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Piecewise linear approximation of vector-valued
images and curves via 2nd-order variational model

Massimo Zanetti, and Lorenzo Bruzzone

Abstract

Variational models are known to work well for addressing image restoration/regularization problems. However,
most of the methods proposed in literature are defined for scalar inputs and are used on multiband images (such
as RGB or multispectral imagery) by the composition of a simple band-wise processing. This involves suboptimal
results and may introduce artifacts. Only in a few cases variational models are extended to the case of vector-valued
inputs. However, the known implementations are restricted to 1st-order models, while 2nd-order models are never
considered. Thus, typical problems of 1st-order models such as the staircasing effect cannot be overtaken. This
paper considers a 2nd-order functional model to function approximation with free discontinuities given by Blake-
Zisserman (BZ) and proposes an efficient minimization algorithm in the case of vector-valued inputs. In the BZ
model, the Hessian of the solution is penalized outside a set of finite length, therefore the solution is forced to be
piecewise linear. Moreover, the model allows the formation of free discontinuities and free gradient discontinuities.
The proposed algorithm is applied to difficult color image restoration/regularization problems and to piecewise linear
approximation of curves in space.

Index Terms

Multiband image, variational methods, Blake-Zisserman, Mumford-Shah, piecewise linear approximation, block-
coordinate descent method

I. INTRODUCTION

TYPICAL models for image restoration/regularization assume the image g recorded by an optical sensor to
be a noisy variation of a regular signal u. Mathematical methods to image approximation aim at recovering

such u by either solving an associated Partial Differential Equation (PDE) or by minimizing a specific variational
energy, both depending on g. In particular, edge-driven methods recognize the portions of the image contoured
by sharp variations of intensity (discontinuities) and associate them to different objects constituting the image
subject. Therefore, meaningful approximations are obtained from edge-based methods when they are able to: (1)
discriminate between intensity variations due to noise and those due to the presence of object edges, and, (2) return
regular approximations where smoothing only reduces noise contaminations without affecting relevant edges. PDE
methods are mainly based on diffusion equations. The most popular equation models are anisotropic diffusion (AD)
[1] and the total variation (TV) [2] (being the latter a particular case of the former one). The main characteristic
of these models is that, the smoothing process induced by diffusion is inhibited according to local features of the
image in order to preserve edges. Both AD and TV are time-dependent 2nd-order PDEs. Also 4th-order PDEs
are considered in literature [3] to enhance edge preservation. In most of the cases, PDEs can be seen as flows
generated by variational energies. In this respect, TV and AD are considered 1st-order models as equations can be
derived as flows generated by the minimization of integral energies penalizing the gradient norm. The PDE in [3]
is instead associated to a minimization problem penalizing the Hessian norm, it is therefore considered a 2nd-order
variational model.

In general, PDE methods do not allow the solutions to have free discontinuities and the physical meaning of the
equations parameters are not fully understood [4], [5]. As a consequence, the progressive modification of PDEs to
obtain more meaningful solutions moved towards variational representations. By means of variational models the
class of admissible solutions can be extended to discontinuous functions. Mumford and Shah (MS) [6] proposed
a flexible variational model to image approximation based on free discontinuities. Given an image g : Ω → R
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with Ω ⊂ R2 a rectangular domain, one looks for a 1-dimensional set K ⊂ R2 and a (piecewise) smooth function
u : Ω→ R such that the energy functional

MS(K,u) =

∫
Ω\K
|∇u|2 + µ|u− g|2 dx+ αH1(K) (1)

is minimized. Here, µ, α are positive parameters and H1 is the 1-dimensional Hausdorff measure. Theoretical
results that establish existence and regularity of solutions have been found exploiting a weak formulation of the
problem in the space of Special Functions of Bounded Variation [7]–[9]. From a numerical viewpoint, the explicit
computation of a solution is a difficult problem. Among many strategies that have been proposed in literature to
solve this problem (see for instance [10]–[12]), we recall the Ambrosio-Tortorelli (AT) elliptic approximation via
Γ-convergence [13], which is numerically tractable [14]. Being a 1st-order model, the MS has some drawbacks. In
particular, the staircasing effect [15], [16] is of major relevance, as it often limits the applicability of this model in
practical situations. Briefly, this phenomenon can be explained as follows. The minimization of the gradient energy
forces the solution to have a piecewise constant behavior. Therefore, steep gradients are approximated by step-wise
functions with many fictitious discontinuities, as the solution is not allowed to have 1st-order variations of high
magnitude. This problem can be solved by replacing the gradient term of the energy by a 2nd-order operator. Indeed,
this is the solution introduced by Blake and Zisserman (BZ) [17], who proposed to penalize the Hessian (instead
of the gradient) and the size of K0,K1, the discontinuity and the gradient discontinuity sets of u, respectively. The
BZ approximation can be found by minimizing

BZ(K0,K1, u) =

∫
Ω\(K0∪K1)

|Hu|2 + µ|u− g|2 dx

+ αH1(K0) + βH1(K1) (2)

where µ, α, β are positive parameters. Hessian penalization allows the solution to have 1st-order variations outside
K0 ∪ K1, yielding to a piecewise linear approximation of the input image. A recent survey presents a summary
and future perspectives about the study of the Blake-Zisserman (BZ) variational model for segmentation, includ-
ing theoretical results for existence and regularity of solutions [18]. To address numerical minimization, elliptic
approximations of the functional exploiting the AT technique (used in the MS case) were given by Bellettini
and Coscia [19] and Ambrosio, Faina and March (AFM) [20]. The first numerical implementations are given in
dimension one [21] to piecewise linear approximation of signals and in dimension two [20] to segmentation of
stereo images. Recently, the problem of numerically minimizing the AFM approximation of the BZ functional on
large images has been addressed in [22], where the objective functional is written in a compact matrix form and
optimization is performed by means of a special version of the block-coordinate descent algorithm (BCDA) [23]
that exploits the partial convexity of the functional. Other papers consider the problem of minimizing 2nd-order
energies in specific spaces of functions of bounded variation, without the need of tracing the discontinuity sets [24].

The PDE approaches to image approximation mentioned before have been successfully generalized to the case
of vector-valued inputs. In [25], a vector-valued version of image restoration based on TV norm has been proposed
for color images. A general framework for AD to vector-valued image restoration/enhancement has been proposed
in [26], which is applicable to both color images and to other vector-valued image representations (e.g., stacks
of image features like texture, motion, etc.). Curvature-preserving tensor-driven PDEs have been also designed to
enhance regularity of edge boundaries [27]. Regarding variational methods, large attention has been devoted to
the study of 1st-order models in the vector-valued case. A gradient vector-flow approach has been studied in [28].
Fundamental theoretical results have been proved for the MS problem in the vector-valued case by generalizing
the AT approach [29], [30] and allowing also for explicit computations [16], [31]. Other approaches have been
also developed for the vector-valued MS by exploiting convex representation [32], by extending the active contour
algorithm [33], [34] or via combinatorial optimization [35]. In [36] the local AT approximation of the MS is
extended to non-local formulation accounting for texture information. Numerical experiments in the cited works
confirmed for the improved capability of approximation of variational models w.r.t. to PDE approaches such as TV
and AD.

