 

conditional density of RN distribution along the direction variable �̂�𝑅𝑁(𝜗|𝜌 ≥ 𝑇) can be estimated as: 

 �̂�𝑅𝑁(𝜗|𝜌 ≥ 𝑇) = 𝐶[𝑃(𝜌 ≥ 𝑇)�̂�(𝜗|𝜌 ≥ 𝑇) − 𝑃𝑁(𝜌 ≥ 𝑇)�̂�𝑁(𝜗|𝜌 ≥ 𝑇)] (5) 

where 𝑃(𝜌 ≥ 𝑇) and 𝑃𝑁(𝜌 ≥ 𝑇) are the probabilities of SCVs having magnitude values higher than T at full 

resolution and at resolution level N, respectively; �̂�(𝜗|𝜌 ≥ 𝑇) and �̂�𝑁(𝜗|𝜌 ≥ 𝑇) are the marginal conditional 

densities of the direction variable of the SCVs at full resolution and at resolution N, respectively; and C is a 

constant value that satisfies the condition ∫ �̂�𝑅𝑁(𝜗|𝜌 ≥ 𝑇)𝑑𝜗 = 1
2𝜋

0
. Higher value of �̂�𝑅𝑁(𝜗|𝜌 ≥ 𝑇) (i.e., 

high difference between distributions at low and high resolution) corresponds to a higher probability of 

having pixels contaminated by RN. Detailed explanation of CVA-based RN identification can be found in 

[5]. 

The CVA-based RN detection approach shows some open issues when it is applied to multisensor 

multitemporal image pairs. The first open issue is a difficulty in separating between change and no-change 
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pixels using magnitude variable. This is critical because RN pixels are separated from the changed SCVs 

under the assumption that the latter ones are effectively identified first. However, because of sensor-

dependent differences, multitemporal multisensor image pairs may show stronger radiometric dissimilarities 

compared to single sensor multitemporal pairs even if no changes occurred. Accordingly, unchanged SCVs 

show higher magnitude in average and tend to be clustered in biased position far from the origin. Thus, their 

behavior in the polar domain becomes similar to that of both changed and RN pixels. In this situation, a 

proper detection of unchanged samples would require a high value of T, which implies an increase of missed 

alarms and a decrease of accuracy in detecting changed pixels and thus of RN. On the other hand, a lower T 

value would imply that a larger number of unchanged pixels is identified as being changed. Accordingly, RN 

pixels would be over-estimated. In both cases RN detection step in multisensor multitemporal image pairs is 

less accurate than in single sensor ones. 

The second open issue is whether common spectral bands between multitemporal multisensor images exist 

or not. The approach in [5] assumes that at least two common spectral bands exist in the multitemporal image 

pair. However, when multisensor images are considered, the assumption may not be satisfied. Thus, CVA on 

spectral bands is less effective in RN detection. Moreover, even if similar acquisition bands exist, the 

selection of bands leading to good performance may be complicated due to the variability of SCVs 

distribution in the different spectral bands. 

In order to mitigate the abovementioned issues arising from radiometric and spectral dissimilarities that affect 

multitemporal multisensor images, we propose an approach to RN identification for multisensor VHR images 

based on the use of geometric features. 

III. PROPOSED EDGE-BASED REGISTRATION NOISE IDENTIFICATION 

As mentioned, RN mainly occurs along boundaries among objects. It means that RN has a high probability 

to be detected in high frequency content regions. Therefore, we propose to use high frequency features as 

edge magnitude image to extract RN. By working on edge magnitude images independently generated from 
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each multitemporal image, we can minimize the impact of the radiometric dissimilarities between multisensor 

images. Let us assume that 𝑋1
ℎ and 𝑋2

ℎ are the edge magnitude images at time 𝑡1 and 𝑡2. Here we exploit the 

DoG filter to construct the edge magnitude image because of its reliability on scale and rotation differences 

[11]. The edge magnitude image generated by DoG filter is defined as 

 

