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Hyperspectral Band Selection Based on Rough Set
Swarnajyoti Patra, Prahlad Modi, and Lorenzo Bruzzone

Abstract—Band selection is a well known approach to reduce
the dimensionality of hyperspectral imagery. Rough set theory is
a paradigm to deal with uncertainty, vagueness, and incomplete-
ness of data. Although it has been applied successfully to feature
selection in different application domains, it is seldom used for the
analysis of the hyperspectral imagery. In this paper, a Rough set
based supervised method is proposed to select informative bands
from hyperspectral imagery. The proposed technique exploits
Rough set theory to compute the relevance and significance of
each spectral band. Then by defining a novel criterion it select
the informative bands that have higher relevance and significance
values. To assess the effectiveness of the proposed band selection
technique, three state-of-the-art methods (one supervised and two
unsupervised) used in the remote sensing literature are analyzed
for comparison on three hyperspectral data sets. The results
of this comparison points to the superiority of the proposed
technique, especially when a small number of bands is to selected.

Index Terms—Feature selection, feature extraction, Rough sets,
support vector machine, remote sensing, hyperspectral imagery.

I. INTRODUCTION

Hyperspectral images are characterized by hundreds of
bands acquired in a contiguous spectral range and narrow
spectrum interval. A hyperspectral image can be viewed as an
image cube where the first two dimensions indicate the spatial
coordinate of the image and the third represents the number
of bands of the image [1], [2]. Thus, each pixel represents
a pattern whose number of attributes is equal to the number
of bands. Due to the availability of a large number of bands,
”the curse of dimensionality” and computation complexity are
become two critical issues for the processing of hyperspectral
imagery. The ”curse of dimensionality” can be avoided by
providing a sufficiently large number of training samples.
However, in many real applications this is not feasible. More-
over, due to the high dimensionality of hyperspectral imagery,
the data volume to be processed is generally huge. As a result,
the computational complexity for the analysis of hyperspectral
imagery is very high. A simpler way to address such problems
is to reduce the dimensionality of the hyperspectral data.

Hyperspectral images have a large number of highly cor-
related bands, thus containing redundant information [3]. Ac-
cordingly, removing appropriate bands may reduce this redun-
dancy without decreasing of the useful information. There are
two main approaches to reduce the number of band: one is
feature/band selection [1], [4]–[19] (which consists in selecting
some informative bands with low correlation among them);
the other is feature/band extraction [20]–[26] (which com-
presses all the bands using mathematical transformation). The
difference between the two approaches is substantial. In this
paper we focus on feature (band) selection techniques, which
preserve the original physical information of the acquired

spectral channels. This has several advantages: 1) it makes
it possible a conceptual validation of the selected features and
thus of the information used by the classifier; 2) the results
of feature selection can be used as a data mining tool for
inferring the physical information (i.e., spectral channels) on
the basis of which the classes are discriminated; and 3) the
selection of a subset of original bands results in the possibility
to define a system in which irrelevant features are not acquired
and stored for the considered application. This can simplify
the acquisition process (reducing the number of bands to be
acquired) and reduce both the processing time and the data
storage requirements.

Depending on the availability of labeled reference data,
band selection methods are categorized into two groups i.e.,
supervised [1], [5]–[13] and unsupervised [1], [14]–[19]. Su-
pervised methods need a training set (i.e., the class label
information of a subset of patterns), whereas unsupervised
methods do not assume the availability of labeled patterns.
Unsupervised methods often evaluate the importance of a band
in classification by using various statistical measures such as
correlation, mutual information, or using clustering quality
assessment. On the other hand, supervised methods exploit the
labeled patterns for training. Thus, the selected bands usually
provide higher classification accuracy than those selected by
unsupervised techniques.

There are many supervised and unsupervised band se-
lection methods presented in the literature for the anal-
ysis of hyperspectral imagery. Chang et al. [1] proposed
two eigenanalysis-based criteria for band prioritization: i)
an unsupervised PCA-based criterion, and ii) a supervised
classification-based criterion. After band prioritization, they
further proposed a divergence-based band decorrelation to
remove the redundant bands. The supervised techniques based
on the Jeffries-Matusita distance, divergence, and Bhattacharya
distance between classes are widely used as band selection
criteria in hyperspectral data [5], [8]–[10]. In [6] a suboptimal
band subset is selected by minimizing an estimated error
of the Bayes classifier. A Rough set and fuzzy C-Means
based supervised band selection technique is presented in [11].
A spatially invariant supervised hyperspectral band selection
technique is presented in [12]. In [13], Yang et al. presented a
fast supervised band selection method based on the covariance
matrix for hyperspectral image classification. In [14], four
different unsupervised criteria are proposed for hyperspectral
band selection. In [15], Du and Yang proposed an unsupervised
similarity measure by using linear prediction and orthog-
onal subspace projection to determined informative bands.
Martinez-Uso et al. [16] adopted a clustering technique to
group similar bands into a cluster. Then the most informative
bands are selected by applying either a mutual information
criterion or a Kullback-Leibler (KL) divergence criterion. In
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[17], an affinity propagation based clustering technique is
presented to select appropriate bands.