On the counterpart, the current limitation of the literature is the absence of methods for addressing the approx-
imation of vector-valued inputs based on 2nd-order models. In particular, the minimization of the BZ functional
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for vector-valued functions is not considered at all. In 1st-order models such as MS, the gradient penalization
forces the solution to be piecewise constant. If this has useful implications to segmentation purposes, it makes
image regularization/restoration unfeasible as a locally flat approximation is generally too coarse. In this paper, we
propose a numerical approach to solve the image approximation problem based on the 2nd-order Blake-Zisserman
functional for vector-valued functions. From a theoretical viewpoint, we prove that the discrete version of the
objective functional involving tensor differential operators retains partial convexity with respect to the new variable
blocks associated to co-domain dimensions. To demonstrate its effectiveness, the proposed method is applied to
difficult color image denoising/restoration problems and to the recovery of polygonal boundaries from discrete noisy
sampling.

The plan of the paper is as follows. In Section II, we firstly introduce the elliptical AFM approximation of the
BZ functional and then we purpose two numerical approaches to address minimization in the case of vector-valued
images and curves. Numerical experiments are presented in the next two sections. In Section III, the proposed
algorithm to piecewise linear approximation of vector-valued images is applied to denoising/restoration of color
images and compared with the well-known MS model. In Section IV, the proposed method is applied to the recovery
of polygonal shapes from discrete noisy sampling. In Section V we draw the conclusions of this paper.

II. THE BLAKE-ZISSERMAN MODEL FOR THE APPROXIMATION OF VECTOR-VALUED IMAGES AND CURVES

The numerical handling of the 2nd-order variational model to segmentation proposed by Blake and Zisserman is
unfeasible in its original strong formulation as in (2) [17]. As in the MS case, the strong formulation does not allow
to prove existence of solutions: because of the set unknowns K0,K1, the functional lacks in lower semicontinuity.
Therefore, the functional has been rewritten in the weaker space of Generalized Special Functions of Bounded
Variation [37]

F(u) =

∫
Ω

(
µ|u− g|2 + |Hu|2

)
dx

+ (α− β)H1(Su) + βH1(S∇u ∪ Su)

(3)

where it loses its explicit dependency on the discontinuity sets, which can be regarded as geometrical properties
of the only variable function u being Su, S∇u the discontinuity and gradient discontinuity set of u, respectively.
Also in the weak form the numerical minimization is still a hard issue. For this reason, elliptic approximations of
the functional have been proved via Γ-convergence by exploiting the seminal idea of Ambrosio-Tortorelli for the
approximation of the MS functional. This is done in dimension one by Bellettini and Coscia [19], and in dimension
two (with partial results in any finite dimension) by Ambrosio, Faina and March [20].

Let Ω ⊂ Rk be an open set, k = 1, 2 and g ∈ L∞(Ω) the function to be approximated (either a signal or an image).
The authors of [20] and [19] have introduced two auxiliary functions s, z : Ω → [0, 1] aimed at approximating
the indicator functions of the discontinuity sets K0,K1 and proposed a Γ-convergence approximation of the weak
functional via the family of uniformly elliptic functionals

Fε(s, z, u) = δ

∫
Ω
z2|Hu|2 dx+ ξε

∫
Ω

(s2 + oε)|∇u|2 dx

+ (α− β)AT ε(s) + βAT ε(z) + µ

∫
Ω
|u− g|2 dx, (4)

where s, z, u are in proper Sobolev spaces and AT is the Ambrosio-Tortorelli component

AT ε(v) =

∫
Ω
ε|∇v|2 +

1

4ε
(v − 1)2 dx. (5)

Here ε is the convergence continuous parameter, ξε, oε are infinitesimals and the convergence is intended for ε→ 0.
For each ε > 0 the functional Fε admits a minimizing triplet (sε, zε, uε). Γ-convergence properties ensure that the
sequence of minimizers {(sε, zε, uε)}ε→0 strongly converges to a minimizer of the weak functional (3). Fixed ε > 0,
the geometrical behavior of a minimizing triplet (sε, zε, uε) is as follows. Due to the presence of the distance term
|u− g|2 the function uε is forced to be close to the input and smoothing constraints are given by the integral terms
containing |∇u|2 and |Hu|2. For 0 < ε << 1 we have 1/4ε >> 1, thus sε and zε must be 1 almost everywhere.
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Transitions from 1 to 0 are only energetically convenient to suppress high values of |∇u|2 and |Hu|2. Functional
parameters δ, µ, α, β regulate the penalization of each term individually.

In the following, the AFM approximation of the BZ functional is considered in the general case of vector valued
inputs, both for k = 2 (the case of vector-valued images) and for k = 1 (the case of curves in general space).
The functionals are then discretized, written in matrix compact formulation and an efficient numerical algorithm to
minimization is proposed.

A. Approximation of vector-valued images

Let Ω ⊂ R2 be a rectangular domain and g : Ω → RB , with B ≥ 1, a vector-valued image (such as RGB or
multi-spectral image). Our aim is to derive a discretization and minimization approach to find u : Ω → RB and
s, z : Ω→ [0, 1] that minimize the functional (4). Of course, differential operators appearing in the functional must be
intended as for vector valued functions. Thus, for a (sufficiently) differentiable function v : x 7→ (v1(x), . . . , vB(x)),
the symbols ∇v and Hv refer to the vector-valued gradient (Jacobian matrix) and Hessian tensor of the function
v, respectively. More specifically,

[∇v]bk = ∂kvb

[Hv]bkh = ∂khvb
(6)

where k, h = 1, 2 represent derivative order and b = 1, . . . , B is the coordinate component of the variable v. The
squared Euclidean norm of ∇u and Hu is the sum of each squared tensor element

|∇v|2 =

B∑
b=1

2∑
k=1

(∂kvb)
2,

|Hv|2 =

B∑
b=1

2∑
k,h=1

(∂khvb)
2.

(7)

1) Discretization: The rectangular planar domain Ω ⊂ R2 is discretized by a rectangular grid of points Λ =
{(itx, jty); i = 1, . . . , I, j = 1, . . . , J} with step sizes tx and ty on the x and y directions respectively. The overall
number of points in the grid is p = IJ . At each grid point (itx, jty), the value of variables s, z is given in a usual
gray-scale image notation as sij , zij , whereas the value of variables g, u are given band-wise, for each band b,
as (gb)ij , (ub)ij . For ease of computation the values of variable v ∈ {gb, ub, s, z} are rearranged by column-wise
vectorization into a vector v of size p. The function w(i, j) := (j − 1)I + i makes the bijective correspondence
[v]w(i,j) = vij .

First and second order derivatives are approximated via finite difference-schemes

∂xvij :=
vi+1,j − vi,j

tx
= [Dxv]w(i,j)

∂yvij :=
vi,j+1 − vi,j

ty
= [Dyv]w(i,j)

∂xxvij :=
vi+1,j − 2vi,j + vi−1,j

t2x
= [Dxxv]w(i,j)

∂yyvij :=
vi,j+1 − 2vi,j + vi,j−1

t2y
= [Dyyv]w(i,j)

∂xyvij :=
1

ty

(
vi+1,j+1 − vi,j+1

tx
− vi+1,j − vi,j

tx

)
= [Dxyv]w(i,j)

(8)

for i = 1, . . . , I and j = 1, . . . , J , and matrices Dx, Dy, Dxx, Dyy are given by

Dx :=
1

tx
IM ⊗A1

N Dy :=
1

ty
A1
M ⊗ IN

Dxx :=
1

t2x
IM ⊗A2

N Dyy :=
1

t2y
A2
M ⊗ IN

Dxy := DyDx = DxDy

(9)
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where ⊗ is the Kronecker product. Here IK denotes the identity matrix of size K and A1
K , A2

K are square matrices
of size K implementing difference schemes approximating first and second order derivatives

A1
K =


−1 1

−1 1

. . .
. . .
−1 1

−1

A2
K =


−2 1
1 −2 1

. . .
. . .