 𝑋𝑖
ℎ =

∑ (𝐺𝑘𝜎(𝑋𝑖,𝑏) − 𝐺𝜎(𝑋𝑖,𝑏))𝐵
𝑏=1

𝐵
 (6) 

where 𝑖 (𝑖 = {1,2}) is the acquisition time 𝑡𝑖, and 𝐺𝜎 is the Gaussian filter with standard deviation 𝜎. 𝑘 is a 

constant multiplicative factor. The values of 𝜎 and 𝑘 control the thickness and smoothness of edges in the 

edge magnitude image. Small values of 𝜎 and 𝑘 allow to preserve detail edges, but fail in removing small 

linear noisy segments. On the other hand, large values effectively reduce noise, but also remove detail edge 

information associated with RN. Therefore, selecting suitable values of 𝜎 and 𝑘 is important to detect RN in 

a reliable way. 𝐵 is the number of similar bands 𝑏 (𝑏 = {1, … , 𝐵})  between multitemporal multisensor 

images. The magnitude image can be generated even if there is one common band (i.e., 𝐵 = 1) only. 

In order to extract the RN on the edge magnitude images, two conditions should be satisfied. The first 

condition is that RN occurs in the surrounding of dominant edges in both images when the dominant edges 

are misaligned. Pixels located along and nearby the dominant edges have larger edge magnitude values, and 

the values decrease while moving toward homogeneous regions. Thus, candidate RN pixels are the ones 

having high edge magnitude in both images, i.e., 

𝑅𝑁1(𝑥, 𝑦) ∈ {
1, if min(|𝑋1

ℎ(𝑥, 𝑦)|, α|𝑋2
ℎ(𝑥, 𝑦)|) ≥ 𝑇1

0, otherwise
 (7) 

where 𝑇1 is a threshold value. The higher T1, the more strict the selection criteria. (𝑥, 𝑦) is a generic spatial 

position of image, and 𝛼  is a normalization parameter that controls the balance of the edge magnitude 

between two multisensor images. Since we suppose that 𝑋1 and 𝑋2 have radiometric dissimilarities, the edge 

magnitude images are also different. The impact on relative edge magnitude can be normalized and thus 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

8 

compared each other by dividing the magnitude values by their standard deviations [3]. Accordingly, the 

normalization parameter can be derived as 𝛼 = 𝜎(𝑋1
ℎ)/𝜎(𝑋2

ℎ) , where 𝜎(𝑋1
ℎ)  and 𝜎(𝑋2

ℎ)  are standard 

deviations of each edge magnitude image 𝑋1
ℎ and 𝑋2

ℎ, respectively. 

Recalling that object boundaries have strong edge magnitude in both images, candidate RN pixels estimated 

by (7) can be: i) precisely co-registered border regions; or ii) RN pixels. To discriminate between the two 

options, similarly to [5], the difference image is considered, but computed on the edge magnitude feature. 

The edge magnitude difference is small for precisely aligned edges and becomes larger and larger as 

misregistration increases. This is because high edge magnitude regions (i.e., dominant edges) in one image 

are compared to lower edge magnitude regions (i.e., regions in the neighborhood of dominant edges) in the 

other one. Accordingly, the second condition 𝑅𝑁2 becomes 

 𝑅𝑁2(𝑥, 𝑦) ∈ {
1, if ‖𝑋1

ℎ(𝑥, 𝑦) − 𝛼𝑋2
ℎ(𝑥, 𝑦)‖ ≥ 𝑇2

0, otherwise
 (8) 

where 𝑇2  is a threshold value that controls the sensitivity to the amount of misregistration. 𝛼 =

𝜎(𝑋1
ℎ)/𝜎(𝑋2

ℎ) is the normalization factor.  