Rough set theory is a paradigm to deal with uncertainty,
vagueness, and incompleteness of data [27]–[29]. It has been
applied successfully to feature selection of discrete valued data
[30]–[32]. The quick reduct algorithm, the discernibility ma-
trix based method, dynamic reducts, etc. are popular Rough set
based feature selection methods [33]–[35]. Different heuristic
approaches based on Rough set are also proposed in the
literature [36], [37]. All these methods try to identify the most
informative subset of features (also known as reduct) from the
original feature set. To find the optimal reduct (or a solution
close to the optimal reduct) they generate a large number of
reducts that makes these techniques computationally demand-
ing. Moreover, these methods detect the optimal reduct without
considering the redundancy among the selected features. In
[38], [39], Maji and Paul exploit Rough set theory to select
the informative and nonredundant features of microarray gene
expression data by avoiding the generation of large number of
reducts.

Rough set theory has been applied successfully to feature
selection in different application domains. It is seldom used
for hyperspectral band selection. In this paper, a supervised
hyperspectral band selection method is proposed inspired by
the Rough set based feature selection technique presented in
[38], [39]. The proposed technique exploits Rough sets theory
to compute the relevance and significance of each band and
then select informative bands having higher relevance and
significance values. Moreover, a new criterion is presented to
select most informative bands. The proposed technique uses
simple first-order incremental search to avoid the generation of
large numbers of reducts, thus making it less computationally
demanding. The performance of the proposed approach was
compared with three state-of-the-art methods (one supervised
and two unsupervised) using the predictive accuracy of support
vector machine on three different hyperspectral data sets.
Experimental results show effectiveness of the proposed ap-
proach, especially when small number of bands should be
selected.

The rest of this paper is organized as follows. Section II
introduces the notions related to Rough sets. The proposed
Rough set based band selection technique is presented in
Section III. Section IV provides the description of the three hy-
perspectral data sets used for experiments. Section V presents
different experimental results obtained on the considered data
sets. Finally, Section VI draws the conclusion of this work.

II. ROUGH SETS

A data set is described as a table where each row represents
a pattern and each column represents an attribute that can be
measured for each pattern. This table is called information
system or approximation space [27]. In greater details, it is
a pair (U,A), where U = {x1, x2, ..., xn} is a nonempty
finite set of patterns called the universe, and A is a family
of attributes such that f : U × A → V , where V is the value
domain of A and f is an information function.

The theory of Rough sets exploits the notion of information

system. Let (U,A) be an information system; then any subset
P of A defines an equivalence relation IND(P ) as [27]:

IND(P ) = {(xi, xj) ∈ U×U | ∀a ∈ P, f(xi, a) = f(xj , a)}
(1)

IND(P ) is also called P-indiscernibility relation. If
(xi, xj) ∈ IND(P ), then objects xi and xj are indiscernible
from each other by attributes P . The partition of U generated
by IND(P ) is denoted as [27]:

U/IND(P ) = {[xi]P | xi ∈ U} (2)

where [xi]P is the equivalence class of the P-indiscernibility
relation containing xi. The equivalence class of IND(P ) and
the empty set ϕ are the elementary sets in the information
system (U,A). Let (U,A) be a given information system and
let P ⊆ A and X ⊆ U . In general, it may not be possible to
describe X precisely using only the information contained in
P . One may characterize X by constructing the P-lower and
P-upper approximations defined as follows [27]:

P (X) =
∪
{[xi]P | [xi]P ⊆ X}

P (X) =
∪
{[xi]P | [xi]P ∩X ̸= ϕ} (3)

The lower approximation P (X) is the union of all the
elementary sets that are subsets of X , and the upper approxi-
mation P (X) is the union of all the elementary sets that have
a nonempty intersection with X . Thus, the patterns in P (X)
are definitely classified as a members of X on the basis of
knowledge in P , while the patterns in P (X) are classified
as possible members of X on the basis of knowledge in P .
The lower approximation P (X) is also called positive region,
denoted as POSP (X). The set BNP (X) = P (X)−P (X) is
called the boundary region of X , and consists of those patterns
that we cannot classify with high confidence into X on the
basis of the knowledge in P . A set is said to be Rough if the
boundary region is nonempty, otherwise it is crisp.