. . .
1 −2 1

1 −2

 (10)

Let v2 be the vector of the squared coefficients of v, i.e., [v2]i = ([v]i)
2, we can approximate differential operators

over each grid point as

|Hvij |2 = ([Dxxv]w(i,j))
2 + ([Dyyv]w(i,j))

2 + 2([Dxyv]w(i,j))
2,

|∇vij |2 = ([Dxv]w(i,j))
2 + ([Dyv]w(i,j))

2,

Finally, by denoting Rv the diagonal matrix with diagonal entries equal to the elements of v and e := (1, 1, . . . , 1)T ,
we can obtain a convenient discrete version of the objective functional by a 2-D composite rectangular rule.
Indeed, by virtue of expressions (6), the decomposition of the vector-valued variables g = (g1, . . . ,gB) and u =
(u1, . . . ,uB) can be conveniently split over image bands, so that we can write the discrete functional generalizing
(4) to the vector-valued case as

Fε(s, z,u) =

B∑
b=1

{
δ uTb

[
DT
xxRz2Dxx + DT

yyRz2Dyy + 2DT
xyRz2Dxy

]
ub

+ ξε u
T
b

[
DT
xRs2Dx + DT

yRs2Dy

]
ub + µ (ub − g)T (ub − g)

}
+ (α− β)

[
ε sT (DT

xDx + DT
yDy)s +

1

4ε
(s− e)T (s− e)

]
+ β

[
ε zT (DT

xDx + DT
yDy)z +

1

4ε
(z− e)T (z− e)

]
.

(11)

The functional presents an evident partially quadratic structure as it can be written in the following way

Fε(s, z,u)

=
1

2

(
sT zT

)( As 0
0 Az

)(
s
z

)
−
(
sT zT

)( bs
bz

)

=
1

2

(
uT1 , . . . ,u

T
B

) Au 0 0

0
. . . 0

0 0 Au


 u1

...
uB


−
(
uT1 , . . . ,u

T
B

) b1
...

bB


(12)
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where As = As(u), Az = Az(u), Au = Au(s, z) and bs,bz,bb for b = 1, . . . , B, are given by

As = 2ξε

B∑
b=1

R|∇ub|2 + 2ε(α− β)(DT
xDx + DT

yDy) +
α− β

2ε
I

bs =
α− β

2ε
e

Az = 2δ

B∑
b=1

R|Hub|2 + 2εβ(DT
xDx + DT

yDy) +
β

2ε
I

bz =
β

2ε
e

Au = 2δ(DT
xxRz2Dxx + DT

yyRz2Dyy + 2DT
xyRz2Dxy)+

2ξε(D
T
xRs2Dx + DT

yRs2Dy) + 2µI

bb = 2µgb

(13)

It is worth mentioning here two facts. First, it is well recognized that, when dealing with vector-valued images the
composition of separate processing on image components (i.e., bands) introduces artifacts [38]. Due to the tensor
nature of the differential operators used in our model, we can avoid this phenomenon, cfr. Figure 6 (see also [39],
[40]). In fact, we have that matrices As,Az incorporate information from all image bands as Hessian and gradient
norms from all bands are summed up. Thus, functions s, z are able to detect discontinuity and gradient discontinuity
points gathering information from all bands of the input image. Second, the discrete functional retains quadratic
structure with respect to each variable block ub, for b = 1, . . . , B. Moreover, each partially quadratic slice of the
functional depends on the same matrix Au and only the constant terms bb vary among them. This fact has some
relevance when numerical minimization is performed, as eigenvalue analysis to determine convergence parameters
can be performed only once for each outer iteration.

2) Minimization strategy: The partially quadratic structure expressed in (12) allows us to address the functional
minimization by following a Gauss-Seidel (GS) approach

sk+1 = arg mins Fε(s, z
k,uk)

zk+1 = arg minz Fε(s
k+1, z,uk)

uk+1
b = arg minub

Fε(s
k+1, zk+1, . . . ,ub, . . .)

(14)

where b = 1, . . . , B. Indeed, partial descent can be implemented along each variable block with respect to which the
functional is quadratic. In order to enhance computing performance, an inexact approach based on Block-Coordinate
Descent Algorithm (BCDA) [23] can be used with a modification accounting for the separable B problems involving
the u variable. The proposed modified scheme, called VBCDA (vector-valued BCDA) is outlined in Algorithm 1.

In order to find suitable gradient related search directions dks , dkz and dkub
, a few iterations of a PCG solver

can be applied to the linear systems Ak
sds = bs −Ak

ss
k, Ak

zdz = bz −Ak
zz
k and Ak

udub
= bb −Ak

uu
k
b , where

b = 1, . . . , B. The inexact solution of these systems can be stopped according to tolerance values that guarantee
the convergence of the overall algorithm to a stationary point of the objective energy (11). The calculation of such
tolerance values can be easily done by following the approach proposed in [22], which is based on bound estimates
of eigenvalues of matrices As,Az,Au. As previously mentioned, all B problems related to the u variable depend
on the same matrix Au, thus one single tolerance value can be used to solve all B partial minimization steps based
on PCG in the u variable. Moreover, being each one of these B sub-problems independent from the others, the
computational burden of Step 3 in Algorithm 1 can be split over multiple cores (if available) in a parallel way.

Being the global energy non-convex, the initialization step is crucial as it has strong impact on the significance
of the final results. Following [20], [22] energetically convenient choices for the first iterates are s0 = e, z0 = e
and u0 = g. This is motivated by the fact that, the functions s, z that minimize the theoretical model are 1 almost
everywhere over Ω, whereas u is to be considered an approximation of g. The method can be stopped at the iteration
k such that the relative variation of the functional satisfies the following condition∣∣∣∣Fε(uk, sk, zk)− Fε(uk−1, sk−1, zk−1)

Fε(uk, sk, zk)

∣∣∣∣ < tolF . (15)
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Algorithm 1 VBCDA
,

Input: s0, z0, u0, γs = γz = 1, γu = 1.5;
Step 1: k = 0;
Step 2: Inexact minimization with respect to s and z:

• compute the search directions dks and dkz ;

• compute αks = γs
−(Ak

ss
k−bs)Tdk

s

dk
s
TAk

sd
k
s

;

• update sk+1 = sk + αksd
k
s ;

• compute αkz = γz
−(Ak

zz
k−bz)Tdk

z

dk
z
TAk

zd
k
z

;

• update zk+1 = zk + αkzd
k
z .

Step 3: Inexact minimization with respect to u1, . . . ,uB . For each b = 1, . . . , B:
• compute the search direction dkub

;

• compute αkub
= γu

−(Ak
uu

k
b−bb)Tdk

ub

dk
ub

TAk
ud

k
ub

• update uk+1
b = ukb + αkub

dkub
.

Step 4: Set k = k + 1 and go to Step 2, until convergence;

Several numerical experiments on different datasets allowed us to conclude that the tolerance value can be set to
tolF = 10−3.

