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Abstract

In this paper, we propose an active learning technique for solving multiclass prob-
lems with support vector machine (SVM) classifiers. The technique is based on both
uncertainty and diversity criteria. The uncertainty criterion is implemented by ana-
lyzing the one-dimensional output space of the SVM classifier. A simple histogram
thresholding algorithm is used to find out the low density region in the SVM output
space to identify the most uncertain samples. Then the diversity criterion exploits
the kernel k-means clustering algorithm to select uncorrelated informative samples
among the selected uncertain samples. To assess the effectiveness of the proposed
method we compared it with other batch mode active learning techniques presented
in the literature using one toy data set and three real data sets. Experimental re-
sults confirmed that the proposed technique provided a very good tradeoff among
robustness to biased initial training samples, classification accuracy, computational
complexity, and number of new labeled samples necessary to reach the convergence.

Key words: Active learning, cluster assumption, entropy, query function, support
vector machine

1 Introduction

In the machine learning literature many supervised algorithms have been pro-
posed to perform the pattern classification tasks. In all these methods, the
classification accuracy relies on the quality of the labeled samples used in the
learning phase. However, in many problems the collection of labeled samples
that can precisely represent the statistics of all the classes is a time consuming
and complex process. Redundant samples are often included in the training
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set, thus slowing down the training process of the classifier without improv-
ing classification results. In order to reduce the time and cost of labeling,
the samples in the training set should not be redundant and should contain
the maximum amount of information for the discrimination of classes. Active
learning is an effective approach to the solution of this kind of problem. The
learning process repeatedly queries unlabeled samples to select the most in-
formative patterns to be labeled and updates the training set on the basis of
a supervisor who attributes the labels to the selected unlabeled samples.

Many existing active learning methods select informative samples by consider-
ing only an uncertainty criterion [1–4]. Depending on the criterion considered,
at each iteration either i) single [1,2] or ii) multiple [3,4] uncertain samples can
be labeled. The first approach can be inefficient since the classifier has to be
retrained for each new labeled sample added to the training set. The second
approach can be inefficient too since there might exist redundancy between the
selected samples. Some active learning techniques exist that query a batch of
unlabeled samples at each iteration by considering both uncertainty and diver-
sity criteria [5–7]. The uncertainty criterion is associated to the confidence of
the supervised algorithm in correctly classifying the considered sample, while
the diversity criterion aims at selecting a set of unlabeled samples that are as
more diverse as possible in the feature space, thus reducing the redundancy
among the samples selected at each iteration. The combination of the two cri-
teria results in the selection of the potentially most informative set of samples
at each iteration of the active learning process.

In this article we propose a novel active learning technique for solving multi-
class classification problems with SVM classifiers by considering both uncer-
tainty and diversity criteria. The main idea of the technique is to exploit the
cluster assumption which states that the decision boundary between classes
has to lie in the low-density regions of the feature space [8]. Initially each bi-
nary SVM classifier is trained with a small number of labeled samples. After
training, an histogram corresponding to each binary SVM is constructed in
the one-dimensional output space of the classifier by considering the output
scores of the unlabeled samples in [-1, +1]. Since the classifier ranks each sam-
ple from the most likely members to the most unlikely members of a class,
the samples whose output scores fall in the valley region of the histograms
are the most uncertain. Thus, we can identify the uncertain samples by find-
ing a threshold corresponding to the valley region in each histogram. Then
a batch of samples is selected from the unlabeled pool whose output scores
are closest to one of the selected threshold values. After selecting a batch of
uncertain samples, to minimize the redundancy and keep the diversity among
these samples, we apply kernel k-means clustering algorithm and query the
sample from each cluster whose output score is most uncertain. Since the pro-
posed technique selects the unlabeled samples from low-density regions in the
kernel space, it is not strongly affected by the set of initial training samples

2



and by the previous training results, thus allowing relatively fast convergence
also by starting with biased (poor) initial training samples.

The rest of this paper is organized as follows. Section 2 describes the active
learning process and briefly surveys existing active learning methods. The
proposed cluster assumption based active learning approach is presented in
Section 3. Section 4 provides the description of the four data sets used for
experiments. Section 5 presents different experimental results obtained on the
considered data sets. Finally, Section 6 draws the conclusion of this work.

2 Active learning

A general active learner can be modeled as a quintuple (G, Q, S, L, U) [4].
Initially, the training set L has few labeled samples to train the classifier G.
After that, the query function Q is used to select a set of most informative
samples from the unlabeled pool U and the supervisor S assigns a class label
to each of them. Then, these new labeled samples are included into L and
the classifier G is retrained using the updated training set. The closed loop
of querying and retraining continues for some predefined iterations or until a
stop criterion is satisfied.