In many applications the class label of patterns are known.
This a posteriori knowledge is represented by an attribute
called decision attribute. The other attributes of patterns are
called conditional attributes. An information system (U,A) is
called a decision system if the attribute set A = C∪D, where
C and D represent the condition and decision attribute sets,
respectively. The dependency between C and D can be defined
as [27]:

γC(D) =
| POSC(D) |

| U |
(4)

Here POSC(D) =
∪
CXi, where Xi = [xi]D i.e., Xi is

the ith equivalence class induced by D and | . | denotes the
cardinality of a set.

In greater details, let (U,A) be a decision system as
shown in table I, where U = {x1, x2, x3, x4, x5, x6, x7} and
A = C ∪ D is a finite set of attributes. Here, conditional
attributes C={Age, LEMS (Lower Extremity Motor Score)}
and decision attribute D={Walk}. According to the indiscerni-
bility relation defined in (1), the following partitions of U are
created by different attributes of A:

U/IND({Age}) = {{x1, x2, x6}, {x3, x4}, {x5, x7}}
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TABLE I
AN EXAMPLE OF DECISION TABLE

Age LEMS Walk
x1 16-30 50 yes
x2 16-30 0 no
x3 31-45 1-25 no
x4 31-45 1-25 yes
x5 46-60 26-49 no
x6 16-30 26-49 yes
x7 46-60 26-49 no

U/IND({LEMS}) = {{x1}, {x2}, {x3, x4}, {x5, x6, x7}}

U/IND({Age, LEMS}) = {{x1}, {x2}, {x3, x4}, {x5, x7}, {x6}}

U/IND({Walk}) = {{x1, x4, x6}, {x2, x3, x5, x7}}.

The positive region contains all objects of U that can
be classified into classes of U/D using the knowledge
in attributes C. Thus, for the above example, if C =
{Age, LEMS}, the positive region is as follows:

POSC(D) =
∪

{{x1}, {x2}, ϕ, {x5, x7}, {x6}} = {x1, x2, x5, x6, x7}.

So the dependency between C and D is:

γC(D) =
| POSC(D) |

| U |
=

5

7
.

The dependency measure is an important variable for finding
out informative attributes P from C (P ⊆ C). If γP (D) = 1,
D depends totally on P ; if 0 < γP (D) < 1, D depends
partially on P ; and if γP (D) = 0, then D does not depend
on P .

The importance of an attribute to calculate the dependency
on a decision attribute can be computed by measuring the
significance of that attribute [38]. If we remove an attribute
from a set of conditional attributes, the change in dependency
is the measure of significance of that attribute. High changes
in dependency indicate highly significant attributes. If there is
no change in dependency then the attribute is not useful. The
significance of an attribute a ∈ C is computed as follows [38]:

δC(D, a) = γC(D)− γC−a(D). (5)

Considering the decision system of Table I, let C =
{Age, LEMS} and D = {Walk}. The significance of the
attributes {Age} and {LEMS} is computed as follows [38]:

δC(D,Age) = γC(D)− γLEMS(D) =
5

7
− 2

7
=

3

7

δC(D,LEMS) = γC(D)− γAge(D) =
5

7
− 2

7
=

3

7

III. PROPOSED HYPERSPECTRAL BAND SELECTION
METHOD

As mentioned before, hyperspectral images contain a large
number of bands and many of them are redundant and/or
weakly informative. The presence of such irrelevant bands
may lead to both the ”curse of dimensionality” and a com-
putationally demanding classification task. Our main objective
is to develop a band selection technique that can identify an
effective subset of bands from the available hyperspectral data

without decreasing the discrimination capability. Ideally, the
selected bands should have high relevance with the classes, so
that the prediction probability that a pattern belong to a specific
classes will be high. However, if irrelevant bands are present
in the selected subset, they may introduce redundancy. Hence,
we have to develop a technique that selects a band subset
with high relevance and high significance. In this paper, the
Rough set theory is used to select the relevant bands from high
dimensional hyperspectral data.

Let U = {x1, x2, ..., xn} be the set of n available labeled
patterns and B = {b1, b2, ..., bm} be the set of m bands
of hyperspectral data. We can represent these patterns as
W = {wij | i = 1, ..., n; j = 1, ...,m}, where wij is the
value of the pattern xi ∈ U associated with band bj ∈ B. Let
D be a decision attribute that contains the class label of the
pattern xi ∈ U . Accordingly, in terms of Rough set theory, a
hyperspectral data set can be represented by a decision table
I = (U,B ∪ D), where B and D play the role of condition
and decision attribute sets, respectively.