B. Approximation of vector-valued curves

The capability of the BZ model to recover piecewise linear approximation of data can be exploited also to approx-
imate curves in N -space. As possible interesting applications we mention here: (1) curve (or signal) rectification,
and, (2) recovering of polygonal shapes from noisy sampling. Theoretical results and a first implementation about
the Blake-Zisserman model in dimension-one have only been given for scalar functions (i.e., signals) in [19], [21].
In this section we propose a more general framework for vector-valued curves and an efficient numerical algorithm
that exploits the results in Section II-A. Therefore, we consider here vector fields where domain dimension is one,
that is functions of the type g : Π → RN , with Π ⊂ R a closed connected interval on the real line and N > 0
integer. Let us utilize the more usual notation for derivatives in dimension one. Given a (sufficiently) derivable
function v : Π→ RN , v : t 7→ (v1(t), . . . , vN (t)), let us denote first and second order derivatives by

[v′(t)]n = dtvn(t)

[v′′(t)]n = dttvn(t)
(16)

with n = 1, . . . , N . The functional model that we consider in the following is a reduced version of (4), that does
not include the gradient term and the s variable. This reduced model proved to be very useful in the specific task
of recovering polygonal closed curves as it is not affected by the slight staircasing effect induced by the gradient
term (cfr. with the discussion in Section III-B and analysis of numerical experiments in Section IV). However, for
the sake of generality we remark here that all the arguments presented in the following can be easily generalized
by taking into account the full version of the functional. Given a curve g : Π → RN in N -space, we attempt to
find a piecewise linear approximation of g by looking for u : Π→ RN and z : Π→ [0, 1] that minimize

Fε(z, u) =

∫
Π
z2|u′′|2 dt+ λ

∫
Π
|u− g|2 dt

+ η

∫
Π

{
ε|z′|2 +

1

4ε
(z − 1)2

}
dt

(17)

where λ, η are positive parameters regulating the penalization of the corresponding terms.
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1) Discretization and minimization strategy: The discretization of the functional (17) follows the same principles
as in Section II-A1, with the slight simplification that no Kronecker product is needed when defining the matrix
differential operators.1 In a discrete setting, the function domain is a set of points t1, . . . , tP ∈ Π with tp < tp+1

for all p = 1, . . . , P − 1. The discrete variables representing the curves (or signals in case of N = 1) are denoted
by v = (v1, . . . ,vN ) with v = g,u, and their values at each coordinate n over a point tp are notated as [vn]p.

Let W be the diagonal matrix with diagonal entries [W]p,p = tp+1−tp, for p = 1, . . . , P−1, and [W]P,P = −tP .
By considering the difference schemes of size P × P as in (10), the discrete operators implementing first and
second order derivatives can be defined as Dt = W−1A1

P and Dtt = W−2A2
P . Simple modifications to account

for different types of boundary conditions are possible. Some useful examples are:
Null-Dirichlet: no modification.
Null-Neumann: [Dt]P,P = 0,

[Dtt]1,1 = [Dtt]P,P = −1.
Periodic: [Dt]P,1 = 1,

[Dtt]1,P = [Dtt]P,1 = 1.
We are now able to write the discrete version of the BZ functional for vector-valued curves as

Fε(z,u) =

N∑
n=1

{
uTnD

T
ttRz2Dttun + λ(un − gn)T (un − gn)

}
+

η
{
ε
[
zTDT

t Dtz
]

+
1

4ε
(z− e)T (z− e)

}
.

(18)

Similarly to the case of vector-valued images, this functional is quadratic with respect to the variables z and un,
in fact it can be written as

Fε(z,u)

=
1

2
zTAzz− zTbz

=
1

2

(
uT1 , . . . ,u

T
N

) Au 0 0

0
. . . 0

0 0 Au


 u1

...
uN


−
(
uT1 , . . . ,u

T
N

) b1
...

bN


(19)

where Az = Az(u), Au = Au(z), and bz,bn for n = 1, . . . , N are given by

Az = 2

N∑
n=1

R|u′′
n|2 + 2εηDT

t Dt +
η

2ε
I

bz =
η

2ε
e

Au = 2DT
ttRz2Dtt + 2λI

bn = 2λgn

(20)

and |u′′n|2 := (Dttun)2. To minimize this functional the same approach proposed in the previous section can be used,
with obvious adaptations. For the sake of completeness, we remind here that the general minimization approach is
based on a sequential partial minimization of the type{

zk+1 = arg minz Fε(z,u
k)

uk+1
n = arg minun

Fε(z
k+1, . . . ,un, . . .)

(21)

for n = 1, . . . , N , in either an exact or inexact fashion. For technicalities we refer the reader to the previous section.

1Kronecker product is used in Section II-A to exploit one dimensional difference schemes to work as partial derivatives on (column-wise
or row-wise) vectorized images.
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III. EXPERIMENTAL RESULTS: PIECEWISE LINEAR APPROXIMATION OF VECTOR-VALUED IMAGES

We propose in this section a comparative analysis between the MS and the proposed BZ approaches to vector-
valued image approximation. In particular, test cases are focused on difficult color image restoration/regularization
tasks highlighting limitations of the MS model such as the staircasing effect and the crack-tip problem and
demonstrating how the BZ model overcomes these issues. Computations are performed using MATLAB R© R2015b,
hardware is Intel R© CoreTM i5-4750 CPU @3.20 GHz, 16.00 GB Ram.

A. Functional models considered for comparison

Let us recall, for the sake of clarity, the functional model given by Ambrosio-Faina-March, to which we will
refer in the following as AFM, as in (4):

Fε(s, z, u) = δ

∫
Ω
z2|Hu|2 dx+ ξε

∫
Ω

(s2 + oε)|∇u|2 dx

+ (α− β)AT ε(s) + βAT ε(z) + µ

∫
Ω
|u− g|2 dx. (22)

From a numerical point of view, the presence of the gradient term in the AFM functional model introduces a slight
staircasing effect in the solution. Although its influence vanishes asymptotically for ε→ 0 due to the presence of
the infinitesimal ξε, in numerical applications ε cannot be 0. To account for this, a reduced version of the AFM
functional is considered in the numerical experiments that does not present the staircasing effect. More specifically,
the reduced functional, to which we will refer in the following as AT-BZ, is:

Fε(z, u) =

∫
Ω
z2|Hu|2 dx+ βAT ε(z) + µ

∫
Ω
|u− g|2 dx. (23)

In this reduced version, the functional does not depend anymore on the gradient of u and the function s. Therefore,
the solution is allowed to have 1st-order variations without gradient penalization. This functional formulation is also
known in literature as Ambrosio-Tortorelli approximation of the BZ functional. We recall that also this functional is
an approximation of the weak BZ functional as a full Γ-convergence result holds true [20]. It is worth noting that,
the reduced functional AT-BZ can be directly compared with the well-known Ambrosio-Tortorelli approximation
of the MS functional, to which we will refer in the following as AT-MS, given by:

Fε(s, u) =

∫
Ω
s2|∇u|2 dx+ αAT ε(s) + µ

∫
Ω
|u− g|2 dx. (24)

Notice that both the functional models AT-BZ and AT-MS can be obtained from AFM by setting functional
parameters to

AT-BZ : ξε = 0, α = β, δ = 1

AT-MS : ξε = 1, oε = 0, β = 0, δ = 0.

An important consequence of this, is that numerical methods to solve the minimization problems associated to
the two functional models AT-BZ and AT-MS can be derived with straightforward modifications from the method
proposed in Section II-A.