The final RN map is identified as simultaneously satisfying conditions (7) and (8) as 

 𝑅𝑁(𝑥, 𝑦) = 𝑅𝑁1(𝑥, 𝑦)𝑅𝑁2(𝑥, 𝑦) (9) 

 

IV. EXPERIMENTS AND RESULTS 

A. Dataset description 

To evaluate the effectiveness of the proposed RN identification approach, we employed multitemporal 

multisensor images acquired over the city of Trento (Italy). The QuickBird and WorldView satellite 

multispectral sensors were considered. The QuickBird image was acquired in July 2006 with 14.1° off-nadir 

angle. It consists of a panchromatic band with 0.6m spatial resolution and four spectral bands [blue (450-

520nm), green (520-600nm), red (630-690nm), and NIR (760-900nm)] with 2.4m spatial resolution. The 

WorldView image was acquired in August 2010 with 12.0° off-nadir angle. It consists of a panchromatic 
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band with 0.5m spatial resolution and eight spectral bands [coastal (400-450nm), blue (450-510nm), green 

(510-580nm), yellow (585-625nm), red (630-690nm), red edge (705-745nm), NIR 1 (770-895nm), and NIR 

2 (860-1040nm)] with 2.0m spatial resolution. 

The QuickBird (𝑋1) and WorldView (𝑋2) images were pansharpened by the Gram-Schmidt method [12], and 

2 subsets of 980×980 pixels were selected for the experiments. The datasets show both urban and field areas 

and were preliminary co-registered in different ways. Automatic co-registration was applied to the first one. 

Tie-points were extracted based on Scale Invariant Feature Transform (SIFT) approach [3], and an affine 

transformation was estimated by applying the RANdom SAmple Consensus (RANSAC) on the tie-points for 

warping the WorldView image (𝑋2) to QuickBird one (𝑋1) [13]. For the second dataset, we manually selected 

tie-points and applied the polynomial transformation for warping. For both of them residual misregistration 

was around 1 RMSE pixel on the tie-points, but larger misalignment can be observed locally. Fig. 1 shows a 

true color composition of the two multitemporal multisensor datasets. 

B. Experimental Results 

To assess the effectiveness of proposed RN identification, we applied the proposed approach and compared 

the result with the one proposed in [5] (standard approach). The values of parameters have been selected 

based on trials. More specifically, we exploited the red and NIR bands of the VHR images to identify RN for 

the fair comparison with the standard approach. 𝑘 and 𝜎 were set to 2 and 1.6, respectively. Threshold values 

𝑇1, 𝑇2 and T were automatically selected by applying a Bayesian decision rule [14]. The selected values of 

𝑇1, 𝑇2 and T are 10.2, 20.5 and 282.1 for the first dataset, and 10.9, 23.0 and 208.1 for the second one, 

respectively. 

Qualitative assessment was conducted by comparing RN maps extracted according to the proposed approach 

and the standard one [5] (Fig. 2). As one can see, the use of spectral bands leads to the identification of RN 

pixels in some regions that did not change. This is because they have linear behaviors and large radiometric 

differences due to the different acquisition sensors. This is the case of roads and some plant rows in the fields. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

10 

Examples of such situations can be observed in Fig. 3.a and 4.a. As expected radiometric differences in 

multisensor images result in poor performance on the discrimination between changed and no-changed SCVs. 

The increment of false alarms thus increases the amount of detected RN pixels. Those effects are significantly 

mitigated by the proposed approach (Fig. 3.b and 4.b). 

For further assessment, fine co-registration was applied according to [15]. Fine co-registration performance 

depends on the accuracy of RN. Thus we can say that the higher the fine co-registration performance, the 

better the RN noise detection. For visual assessment, chessboard images generated by the CVA-based and 

the proposed approaches are shown in Fig. 3 and Fig. 4. From border regions of blocks in the chessboard 

image, we can see whether the co-registration is carried out properly or not. As one can see from the 

alignment quality in critical areas (white circles in Fig. 3 and Fig. 4), the proposed approach (Fig. 3.d and 

Fig. 4.d) leaded to a better co-registration of the multitemporal images with respect to the standard one (Fig. 

3.c and Fig. 4.c).  