The query function is fundamental in the active learning process. Several meth-
ods have been proposed in the literature that differs only in their query func-
tions. In [9], Fukumizu has proposed a statistical active learning approach to
train multilayer perceptron for performing regression. Roy and McCallum [10]
proposed an active learning method that select the next unlabeled sample to
be labeled on the basis of the minimization of the future error rate which
is estimated by using two different techniques. One of the most popular ac-
tive learning technique based on SVM is to select the data point closest to
the current separating hyperplane, which is also referred to as marginal sam-
pling (MS) [1]. An active learning strategy based on version space splitting is
presented in [2]. Another class of active learning methods is based on query-by-
committee [11,12], wherein the sample that has highest disagreement among
the committee of classifiers is chosen for the labeling.

It is worth noting that all of the above-mentioned methods consider only one
sample at each iteration. However, in many problems it is necessary to speed
up the learning process by selecting more than one sample at each iteration.
In [3], Mitra et al. have presented a probabilistic active learning approach,
wherein query samples are selected according to both the distance from the
current separating hyperplane and a confidence factor estimated from a set
of test samples using the nearest neighbor technique. In [4], an approach is
proposed that estimates the uncertainty level of each sample according to the
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output score of a classifier and selects only those samples whose output scores
are within the uncertainty range. In [13], we proposed a fast cluster assumption
based active learning technique that also work on the one-dimensional output
space of the SVM classifier to solve multiclass classification problems. Note
that all the aforementioned methods selects batch of sample at each iteration
by considering only the uncertainty criterion. This may result in the selection
of redundant samples which reduce the speed of the classifier without adding
any additional information. In order to address this shortcoming, Brinker [5]
has presented a method that selects batch of samples by incorporating a di-
versity measure that considers the angles between the induced classification
hyperplane. Clustering based diversity measures that are incorporated to de-
sign the query functions of the active learning are discussed in [6,14]. In [7],
two batch mode active learning techniques for multiclass remote sensing im-
age classification problems are proposed (more details on these approaches
that will be used as benchmark in our experimental analysis are given in the
experiment section).

3 Proposed method

Here we present a cluster assumption based batch mode active learning tech-
nique for solving multiclass classification problems with SVM classifiers. Before
presenting the proposed technique, we briefly recall the main concepts asso-
ciated with SVM classifiers. The reader is referred to [15] for more details on
the SVM approach.

Let us assume that a training set consists of N labeled samples (xi, yi)
N
i=1,

where xi ∈ ℜd are the training samples and yi ∈ {+1,−1} are the associated
labels (which model classes ω1 and ω2). SVM is a binary classifier, whose
goal is to divide the d-dimensional feature space into two subspaces (one for
each class) using a separating hyperplane. An interesting feature of SVM is
related to the possibility to implicitly project the original data into a higher
dimensional feature space via a kernel function K(., .), which satisfies the
Mercers conditions [15]. The solution to the SVM learning problem is a global
maximum of a convex function. The decision function f(x) is defined as:

f(x) =
∑

xi∈SV
αiyiK(xi, x) + b (1)

where SV represents the set of support vectors. The training pattern xi is a
support vector if the corresponding Lagrangian multiplier αi has a nonzero
value. For a given test sample x, the sign of the discriminant function f(x)
defined in (1) is used to predict its class label.
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In order to address multiclass problems on the basis of binary SVMs classifiers,
in this work, we adopt the one-against-all (OAA) strategy, which involves a
parallel architecture made up of n SVMs, one for each information class. Each
SVM solves a two-class problem defined by one information class against all
the others [16].

In the following section we propose an active learning technique that incorpo-
rate uncertainty and diversity criteria in two consecutive steps to select the h
(h > 1) most informative unlabeled samples to be labeled at each iteration.
The novelty of the proposed technique consists in the adopted uncertainty and
diversity criteria.

3.1 Uncertainty step

The proposed uncertainty criterion is developed under the hypothesis that
for the considered data sets the cluster assumption holds. Initially each bi-
nary SVM classifier is trained with the few available labeled samples. After
training, an histogram corresponding to each classifier is constructed in the
one-dimensional output space of the classifier by considering the output scores
of the samples in [-1, +1]. In the histogram, the region of interest is quantized
into N mutually exclusive intervals called bins. We assume that all bins have
an equal width (uniform quantization). The probability to have the output in
a given bin is given by the number of samples whose output scores fall in that
bin divided by the total number of samples in the histogram (i.e., the sam-
ples given as input to the classifier). Since the classifier ranks samples from
the most likely members to the most unlikely members of a class, according
to the cluster assumption (the decision boundary has to lie in the low den-
sity regions) the samples whose output score fall in the valley region of the
histogram are the most uncertain. Thus we can work in the one-dimensional
output space of the classifier to identify the uncertain samples by defining a
threshold on the histogram which is passing through this valley region. This
simple strategy avoids the complexity of the design of the query function in
the original features space, which may be associated with complicated decision
regions and thus can become computationally demanding. To detect a proper
threshold on the histogram any thresholding technique existing in the pattern
recognition literature can be used [17]. For the present work, without loosing
in generality, we applied the Kapur’s entropy based histogram thresholding
technique [13,18].