B. Restoration of color images

The study dataset is a color image representing a portion of the oil painting Girl with a pearl earring, by
Johannes Vermeer, see Figure 1a. The image has size 600 × 600 pixels at 8-bits per channel. As we can see, the
painting is severely affected by the craquelure.2 In the numerical experiments that follow, we compare the results
obtained by using the three functional models to image approximation presented in Section III-A where parameters
are specifically selected to remove the craquelure effect.

In order to simplify the comparison among the three considered functional models, we will set some parameters
to common values. First, the discretization parameters common to all the three models are the grid sizes tx, ty and
the Γ-convergence parameter ε. They are set to tx = ty = 1 and ε = 0.01 (see [22] Section 3.3 for details on

2Craquelure is the fine pattern of dense ”cracking” formed on the surface of the oil as part of the process of ageing.
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(a) original image (g) (b) AT-MS (u)

(c) AFM (u) (d) AT-BZ (u)

Fig. 1. Craquelure removal via MS and BZ approaches. (a) The input color image represents a portion of the oil painting Girl with a pearl
earring. Its approximations are obtained by the three different models: (b) AT-MS, (c) AFM, (d) AT-BZ.

how parameter ε can be optimized). The remaining ones are the functional parameters: (AFM) µ, δ, α, β, (AT-BZ)
µ, β and (AT-MS) µ, α. To keep the maximum similarity among the three functional models, we set the remaining
parameters to:

AFM : δ = 1, α = 2, β = 1

AT-BZ : β = 1

AT-MS : α = 1

The smoothing parameter µ is set with respect to the chosen application. By tuning the parameter µ, we forced the
smoothing of the image until the approximating image was not showing any craquelure feature. By decreasing the
value of this parameter the smoothing effect is increased. We started with µ = 1 and we decreased it by negative
powers of 10, i.e., µ = 1, 0.1, 0.01, 0.001, . . .. The first value at which no craquelure was observable in all the three
approximation results was µ = 0.01, so results are showed according to this parameter value.

1) Comparative analysis of the approximations: The major challenge in the given image is to both remove the
craquelure and still preserve the smooth color variations between shadowed and lightened regions of the girl’s face.
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(a) AT-MS edges (s) (b) AFM edges (s)

(c) AFM creases (z) (d) AT-BZ creases (z)

Fig. 2. Discontinuity functions computed for the three functional models. (a) AT-MS, (b,c) AFM, (d) AT-BZ. White corresponds to 1 and
black to 0, gray values are in between.

In the AT-MS case the staircasing effect is very evident. Many coarse patches of constant color are clearly visible
and the gradients of color are abruptly approximated by the edges of such patches, see Figure 1b. The map of these
edges is given in the plot of the function s, in Figure 2a. In the solution of AFM the over-segmentation is much less
evident, as the gradient component is weighted by the infinitesimal ξε. However, we can see in Figure 1c mainly
two problems in the computed solution u. First, sharp edges are still visible in some portions of the image. See for
example both sides of the nose ridge and the lips boundaries. These unnatural gradients of color are mapped by the
edge function s of AT-BZ, as shown in Figures 2b and 2c. Second, many complex transitions between shadow and
light (that are more evident on the girl’s left cheek) are lost. As we can see from the plot of the edge function s,
this unwanted effect happens in correspondence of the gray shaded regions of the s map. Here, the functional has
penalized the gradient all over these wide regions instead of only along 1-dimensional edges. As a consequence, the
image is badly approximated by a too smooth function and the complex shadow geometry is destroyed. All these
problems do not show up in the solution of the AT-BZ model, see Figure 1d. Here, only 2nd-order information is
penalized and the solution is allowed to have first order variations. As a result, the image is better approximated



12

(a) original image (g) (b) AT-MS (u) (c) AFM (u) (d) AT-BZ (u)

Fig. 3. Particular of the approximations by zooming the area in the red square in Figure 1. (a) Original image, and the results for: (b)
AT-MS, (c) AFM, (d) AT-BZ. Notice the over-segmentation effect in (b,c).

(a) original image (g) (b) AT-MS (u) (c) AFM (u) (d) AT-BZ (u)

Fig. 4. Pixel scatterplots of the image portions represented in Figure 3. (a) Original image, (b) AT-MS, (c) AFM, (d) AT-BZ.

and no unwanted artifacts such as unnatural edges and too coarse shadowed areas are present. As an example, we
can see from the map of detected gradient discontinuities z in Figure 2d that the girl’s nose is not contoured by
any sharp edge, neither the left cheek is over-segmented.

To better illustrate the geometrical behavior of these solutions, we will show a particular of the images (the red
square of size 60× 60 pixels in Figure 1a) as embedded surfaces in the RGB space. Magnifications of this part in
the original image and in the three computed solutions are showed in Figure 3. The scatter plots of the embedded
surfaces are illustrated in Figure 4. The high level of noise of the original image results in a scatter plot where
points are almost uniformly distributed all around the RGB space’s main diagonal, with two regions where points
are slightly denser (corresponding to the dark brown and the light pink regions of the image). In the AT-MS case,
as a result of the severe over-segmentation effect, pixels are clustered in different almost isolated portions of the
RGB space. In the AFM case these clusters are slightly enlarged, however they are still distinguishable and sharply
separated from background pixels. Much more regular is the scatter plot in the AT-BZ case. Here, the dense clusters
are visible but they are more displaced in space and surrounding pixels are uniformly and regularly distributed.

2) Numerical minimization performance: Let us analyze and compare iterations details of the minimization of
the three functional models. In Table I are recorded the number of outer (k) and inner (totiter) iterations and the
execution time. Inner iterations relate to the PCG solvers (triggered with diagonal preconditioner) applied to find (for
each outer iteration) the gradient related search directions w.r.t. the variable blocks. As discussed in Section II-A2,
the minimization w.r.t. the u variable can be separated into three convex sub-problems. Therefore, the search of a
global gradient related descent direction can be split along the three sub-directions u1, u2, u3 (the target image is
color image, the three directions correspond to the R,G,B bands), independently. As we can see, in the case of the s
and z variable blocks PCGs stopped in one iteration, whereas the ui variable blocks required more iterations. This
can be explained in terms of positive definiteness of the matrix Au. It follows from the numerical expression of
Au in (13) that the positive definiteness of this matrix decreases with the parameter µ. As a consequence, for small
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TABLE I
OUTER(K)/INNER(ITER) ITERATIONS AND EXECUTION TIME OBSERVED IN THE MINIMIZATION OF THE THREE FUNCTIONAL MODELS.

iter time
model k s z u1 u2 u3 (secs)

AT-MS 21 22 – 526 300 385 38.45
AFM 16 17 17 1280 742 889 98.75
AT-BZ 21 – 22 1630 877 1110 121.24

(a) AT-MS (b) AFM

(c) AT-BZ

Fig. 5. Energy-versus-time at each outer iteration for the three functional minimization cases: (a) AT-MS, (b) AFM, (c) AT-BZ. The plots
illustrate the descent of each additive term in the functional models. The black dashed line is the total energy. Blue is the Hessian component
and Cyan is the AT component associated to the Hessian (present only in AFM and AT-BZ). Red is the gradient component and Magenta
is the AT component associated to the gradient (present only in AT-MS and AFM). Green is the distance term.

values of µ the convexity of the quadratic form associated to Au reduces and the descent requires more iterations.
To mitigate this behavior, one can apply preconditioning on the PCG solvers if large images are considered (see
[22] Section 3.2 for details). Another important aspect of the minimization is the competition among the functional
terms induced by the parameters choice. The dynamics of this competition can be better understood by looking at
the plots in Figure 5. The main fact that can be observed is that all the terms are decreasing except for the distance
term. In particular, the AT components have higher decreasing rates in the first iterations, meaning that the contrast
of the corresponding solutions is heavily decreasing.3 The behavior of the distance term is as expected: due to the
strong noise removal level induced by the parameters, the solution becomes more distant (in the Euclidean sense)
with respect to the input image.