Quantitative assessment was conducted by analyzing fine co-registration performance on: i) local regions 

showing large radiometric dissimilarity, and ii) whole dataset, independently. Three indices were selected: 

Mutual Information (MI), RMSE and Standard Deviation (SD) of the residual errors. MI evaluates the 

similarity between multitemporal multisensor images. The higher the MI value, the better the performance. 

To compute the RMSE and the SD, 40 checkpoints were selected. 12 checkpoints (see red crosses in Fig 3 

and Fig 4) were selected in regions with radiometric dissimilarities, and 28 checkpoints were evenly sampled 

over the whole dataset. The performance is presented in Table I and Table II for the first and second datasets, 

respectively. The analysis of fine co-registration performance over 28 evenly sampled checkpoints (i.e., 

global columns in Table I and Table II) points out that both the proposed and the standard RN approaches 

introduce significant improvements in the co-registration accuracy with respect to methods that does not 

account for RN information (i.e., SIFT-based alignment for the first dataset, and manual alignment for the 

second one). However, the proposed RN detection approach guarantees a more significant improvement. Let 
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us now analyze performance at a local level in critical checkpoints affected by radiometric differences. Here, 

the proposed approach generates an RMSE around 1 pixel, whereas the standard RN detection approach fails 

and RMSE increases up to 3.49 pixels in first dataset and 3.32 pixels in second one. The standard RN 

approach could not improve the fine co-registration performance locally. Whereas, the proposed one is more 

effective and allows for a significant reduction of RMSE from 2.47 to 1.03 in first dataset and from 2.53 to 

1.01 in second dataset. This is further confirmed by the lower SD values. 

 

TABLE I 

NUMERICAL ASSESSMENT OF CO-REGISTRATION ACCURACY 

 (FIRST DATASET). 

Registration method 

Local Global 

MI RMSE SD MI RMSE SD 

SIFT approach 0.562 2.47 1.31 0.514 2.29 1.16 

Based on standard RN detection 0.538 3.49 1.84 0.521 1.86 0.98 

Based on proposed RN detection 0.577 1.03 0.43 0.538 1.05 0.50 

 

TABLE II 

NUMERICAL ASSESSMENT OF CO-REGISTRATION ACCURACY 

 (SECOND DATASET). 

Registration method 

Local Global  

MI RMSE SD MI RMSE SD 

Manual alignment 0.614 2.53 1.03 0.462 2.93 1.23 

Based on standard RN detection 0.622 3.32 1.82 0.485 1.90 0.90 

Based on proposed RN detection 0.688 1.01 0.40 0.529 0.92 0.32 
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(a) (b) 

  
(c) (d) 

Fig. 1. True color composition of first dataset: (a) Quickbird image (𝑿𝟏) and (b) 

WorldView image (𝑿𝟐); and second dataset: (c) QuickBird image (𝑿𝟏) and (d) 

WorldView image (𝑿𝟐). 

  
(a) (b) 

  
(c) (d) 

Fig. 2. RN noise maps obtained with the standard (left) and the proposed (right) 

approach on: (a), (b) the first dataset; and (c), (d) the second dataset. 

  
(a) (b) 

  
(c) (d) 

Fig. 3. Detail of RN maps and chessboard images generated with the standard 

approach (a), (c); and the proposed one (b) and (d). (first dataset). 

  
(a) (b) 

  
(c) (d) 

Fig. 4. Detail of RN maps and chessboard images generated with the standard 

approach (a), (c); and the proposed one (b) and (d). (second dataset). 
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V. CONCLUSION 

In this paper, we proposed an approach to identify the RN between VHR multitemporal multisensor images 

based on the edge magnitude. The use of edge information makes the proposed approach robust to radiometric 

differences and thus particularly suitable when multitemporal multisensor datasets are considered that show 

radiometric differences induced by sensor differences. On the multisensor multitemporal datasets, the 

proposed approach visually and quantitatively improved the results compared to the standard RN 

identification approach, which is penalized by intrinsic radiometric differences. As future work, we plan to 

further mitigate the impact of radiometric differences in multitemporal multisensor VHR images by 

combining the proposed RN identification approach with a change detection approach designed for such kind 

of data.  
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