In hyperspectral remote sensing data, the class labels of
pixels/regions are represented by discrete values, while the
band/feature values of the pixels/patterns are continuous. In
order to exploit Rough set theory for band selection, the
continuous band values of the patterns should be divided into
several discrete values to generate equivalence classes [40],
[41]. Different discretization methods can be employed to
discretize the continuous band values, such as equal width
interval binning or equal frequency binning [41], mean and
standard deviation based discretization method [38], [41],
roughfication method [42], etc. In this work we employed
the simple equal width interval binning approach (uniform
quantization) [41]. It does not make use of any class mem-
bership information during the discretization process. The
uniform quantization algorithm determines the minimum and
maximum values of the discretized attribute and then divides
the range into a user-defined number of equal width discrete
intervals.

After discretization of continuous attributes (spectral bands),
the relevance and significance of the bands are computed
using the Rough set theory. In terms of Rough set theory,
the relevance r(bi, D) of a hyperspectral band bi with respect
to the decision attribute D can be computed using (4), i.e.

r(bi, D) = γbi(D) (6)

If we select k(k < m) spectral bands based only on the
relevance criterion defined in (6), we may have high redun-
dancy. Let us assume that bi and bj are two highly correlated
bands selected due to their high relevance values. Since the
two selected bands are highly correlated, the classification
prediction accuracy would not change significantly if one of
them is removed. It follows that one band is not useful with
respect to the other. The significance criterion defined in (5)
is able to find out the irrelevant bands. If the significance of
a band with respect to another band is 0, then the band is
completely irrelevant. Thus, the significance criterion play an
important role to select informative bands. In terms of Rough
set theory, the significance z(bi, bj) of a band bj with respect
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to another band bi can be computed using (5), i.e.

z(bi, bj) = δ{bi,bj}(D, bj) = γ{bi,bj}(D)− γbj (D). (7)

In our proposed method, we selects a subset S of k most
informative bands from the set B of m bands by taking into an
account the relevance and significance criteria. When k = 1,
the method computes the relevance of each band bi ∈ B
using (6). Then the band that has the highest relevance value
is selected as the most informative band. When k > 1, the
first-order incremental search is used to select one band at
each time [38], [43]. In first-order search, it is assumed that
the (k − 1) bands are already selected. The kth informative
band from the set B − S (the difference between sets B
and S is denoted as B − S) is chosen based on a function
which incorporates relevance and significance criteria. In the
literature this function is defined as follows [38], [39]:

F (bj) = r(bj , D) +
1

| S |
∑
bi∈S

z(bi, bj), (8)

where bj ∈ (B−S). bl is selected as the kth informative band
if it produces the largest value of the function defined in (8),
i.e., bl = arg max

bi∈(B−S)
{F (bi)}. The function in (8) has two

terms, which are associated with relevance and significance
criteria, respectively. If a band in (B−S) has zero significance
value with one band in S and very high significance value with
other bands in S, then the second term contributes a large value
in (8). As a result, the band may be selected as an informative
band, although it is completely redundant. To mitigate this
limitation, in this article we modify the second term of (8) by
defining the following function:

F
′
(bj) = r(bj , D) +

min{z(bi, bj)}
max{z(bi, bj)}

min{z(bi, bj)}, (9)

where bi ∈ S and bj ∈ (B − S). Here one can see that
the significance term corresponding to a band completely
depends on its minimum significance value, which seems
more reasonable to identify an informative band. Unlike the
techniques presented in [27]–[34], [37], the proposed tech-
nique avoids the generation of a large number of reducts
by adopting a first-order incremental searching algorithm.
This makes it less computationally demanding. Note that,
like the minimum-redundancy-maximum-relevance (mRMR)
based feature selection method [43], the proposed method
selects subset of features from the entire feature set by
maximizing the relevance and minimizing the redundancy
of the selected features. However, the proposed technique
exploits Rough sets theory instead of mutual information as
used by the mRMR technique for relevance and redundancy
measures. The major advantage of the proposed method is that
the redundancy measure (significance criterion) of the mRMR
method does not take into account the class labels information,
while both relevance and redundancy measures of the proposed
method are computed based on the class label information. The
complete algorithm of the proposed technique is given below:

Algorithm 1 Proposed band selection method
1: Initialize S = ϕ and B = {b1, b2, ..., bm}.
2: Compute the relevance of each band bi ∈ B using (6).
3: Select the band bj ∈ B that has the maximum relevance

value, i.e., bj = argmax
bi∈B

{r(bi, D)}.

4: Repeat the following three steps until the desired number
of bands are selected.

5: Update S = {S ∪ bj} and B = {B − bj}.
6: Compute the significance of each of the remaining bands

in B with respect to the selected bands in S using (7).
7: Select bj ∈ B that results in the maximum value in (9).