3By premature stopping of the algorithms we could notice many discontinuities that are not present in the final results.
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(a) original image (g) (b) band-wise approximation (u) (c) vector-valued approximation
(u)

(d) band-wise crease map (z) (e) vector-valued crease map (z)

Fig. 6. Limitations of the band-wise approach for the BZ model. (a) Input image, (b) band-wise approximation, (c) vector-valued
approximation, (d) band-wise crease map (the three crease maps obtained in the separate band-wise processing are inserted in the RGB
channels), (e) vector-valued crease map. Many sharp edges are missed in the band-wise approach as they are not detectable in single channels.
The vector-valued approach performs much better as discontinuities and gradient discontinuities contributions are gathered from all bands.

C. Relevant features of the BZ model for vector-valued inputs

1) Limitations of the band-wise approach: Typical limitations of the band-wise approach to the analysis of vector-
valued images based on edge-detection models are mainly two: (1) only edges that are clearly distinguishable in
single bands can be detected, and (2) obtaining meaningful results always requires separate parameter tuning for
each band. Avoiding this last step typically involves artifacts such as meaningless edges or the creation of false
colors. This is demonstrated on 1st-order model such as MS in [32]. As shown in Figure 6, these limitations remain
valid for 2nd-order models as well. We can see that the band-wise approximation misses many edges (Figure 6b).
This happens when gradient or Hessian contributions from single bands are not sufficient to characterize an edge.
The RGB composition of detected edge-creases z in Figure 6d better illustrates this situation. Here, black traits
correspond to edges that are detected in all the three bands, whereas other colors correspond to edges that are
detected only in single bands or band pairs. For instance, the cyan trait represent edges that are detected in the
G and B bands, but not in the R. In correspondence of these edges the band-wise approximation u is not sharp
enough as the R band has been smoothed there. A similar argument works for other colored traits. Notice also the
formation of false colors such as orange and green patches in many portions of the image, and magenta between
the squirrel ears. The final result is a very poor approximation of the original image. Better results are obtained
if the vector-valued approach is used, see Figure 6c. The crease function z, see Figure 6e, gathers gradient and
Hessian contributions from all bands by means of tensor differential operators (7). As a result, all relevant edges
are correctly detected and the approximated image is sharp in these locations.

2) Preventing the staircasing effect: Recovering an image degraded by additive noise is a well-known inverse
problem in image processing. Variational methods have been justified in this framework as the MS model can be
properly derived by following a Bayesian rationale as an additive noise reduction model [41]. However, as we have
seen also in Section III-B, the MS approximation can irremediably deteriorate some important features of the image
because of the staircasing effect. In this experimental section, we aim at showing that the proposed AT-BZ model
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(a) clean image (b) noisy image (g) (c) AT-MS (u)

(d) AT-BZ (u) (e) AT-MS (u) (f) AT-BZ (u)

Fig. 7. Estimation of Gaussian additive noise in color image containing challenging geometries. (a) Synthetic noise-free generated image,
(b) noisy image. Reconstructions of the noisy image are obtained by the (c) AT-MS model, (d) AT-BZ model. Particulars zoomed at the
crack-tip end for the (e) AT-MS solution (white traits emphasize the main directions of the discontinuity edges) and the (f) AT-BZ solution.

actually outperforms the AT-MS also in terms of noise reduction being able to approximate sloped geometries
without falling into step-wise solutions.

In order to do this, we consider here a synthetic color image corrupted by different levels of noise, see Figure 7.
The image is reconstructed by using the AT-MS and the AT-BZ models and in both cases the variance of the
removed noise is estimated from the difference image. The synthetic 8-bits (per channel) color image is 300× 300
pixels and contains two challenges: (1) a crack-tip (with circular gradient) in the red band, and (2) two very smooth
creases in the green and blue bands with vertical and horizontal directions, respectively. Functional parameters are
the same as in the previous section. The only difference is that the smoothing parameter has been set to a smaller
value µ = 0.001, as the additive noise added in the experiments resulted to be more difficult to suppress. Given
that the image is at 8-bits, we added additive 3-dimensional 0-mean Gaussian noise with covariance matrix given
by Σ = σ2I3, where I3 is the identity matrix of size 3× 3, and in three different trials we set σ2 = 50, 100, 200.

The results of noise variance estimation are reported in Table II. We can easily see that in all the three cases
the AT-MS model returned very bad approximations of the noise variance, while the reconstruction given by AT-
BZ allowed for very precise estimates. This happened because the color geometry of the test image is highly
non-constant, thus, the MS fails in approximating both the crack-tip and the orthogonal smooth creases. This fact
can be clearly seen by looking at the images of the final approximations obtained via the two functional models,
showed in Figure 7 (the images show the results obtained for σ2 = 200, being this the most critical case). Notice
in particular the behavior of the MS approximation at the end of the crack-tip (Figure 7e), showing the well-known
phenomenon of the triple-points. In principle this phenomenon is due to the penalization of the discontinuity set,
that induces the discontinuity edges to displace in optimal configurations with minimum length. This happens when
they meet at 2/3π wide angles. Mumford and Shah conjectured in their seminal work [6] that the discontinuity set
of a MS minimizer is the union of C1 arcs that can only end at interior points (pure crack-tips) or meet with equal
angles. It has been proved in [42] by using the calibration technique that a function with a triple-point discontinuity
is a local minimizer of the homogeneous MS functional. It is worth noting that triple-points do not show up in the
BZ approximation, where the solution properly follows the complex crack-tip geometry with surrounding circular
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TABLE II
ESTIMATION OF ADDITIVE GAUSSIAN NOISE VARIANCE IN COLOR IMAGES USING THE MS AND THE BZ MODELS.

estimated σ2 from time
σ2 model u1 u2 u3 k (secs)

50 AT-MS 74.25 216.33 217.09 18 19.82
AT-BZ 53.69 49.84 50.30 17 49.63

100 AT-MS 121.98 265.68 266.17 10 8.97
AT-BZ 103.69 99.59 99.96 16 48.05

200 AT-MS 215.97 360.38 362.43 13 10.87
AT-BZ 200.83 197.48 199.80 21 49.31

gradient (Figure 7f).

D. CSIQ dataset

The previous sections of this experimental part showed relevant features of the BZ model and focused on datasets
specifically selected for emphasizing certain limitations of 1st-order models that can be overtaken by using 2nd-
order models. Here it follows a more extensive analysis on the denoising performance of the BZ model which is
done on a subset of images from the public CSIQ database [43].