In greater detail, let us consider a problem with n classes. n binary SVMs
are initially trained with the current training set and the functional distance
fi(x) of each ith binary SVM (i = 1, ..., n) is calculated for all the unlabeled
samples x ∈ U and the related histogram Hi is generated by considering the
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output score value in [-1, +1]. Thus each binary SVMs classifier generates a
separate histogram considering its output score values. Then a threshold ti
from the histogram Hi is detected by applying the histogram based thresh-
olding method. After finding n thresholds, the uncertainty of a sample x ∈ U
is computed as follows:

c(x) = min
i=1,...,n

{|fi(x)− ti|} (2)

Now the m most uncertain samples from U are selected which have minimum
c(.) value. Note that, unlike in [13] where a fixed number of uncertain samples
are selected by considering each individual binary SVM, here the uncertain
samples are selected by considering all the binary SVM together. This allows
us to select variable numbers of samples from uncertain regions associated
with different SVMs.

3.2 Diversity step

In this step a batch of h (m > h > 1) samples which are diverse from each other
are chosen among the m samples that are selected in the uncertainty step. In
the present work, first we apply the kernel k-means clustering algorithm [19] to
divide the selected m uncertain samples into h different clusters. Then, from
each cluster the most uncertain sample is chosen. The amount of uncertainty
is evaluated according to the criterion proposed in the uncertainty step. This is
different from the strategy used in the standard cluster based technique which
usually selects the barycenter of the cluster as the representative sample of
that cluster.

In greater detail, let us assume that the kernel k-means clustering algorithm
divides the m samples into k = h clusters C1, C2, ..., Ch in the kernel space.
After C1, C2, ..., Ch are obtained, the h most informative samples are selected
as

xk = arg min
x∈Ck

{
min

i=1,...,n
{|fi(x)− ti|}

}
, k = 1, 2, ..., h (3)

where xk is the kth sample selected using the proposed query function and
corresponds to the most uncertain sample of the cluster Ck. Thus, a total of
h samples (one for each cluster) are selected . The process is iterated until a
stop criterion (which is related to the stability of the classification accuracy) is
satisfied. Algorithm 1 presents the complete procedure of the proposed tech-
nique.
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4 Data sets description

In order to assess the effectiveness of the proposed active learning technique,
four data sets were used in the experiments. The first one is a toy data set
which is made up of three linearly separable classes as shown in Fig. 1(a). It
contains 43 samples, and only 3 samples (one from each class) are chosen as
initial training samples; the remaining 40 samples are in the unlabeled pool U.
This data set is used for illustrating the properties of the proposed technique.

The second UCI ionosphere data set is a well-known and widely used bench-
mark for pattern classification tasks [20]. These radar data were collected by
a system in Goose Bay, Labrador. It consists of 351 patterns (free electrons in
the ionosphere). There are 34 continuous input features and two overlapping
classes.

The third is a more complicated vowel data set widely used for pattern clas-
sification tasks [21]. It consists of 871 patterns (Indian Telugu vowel sounds).
It has three integers input features with six overlapping classes.

Algorithm 1: Proposed cluster-assumption based batch mode
active learning technique

Step 1: Train n binary SVMs by using an initial small number of labeled
samples. Let fi(.) be the decision function of the ith binary SVM classifier.
Repeat
For i=1 to n

Step 2: For the ith binary SVM classifier generates the correspond-
ing histogram Hi by considering the output scores of the unlabeled
samples x ∈ U whose output value fi(x) ∈ [−1,+1].
Step 3: Detect the threshold ti from the histogram Hi by using the
entropy based histogram thresholding technique.

End for
Step 4: Select m (m > h) samples which have minimum c(.) value

defined in (2).
Step 5: Apply kernel k-means clustering algorithm to the m samples
selected in step 4 fixing k = h.
Step 6: Select one sample from each of the h clusters using (3).
Step 9: Assign true labels to the h selected samples and update the
training set.
Step 10: Retrain the n binary SVMs by using the updated training set.

Until the stop criterion is satisfied.

The last data set is a Quickbird multispectral remote sensing image acquired
on the city of Pavia (northern Italy) on June, 2002. It consists four pan-
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sharpened multispectral bands and a panchromatic channel with a spatial
resolution of 0.7m. The size of the full image is 1024× 1024 pixels and there
are eight classes. The available labeled samples were collected by photointer-
pretation.