The band selection technique presented in algorithm (1)
has low computationally complexity. The time complexity to
compute the relevance values of m bands with n labeled
patterns is O(mn). Then the complexity of selecting the most
relevant band among m features is O(m). The time complexity
to compute the significance value of a band with respect to the
(d−1) already selected features is O(d−1). So, the time taken
to compute significance values for selecting d bands will be
O((d−1)(m−d+1)) = O(dm). Accordingly, the time com-
plexity of algorithm (1) is O(nm)+O(m)+O(dm) = O(nm).

IV. DESCRIPTION OF DATA SETS

In order to assess the effectiveness of the proposed band
selection method, experiments were carried out on three hyper-
spectral data sets of the Kennedy Space Center (KSC), Florida
[44], the Okavango Delta, Botswana [44] and the Indian Pine
test site of Northwestern Indiana [45].

The first data set is a hyperspectral image acquired by
AVIRIS sensor on the Kennedy Space Center (KSC), Merritt
Island, Florida, USA, on March 23, 1996 (see Fig. 1). This
image consists of 512 x 614 pixels and 224 bands with a spatial
resolution of 18 m. The number of bands is initially reduced
to 176 by removing water absorption and low signal-to-noise
channels. The available labeled data were collected using land-
cover maps derived from color infrared photography provided
by KSC and Landsat Thematic Mapper imagery. The reader is
referred to [44] (or to http://www.csr.utexas.edu/hyperspectral)
for more details on this data set. After the elimination of
noisy samples, the available labelled samples are used for the
experiment. The class names and corresponding numbers of
ground truth observations used in the experiments are listed
in Table II.

The second data set is a hyperspectral image acquired by the
Hyperion sensor on the Okavango Delta, Botswana, on May
31, 2001 (see Fig. 2). The Hyperion sensor on EO-1 acquires
data at 30 m/pixel resolution over a 7.7km strip in 242 bands
covering the 400-2500 nm portion of the spectrum in 10 nm
windows. The pre-processing of the data was performed by the
University of Texas Center for Space Research. Uncalibrated
and noisy bands were removed, and the remaining 145 bands
were included as candidate features ([10-55], [82-97], [102-
119], [134-164], [187-220]). The fourteen identified classes
represent the land-cover types in seasonal swamps, occasional
swamps, and drier woodlands located in the distal portion of
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Fig. 1. False colour composition of the hyperspectral KSC image.

TABLE II
KSC DATA SET: CLASS NAMES AND NUMBER OF SAMPLES.

Class Name No. of Samples
Scrub 761

Willow swamp 241
Cabbage palm hammock 256

Cabbage palm/Oak hammock 251
Slash pine 161

Oak/Broadleaaf hammock 229
Hardwood swamp 105
Graminoid marsh 431
Spartina marsh 520
Cattaial marsh 377

Salt marsh 419
Mud flats 462

Water 908

the delta. These classes were chosen to reflect the impact of
flooding on vegetation in the study area. The class names and
corresponding numbers of ground truth observations used in
the experiments are listed in Table III. The reader is referred to
[44] (or to http://www.csr.utexas.edu/hyperspectral) for more
details on this data set.

TABLE III
BOTSWANA DATA SET: CLASS NAMES AND NUMBER OF SAMPLES.

Class Name No of Samples
Water 270

Hippo grass 101
FloodPlain grasses 1 251
FloodPlain grasses 2 215

SReeds 269
Riparian 269
Firescar 259

Island interior 203
Acacia woodlands 314
Acacia shrublands 248
Acacia grasslands 305

Short mopane 181
Mixed mopane 268
Exposes soils 95

The third data set is another hyperspectral image acquired
by the AVIRIS (Airborne Visible/Infrared Imaging Spectrom-
eter) sensor over the agricultural land of Indian Pine, Indiana
in the early growing season of 1992 (see Fig. 3). These data

Fig. 2. False colour composition of the hyperspectral Botswana image.

Fig. 3. False colour composition of the hyperspectral Indian Pine image.

TABLE IV
INDIAN PINE DATA SET: CLASS NAMES AND NUMBER OF SAMPLES.

Class Name No of Samples
Alfalfa 46

Corn-notill 1428
Corn-min 830

Corn 237
Grass/Pasture 483
Grass/Trees 730

Grass/Pasture-mowed 28
Way-windrowed 478

Oats 20
Soybeans-notill 972
Soybeans-min 2455
Soybean-clean 593

Wheat 205
Woods 1265

Bldg-Grass-Tree-Drives 386
Stone-steel towers 93
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were acquired in the spectral range 400-2500 nm with spectral
resolution of about 10 nm. The image consists of 145 x 145
pixels and 220 spectral bands with a spatial resolution of 20 m.
Twenty water absorption and fifteen noisy bands were removed
and the remaining 185 bands were included as candidate
features ([4-102], [113-147], [166-216]). The class names and
corresponding numbers of ground truth observations used in
the experiments are listed in Table IV. The reader is referred
to [45] (or to http://engineering.purdue.edu/ biehl/MultiSpec)
for more details on this data set.