1) Experiment setting: Images in the dataset are 512× 512 pixels at 8-bits per channel. To each image g0, we
add 0-mean Gaussian noise with standard deviation corresponding to 10% of the maximum value of the image,
i.e., σ = 25.5. The noisy image is notated g. The AT-BZ model is then applied to each noisy image g to get
an approximation u for a set of parameters based on a predefined grid. Parameters values are selected so that
the full range of possible behaviors of the approximation (from under- to over-fitting) is appreciable. Specifically,
we let the smoothing parameter to take values µ = 0.1, 0.5, 1, 5 and the parameter penalizing the size of the
gradient discontinuity set to take the values β = 1, 5, 10, 50, 100, 500. To assess the performance of the noise
reduction we computed quality measures based on: estimated noise variance (σ̂), peak signal-to-noise ratio (PSNR),
signal-to-noise ratio (SNR) and structural similarity (SSIM). In particular we have:
• σ̂ref : noise std. dev. estimated from g − g0.
• σ̂den: noise std. dev. estimated from g − u.
• PSNRnsy: measurement of the image degradation due to noise addition. It is computed for g using g0 as

reference.
• PSNRden: measurement of the image denoising quality. It is computed for u using g0 as reference.
• SNRnsy, SNRden, SSIMnsy, SSIMden: are computed similarly to PSNRnsy and PSNRden.
2) Experiment results: For each image, the best approximation u∗ of g is selected for the parameters values µ∗

and β∗ that returned the highest SSIMden value4. To get a qualitative understanding of the denoising performance,
we show in Figure 9 the images of the approximations obtained for a subset of the parameters grid in the case of
lena. As we can see, when parameter β increases (moving rightward on the image grid) the amount of gradient
discontinuities is penalized. Therefore, solutions present less sharp edges. Edge cases are the left-most images,
which are fully noisy. By increasing parameter µ (moving downward on the image grid) we get from blurred to
more detailed solutions. In fact, for low values of this parameter the distance between the solution and the noisy
image is not penalized and the minimization mainly involves the Hessian penalization. Based on the proposed grid
of parameters, the optimal solution is obtained for µ∗ = 0.5 and β∗ = 50, which corresponds to a denoising quality
SSIMden = 0.97. Quality measurements related to optimal approximations for all the considered images in the CSIQ
dataset are listed in Table III. By comparing the SSIM value of the noisy images and the denoised ones we can
see that image quality improvements range from 0.15 (worst case is lake) to 0.33 (best case is monument). Noisy
images and corresponding approximations of these two edge cases are showed in Figure 8. A couple of remarks
to conclude this analysis. First, we notice that the three quality indeces used in the experiment return different
rankings of the solutions. For instance, based on the PSNRden index the best result would be fisher instead of lena

4It is well-known that PSNR and SNR likely promote blurred solutions. The SSIM has been introduced to better simulate the quality
discrimination mechanism of the human brain by measuring also structural similarity instead of only L2 distances [44].
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(a) noisy image (g)
SSIMnsy = 0.65

(b) µ∗ = 5.0, β∗ = 500
SSIMden = 0.80

(c) noisy image (g)
SSIMnsy = 0.48

(d) µ∗ = 1.0, β∗ = 50
SSIMden = 0.81

Fig. 8. CSIQ dataset: results for the worst (a,b) and best (c,d) denoising performances. The quality of the denoising is measured in terms
of the difference between SSIMden − SSIMnsy , that evaluates to 0.15 for the lake image and to 0.33 for the monument image.

TABLE III
QUALITY MEASUREMENTS RELATED TO THE DENOISING TASK ON A SUBSET OF THE CSIQ DATASET. FOR EACH TEST IMAGE THE

TABLE REPORTS THE QUALITY VALUES FOR THE PARAMETER VALUES THAT HAVE ACHIEVED THE HIGHEST SSIMden VALUE.

image µ∗ β∗ σ̂ref σ̂den PSNRnsy PSNRden SNRnsy SNRden SSIMnsy SSIMden

lena 0.5 50 25.52 23.88 20.20 29.34 15.06 24.21 0.80 0.97
1600 1.0 50 25.53 21.14 20.54 26.16 14.19 19.81 0.69 0.89
boston 1.0 50 25.48 22.13 20.14 26.71 14.68 21.25 0.47 0.76
bridge 1.0 50 25.53 21.99 20.79 27.17 16.38 22.76 0.52 0.83
child-swimming 1.0 50 25.49 20.57 20.11 25.09 14.11 19.09 0.65 0.85
fisher 0.1 10 25.52 24.93 20.19 29.63 15.87 25.31 0.63 0.94
lake 5.0 500 25.48 19.70 20.62 24.56 12.32 16.26 0.65 0.80
log-seaside 1.0 50 25.51 20.52 20.57 24.80 15.83 20.06 0.70 0.88
monument 1.0 50 25.52 22.22 20.53 27.63 15.34 22.44 0.48 0.81
native-american 0.5 50 25.51 24.69 20.41 27.86 15.69 23.13 0.57 0.87
trolley 1.0 50 25.52 20.69 20.23 25.20 14.24 19.21 0.64 0.85

(as obtained using SSIMden). Second, we may also notice that highest values of SSIMden do not always correspond
to the best approximations of the noise standard deviation. As an example, log-seaside and native-american have
very similar SSIMden values (0.88 and 0.87, respectively) but their noise estimations are very different (20.52 and
24.69, respectively).

IV. EXPERIMENTAL RESULTS: POLYGONAL APPROXIMATION OF PLANAR CLOSED CURVES

In this section, we show how the feature of the BZ model that allows the formation of free gradient discontinuities
is fundamental in the task of recovering the shape of closed curves from discrete noisy sampling. Like other models
such as cubic smoothing splines (CSSPs), the BZ model is able to provide a smooth approximation of the curve.
However, as additional feature and unlikely other methods can do, the BZ model allows also to retrieve polygonal
shapes (i.e., curves with gradient discontinuities).

As a specific application, in the following we recover the polygonal shape of building footprints from discrete
noisy approximations obtained in the processing of low resolution Digital Surface Models (DSMs). DSMs are 2-
dimensional scalar-valued rasters and they are obtained by interpolating raw LiDAR (Light Detection and Ranging)
unstructured point clouds into regular grids [45]. The value of the DSM at each grid point corresponds to the height
of the object hit by the laser pulse in the location of the grid point. It is common in the remote sensing literature to
extract building edges in DSMs in order to recover a discrete approximation of the building footprints. However, if
the DSM resolution is low (e.g., 1m), the discrete points forming the detected edges can be far from a polygonal
shape (Figure 10b) and post-processing is required to recover the building footprint. An example of edge detection
in urban DSM is given in [22], [46], where the BZ model for gray-scale images is applied to the DSM and discrete
approximations of the building footprints are mapped by the edge-detection function s. We can see in Figure 10 a
3-D rendering of the DSM of an old barrack and the mapping function of its detected edges. The DSM is at spatial
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(a) noisy image (g)
SSIMnsy = 0.80

(b) µ = 0.1, β = 10
SSIMden = 0.94

(c) µ = 0.1, β = 50
SSIMden = 0.96

(d) µ = 0.1, β = 100
SSIMden = 0.96

(e) µ = 0.5, β = 5.0
SSIMden = 0.80

(f) µ = 0.5, β = 10
SSIMden = 0.81

(g) µ∗ = 0.5, β∗ = 50
SSIMden = 0.97

(h) µ = 0.5, β = 100
SSIMden = 0.96

(i) µ = 1.0, β = 5.0
SSIMden = 0.80

(j) µ = 1.0, β = 10
SSIMden = 0.80

(k) µ = 1.0, β = 50
SSIMden = 0.94

(l) µ = 1.0, β = 100
SSIMden = 0.96

Fig. 9. Image denoise approximation for a subset of parameter values µ and β tested in the experiment (µ = 0.1, 0.5, 1 and β =
5, 10, 50, 100). The highest quality value is SSIMden = 0.97, which is obtained for µ∗ = 0.5 and β∗ = 50.

resolution of 1m and the shape is not oriented parallel to the x, y-axis, therefore the discrete representation of the
boundary is broken into many segments oriented parallel to the x, y-axis.