V. EXPERIMENTAL RESULTS

A. Design of experiments

To assess the effectiveness of the proposed band selection
method we compared it with three other state-of-the-art meth-
ods: i) the supervised Rough set and fuzzy C-Means (referred
as Rough-FCM) [11]; ii) the unsupervised wards linkage strat-
egy using divergence (referred as WaLuDi) [16]; and iii) the
unsupervised wards linkage strategy using mutual information
(referred as WaLuMI) [16]. The Rough-FCM approach, first
computes a relevance vector corresponding to each band of
the hyperspectral image. The components of the kth relevance
vector indicate the relevance of the different class objects
represented by the kth band. Thus, a hyperspectral image
with m bands and c objects will generate m relevance vectors
with c components each. After generation of the relevance
vectors, fuzzy C-Means clustering is applied to them to group
similar bands into a cluster. Finally, one band from each cluster
with maximum grade of fuzzy membership is selected [11]. In
the experiments, for all the considered data sets, we selected
randomly 50% of the available labeled samples for defining
the training set given as input to both the proposed and
the Rough-FCM supervised band selection techniques. The
WaLuDi and WaLuMI are unsupervised approach. Both adopts
a clustering technique to group similar bands into a cluster.
Then from each cluster, the WaLuDi and the WaLuMI selected
the most informative bands by applying the Kullback-Leibler
divergence and mutual information criterion, respectively [16].

Before conducting the experiments, normalization of spec-
tral channels (scaling them between 0 and 1) was performed.
For both the data sets, the discretization of the proposed
technique is done by fixing the number of bins to 100. The
desired number of bands to be selected is not known a priori
and varied in the different images. In the present investigation,
experiments were carried out for different numbers of bands
ranging from 5 to 40 with a step size of 5. After the termination
of the band selection algorithm, to evaluate the effectiveness of
selected bands, we adopted an one-against-all (OAA) architec-
ture of support vector machine (SVM) classifiers. Each SVM
was implemented with radial basis function (RBF) kernels.
The SVM parameters {σ,C} (the spread of the RBF kernel
and the regularization parameter) for all the data sets were
derived by applying a grid search according to a ten-fold cross-
validation technique. The cross-validation procedure aimed at
selecting the parameter values for the SVM. For all the data
sets, 50% of the available labeled samples (shown in Sec. IV)
were randomly selected and included in the training set used

for the learning of the SVM classifier. Then the accuracy was
evaluated on the remaining test samples. To reduce the random
effect of the results, 10 trials with different training sets were
performed and the average results were reported.

The multiclass SVM with the OAA architecture has been
implemented by using the LIBSVM library (for Matlab inter-
face) [46]. All the methods presented in this paper have been
implemented in Matlab.

B. Results: KSC data set
The first experiment was carried out to compare the per-

formance of the proposed technique with other state-of-the-art
techniques by using the KSC hyperspectral data set described
in Section IV. Fig. 4 shows the average overall classification
accuracies provided by different band selection methods versus
the number of bands. From this figure, one can see that the
proposed technique produced superior results as compared
to the considered literature techniques especially when small
number of bands are selected. The WaLuDi, the WaLuMI
and the Rough-FCM techniques grouped the similar bands
into a cluster to remove the redundant channels. When the
number of clusters is very small, these techniques may fail
to distribute the informative bands into different clusters.
On the other hand, the proposed technique searches the
informative bands from the whole band/feature space. As a
result, for a small number of selected bands the literature
techniques provided poor results compared with the proposed
technique. For a quantitative analysis, Table V reports the
average overall classification accuracies, as well as the average
kappa accuracies obtained on 10 runs for the hyperspectral
KSC data set. From the table, one can see that by selecting
only 5 bands, the proposed technique was able to achieve
85.03% overall accuracy. The WaLuDi, the WaLuMI and the
Rough-FCM techniques with the same number of selected
bands resulted in an overall accuracy of 82.63%, 80.67%
and 81.18%, respectively. It can also be seen that selecting
only 20 bands, the proposed technique was able to achieve
classification accuracy similar to that produced by the WaLuDi
method by selecting 40 bands. This confirms the effectiveness
of the proposed technique for the KSC data set. Table VI
shows the first 10 bands selected by different approaches.

TABLE V
AVERAGE (OBTAINED ON TEN RUNS) OVERALL CLASSIFICATION

ACCURACY (ŌA) AND KAPPA ACCURACY (KSC DATA SET)

No of WaLuDi WaLuMI Rough-FCM Proposed
Bands ŌA kappa ŌA kappa ŌA kappa ŌA kappa

5 82.63 .806 80.67 .783 81.18 .790 85.03 .833
10 85.71 .841 88.83 .876 87.52 .861 90.51 .894
15 89.04 .878 92.25 .914 92.22 .913 93.01 .922
20 89.65 .885 93.15 .924 92.32 .914 93.73 .930
25 90.64 .896 93.66 .929 93.63 .929 94.39 .937
30 91.62 .907 94.23 .936 94.41 .938 94.66 .941
35 92.17 .913 94.52 .939 94.97 .944 94.93 .944
40 93.70 .930 95.11 .946 95.11 .946 95.23 .947

C. Results: Botswana data set
The second experiment was carried out to compare the

performance of the proposed technique with the other con-
sidered state-of-the-art techniques by using the Botswana data
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Fig. 4. Average overall classification accuracy (over ten runs) versus the
number of selected bands provided by the WaLuDi, the WaLuMI, the Rough-
FCM, and the Proposed methods (KSC data set).

TABLE VI
THE TEN MOST INFORMATIVE BANDS SELECTED BY THE WALUDI, THE
WALUMI, THE ROUGH-FCM AND THE PROPOSED METHOD (KSC DATA

SET)

Methods Selected bands
WaLuDi 7, 21, 43, 48, 89, 173, 187, 200, 201, 202
WaLuMI 19, 27, 45, 67, 75, 89, 134, 140, 187, 195

Rough-FCM 27, 29, 35, 73, 83, 120, 131, 175, 195, 199
Proposed 34, 36, 37, 38, 40, 49, 59, 76, 88, 134

set described in Section IV. Fig. 5 shows the average overall
classification accuracies provided by different feature selec-
tion methods versus the number of bands. From this figure,
one can see that for small numbers of bands, the proposed
technique produced significantly higher classification accuracy
as compared to the WaLuDi, the WaLuMI and the Rough-
FCM techniques. When the number of selected bands in-
creased it provided slightly better accuracies than the existing
techniques. For a quantitative analysis, Table VII reports the
average overall classification accuracies, as well as the average
kappa accuracies, obtained on 10 runs. From the table, one can
see that by selecting only 5 bands, the proposed technique was
able to produce 89.63% overall accuracy. The WaLuDi, the
WaLuMI and the Rough-FCM techniques resulted in an overall
accuracy of 80.01%, 86.30%, and 81.32%, respectively. It can
also be seen that the proposed technique resulted in sharply
higher accuracies than the supervised Rough-FCM method.
This is because the proposed technique exploits class label
information properly in order to select the informative bands.
The results confirm the effectiveness of the proposed technique
also on the Botswana data set. Table VIII shows the first 10
bands selected by different approaches.

D. Results: Indian Pine data set

The third experiment was carried out to compare the per-
formance of the proposed technique with those of the other
considered state-of-the-art techniques by using the Indian Pine
data set described in Section IV. Fig. 6 shows the average
overall classification accuracies provided by different methods.

Fig. 5. Average overall classification accuracy (over ten runs) versus the
number of selected bands provided by the WaLuDi, the WaLuMI, the Rough-
FCM, and the Proposed methods (Botswana data set).

TABLE VII
AVERAGE (OBTAINED ON TEN RUNS) OVERALL CLASSIFICATION

ACCURACY (ŌA), AND KAPPA ACCURACY (BOTSWANA DATA SET)

No of WaLuDi WaLuMI Rough-FCM Proposed
Bands ŌA kappa ŌA kappa ŌA kappa ŌA kappa

5 80.01 .783 86.30 .852 81.32 .798 89.63 .888
10 91.20 .905 91.35 .906 92.19 .915 93.44 .929
15 93.66 .931 92.72 .921 93.22 .927 94.70 .943
20 95.19 .948 94.05 .936 95.24 .948 95.30 .949
25 95.96 .956 94.94 .945 95.68 .953 96.22 .959
30 96.80 .965 95.55 .952 96.18 .959 96.87 .966
35 97.20 .970 96.54 .962 96.88 .966 97.57 .974
40 97.46 .973 96.93 .967 97.13 .969 97.80 .976

From this figure, one can see that for small numbers of bands,
the proposed technique produced higher classification accuracy
as compared to other existing techniques. For higher number
of selected bands, the proposed technique provided similar
accuracies as compared to the results produced by the best
state-of-the-art method. For a quantitative analysis, Table IX
reports the average overall classification accuracies, as well
as the average kappa accuracies, obtained on 10 runs. From
the table, one can see that by selecting only 5 bands, the
proposed technique resulted in an overall accuracy of 67.19%
overall accuracy. The WaLuDi, the WaLuMI and the Rough-
FCM techniques resulted in an overall accuracy of 60.07%,
60.09%, and 63.92%, respectively. Table X shows the first 10
bands selected by the different approaches.