To recover the polygonal shape approximating these points we exploit the framework proposed in Section II-B.
Input data is the set of P two-dimensional points {(xp, yp)}Pp=1 representing the discrete noisy sampling of the
unknown polygonal shape (the black points in Figure 10b). We set N = 2 and we construct the discrete variable
g ∈ RP×2 representing the discrete planar curve by simply assigning [g1]p = xp and [g2]p = yp, for all p = 1, . . . , P .
To recover a closed curve, we minimize the functional (18) with periodic boundary conditions (cfr. Section II-B1).
The BZ model (for brevity BZ), is tested against the typical approach to curve approximation of Cubic Smoothing
Splines (for brevity CSSP). We recall that for CSSP, the solution that approximates the points g is the piecewise
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(a) DSM (g) (b) edge map (s)

Fig. 10. Extraction of building edges from DSM. (a) 3d rendering of a DSM representing an old barrack. (b) Edge map of the main
(U-shaped) building obtained by segmenting the DSM using the BZ model for gray-scale images [22]. The points correspond to the pixels
where the function s (the edge detection function) is 0.

cubic function v that minimizes the functional expression

G(v) = q

P∑
p=1

|v(tp)− gp|2 + (1− q)
∫ tP

t1

v′′(t) dt (25)

where t is a parametric variable and q ∈ [0, 1] is a parameter that penalizes data fitting (q near 1) or data smoothness
(q near 0). For brevity we omit details on CSSP implementation, we only recall that the solution can be found in
a closed form. For details we refer the reader to [47], [48].

The BZ model depends on the two parameters λ and η, penalizing the distance of the solution to the original
data g and the size of the gradient discontinuity set, respectively. The CSSP model only depends on the parameter
q and the solution is not allowed to have gradient discontinuities. In order to better understand the behavior of the
proposed models for a large variety of parameter selections, we defined a grid of values for λ, η and q. The whole
range of possible behaviors of the resulting approximating curves (from over- to under- fitting) has been obtained
for λ = 10−4, 10−5, 10−6 and η = 10−k, with k = 1, . . . , 5, and for several values of q between 0 and 1.

The results of curve approximation is illustrated for both CSSP and BZ models in Figures 11 and 12, respectively.
Note from the results of CSSP that, by variation of the parameter q from 1 to 0, the behavior of the solution is
from complete over-fitting to very smooth (and poor) approximation of the points. Notice that the smoothing effect
of the splines does not allow to well represent the right angles of the main corners of the shape. Instead, by varying
the parameters of the BZ we still obtain different behaviors from over- to under-fitting, but for some parameter
choices we have polygonal solutions. In fact, by decreasing the contrast parameter η we allow the size of the
gradient discontinuity set to be larger, thus allowing the formation of free gradient discontinuities. Polygon corners
correspond to the points where the gradient of the solution is discontinuous. On the counter part, if we fix the
value of η the solutions from the top row to the bottom row show increasing under-fitting. Indeed, by decreasing
the parameter λ the solution is allowed to be distant from the original curve, thus the minimization penalizes the
discontinuity set and produces very smooth curves. Among all the solutions, we can say that the best polygonal
approximation is obtained for λ = 10−5 and η = 10−4 as the curve segments are straight segments forming right
angles. It follows from the globality of the geometrical parameters in (17), that polygonal shapes at the same scale
and corrupted by the same level of noise can be recovered by using identical parameter selections.

The computational burden to obtain all the approximations can be considered as negligible, as in all the cases
algorithms converged in less than one second. Hardware and software used is the same as in Section III.

V. CONCLUSIONS

In the framework of variational methods to image approximation, the 1st-order model by Mumford-Shah is
very popular. However, some intrinsic problems due to its 1st-order nature (such as the staircasing effect and
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(a) q = 1 (b) q = 0.7 (c) q = 0.5 (d) q = 0.3 (e) q = 10−1

(f) q = 10−2 (g) q = 10−3 (h) q = 10−4 (i) q = 10−5 (j) q = 10−6

Fig. 11. Curve approximation results obtained for different parameter choices of the CSSP model. The range of values used in the experiments
allowed us to explore the behavior of the solution from over- to under- fitting. No gradient discontinuity is allowed by the model.

(a) λ = 10−4, η = 10−1 (b) λ = 10−4, η = 10−2 (c) λ = 10−4, η = 10−3 (d) λ = 10−4, η = 10−4 (e) λ = 10−4, η = 10−5

(f) λ = 10−5, η = 10−1 (g) λ = 10−5, η = 10−2 (h) λ = 10−5, η = 10−3 (i) λ = 10−5, η = 10−4 (j) λ = 10−5, η = 10−5

(k) λ = 10−6, η = 10−1 (l) λ = 10−6, η = 10−2 (m) λ = 10−6, η = 10−3 (n) λ = 10−6, η = 10−4 (o) λ = 10−6, η = 10−5

Fig. 12. Curve approximation results obtained for different parameter choices of the BZ model. The range of values used in the experiments
allowed us to explore the behavior of the solution from under- to over- fitting passing also through polygonal solutions. The best polygonal
approximation is (i), i.e., for parameters λ = 10−5 and η = 10−4.

the triple point cracks) limit its applicability to solve complex problems like image denoising and restoration. To
solve for this, 2nd-order methods can be used, but no attempts to implement vector-valued versions of 2nd-order
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models can be found in literature. This is critical when color or multispectral images need to be analyzed. In this
paper we considered a 2nd-order variational model to the approximation of vector-fields in dimension two (e.g.,
multiband images) and one (e.g., curves in space) and we proposed efficient numerical implementations of the
associated minimization problems. Specifically, we focused on the numerical minimization of the Ambrosio-Faina-
March (AFM) elliptic approximation of the Blake-Zisserman (BZ) functional as it is particularly prone to numerical
implementation. In the proposed numerical formulation the objective functional is written in a compact matrix form
an the minimization is decomposed into quadratic sparse convex sub-problems. We proved that the minimization
sup-problem associated to the vector-valued variable (u) can be split into B further quadratic sub-problems (where
B is the vector size) all depending on the same matrix. Different types of experimental studies have been done
to assess the effectiveness of the proposed numerical formulation. In the first experimental part, we proposed a
comparative analysis of the BZ model against the MS on difficult image restoration/denoising problems. The results
show that the capability of the BZ model to approximate the input image in a piecewise linear manner produces
more natural (in terms of visual interpretation) and precise (in terms of noise reduction/estimation) reconstructions
of corrupted color images. In the second experimental part, we applied the BZ model to the approximation of
closed curves from discrete noisy sampling. Differently from other typical curve approximation models such as
Cubic Smoothing Splines, the BZ model allows the formation of free gradient discontinuities. Thus, polygonal
approximation can be obtained for suitable choices of the parameters.
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