The last experiment was devoted to analyze the performance
of the proposed technique by varying the width of the bins
used to discretize the continuous band values of the patterns.
To this end, for the KSC, the Botswana and the Indian Pine
data sets, the number of bins was varied in the range 60, 70,
80, 90, and 100. Table XI shows the average classification
accuracies obtained by 10 bands, selected with different bin
widths. By analyzing these results, one can conclude that the
accuracy of the proposed method does not significantly change
in a wide range of bin widths.
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TABLE VIII
THE TEN MOST INFORMATIVE BANDS SELECTED BY THE WALUDI, THE
WALUMI, THE ROUGH-FCM AND THE PROPOSED METHOD (BOTSWANA

DATA SET)

Methods Selected bands
WaLuDi 11, 18, 25, 35, 50, 91, 96, 97, 150, 164
WaLuMI 11, 28, 44, 88, 110, 140, 158, 193, 207, 212

Rough-FCM 18, 31, 41, 91, 147, 160, 190, 209, 211, 212
Proposed 35, 36, 38, 45, 92, 106, 119, 135, 150, 196

Fig. 6. Average overall classification accuracy (over ten runs) versus the
number of selected bands provided by the WaLuDi, the WaLuMI, the Rough-
FCM, and the Proposed methods (Indian Pine data set).

TABLE IX
AVERAGE (OBTAINED ON TEN RUNS) OVERALL CLASSIFICATION

ACCURACY (ŌA), AND KAPPA ACCURACY (INDIAN PINE DATA SET)

No of WaLuDi WaLuMI Rough-FCM Proposed
Bands ŌA kappa ŌA kappa ŌA kappa ŌA kappa

5 60.07 .529 60.09 .531 63.92 .579 67.19 .618
10 74.35 .704 77.16 .737 76.01 .724 77.53 .742
15 83.47 .811 79.67 .766 82.77 .803 83.02 .806
20 85.31 .832 84.99 .828 83.94 .816 84.85 .826
25 87.42 .856 86.10 .841 85.65 .836 86.73 .848
30 87.74 .860 87.42 .856 86.41 .845 87.41 .856
35 89.47 .880 89.12 .876 88.15 .865 89.14 .876
40 89.83 .884 89.49 .880 88.71 .871 89.66 .882

TABLE X
THE TEN MOST INFORMATIVE BANDS SELECTED BY THE WALUDI, THE

WALUMI, THE ROUGH-FCM AND THE PROPOSED METHOD (INDIAN PINE
DATA SET)

Methods Selected bands
WaLuDi 31, 52, 56, 58, 69, 84, 129, 142, 171, 197
WaLuMI 24, 42, 49, 72, 97, 122, 142, 182, 191, 209

Rough-FCM 7, 17, 22, 30, 59, 79, 118, 125, 167, 182
Proposed 29, 35, 44, 77, 84, 130, 166, 182, 214, 215

TABLE XI
AVERAGE CLASSIFICATION ACCURACY PROVIDED BY TEN BANDS

SELECTED WITH DIFFERENT BIN WIDTH

No of bins Data sets
KSC Botswana Indian Pine

60 90.69 93.21 78.69
70 90.05 93.07 77.97
80 90.35 93.38 77.83
90 90.17 93.59 78.15

100 90.51 93.44 77.53

VI. DISCUSSION AND CONCLUSION

In this paper we presented a supervised method based
on the Rough set theory for hyperspectral band selection.
Our technique selects a subset of informative bands from
hyperspectral imagery by using relevance and significance
criteria. The Rough set theory is exploited to compute the
relevance and significance values of each of the hyperspectral
band. Moreover, a novel criterion is proposed to select the
most informative bands. The proposed technique uses simple
first-order incremental search to avoid the generation of large
numbers of reducts, thus resulting less computational demands
as compared to the conventional Rough set based approaches.

To assess the effectiveness of the proposed band selec-
tion technique, we compared it with one Rough set based
supervised technique and two unsupervised techniques based
on KL divergence and mutual information criterion existing
in the remote sensing literature by using three hyperspectral
data sets. The results of this comparison pointed out that
for small numbers of selected bands, the proposed method
always provided significantly higher accuracies compared to
all the reference band selection methods. For larger numbers
of selected bands, it produced similar accuracy as compared to
the best result obtained by the existing state-of-the art methods.

As future developments of this work, we plan to define a
strategy for selecting a band subset by detecting the class-wise
most informative bands to further improve results.
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