For all data sets, the available samples were randomly split into a training
set T and a test set TS. First, only few samples were randomly selected from
T as initial training set L, and the rest were stored in the unlabeled pool U .
Table 1 shows all the classes and the related number of samples used in the
experiments for the ionosphere, the vowel and the remote sensing data sets.

Table 1
Number of samples for each class in the initial training set (L), in the test set (TS)
and in the unlabeled pool (U) for the ionosphere, the vowel and the remote sensing
data sets

Data Classes Number of samples

sets L TS U

io
n
os
p
h
er
e

good 11 67 147

bad 6 38 82

Total 17 105 229

v
ow

el

∂ 4 22 46

a 4 27 58

e 8 52 112

i 7 45 99

o 10 62 135

u 9 54 117

Total 42 262 567

re
m
ot
e
se
n
si
n
g

Water 2 215 178

Tree areas 4 391 344

Grass areas 4 321 319

Road 12 613 975

Shadow 9 666 709

Red building 29 1620 2267

Gray building 7 427 590

White building 3 249 255

Total 70 4502 5637
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5 Experimental results

5.1 Design of experiments

In our experiments we adopted an SVM classifier with RBF kernel. The SVM
parameters {σ,C} were derived by applying the cross-validation technique.
The RBF kernel is also used to implement the kernel k-means algorithm.

To assess the effectiveness of the proposed technique we compared it with
four other methods: i) the Brinker’s method [5], which is based on marginal
sampling with angle based diversity (MS-ABD); ii) the marginal sampling
with closest support vector diversity (MS-cSV) [7]; iii) the entropy query-by-
bagging (EQB) [7]; and iv) the random sampling (RS). For multiclass prob-
lems, the MS-ABD approach first uses MS to select the m most uncertain
samples, i.e., it selects the m(m > h) samples that have the smallest distance
to one of the n decision hyperplanes associated to the n binary SVMs in an
OAA architecture. Then, the h diverse samples among the m samples are cho-
sen by applying the angle based diversity as presented in [5]. Here we set the
value of the weighting parameter that tunes the tradeoff between uncertainty
and diversity at λ = 0.5. The MS-cSV considers the MS criterion to select the
m most uncertain samples. Then, the h most uncertain samples which do not
share the same closest support vector are added to the training set. The EQB
selects the h most uncertain samples according to the maximum disagreement
between a committee of classifiers. The results of the EQB are obtained by
fixing the number of predictors to eight and selecting bootstrap samples con-
taining 75% of initial training patterns. In the RS approach, at each iteration
a batch of h samples are randomly selected from the unlabeled pool U and
included into the training set. Note that, in the present experiments, the value
of m is fixed to m = 3h for a fair comparison among the different techniques.

The multiclass SVM with the standard OAA architecture has been imple-
mented by using the LIBSVM library (for Matlab interface) [22]. All the active
learning algorithms presented in this paper have been implemented in Matlab.

5.2 Results

In order to understand the potential of the proposed technique, in the first
experiment we compared the different active learning methods by using the toy
data set described in the previous subsection. Initially, only three samples (one
from each class) are chosen for the training (see Fig. 1(a)) and 3 additional
samples are selected at each iteration of active learning. The process is iterated
4 times to have 15 samples in the training set at the end. Fig. 1 shows the
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unlabeled samples (represented with circles) which are selected by different
active learning methods after the end of the 1st and the 4th iteration. From
this figure one can see that, for example, according to the use of the cluster
assumption at the initial stage of the training, the proposed technique selects
samples more representative of the general problem than the other techniques.
For a quantitative analysis, Table 2 reports the classification accuracy obtained
by the proposed, the MS-ABD, the MS-cSV, the EQB and the RS methods at
different iterations. From the table one can see that the proposed technique
obtained 100% classification accuracy after the 1st iteration (i.e., by using
only 6 labeled samples), while the other most effective techniques (i.e., the
MS-ABD, the MS-cSV and the EQB) needed at least 2 iterations (i.e., 9
samples) to achieve the same accuracy. In other words, although this is a simple
example, starting from a suboptimal data set, the proposed technique, thanks
to the low-density criterion, reaches the convergence decreasing of 33% the
number of new labeled samples with respect to the other literature methods.

(a)

(b) (c) (d) (e) (f)

Fig. 1. (a) Toy data set with initial labeled samples represented with circles. The
samples represented with circles selected by (b) the Proposed; (c) the MS-ABD; (d)
the MS-cSV; (e) the EQB; and (f) the RS methods after the 1st (upper part of the
figure) and the 4th (lower part of the figure) iterations.

The second experiment was carried out to compare the performance of the
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Table 2
Overall classification accuracy (OA) produced by the different techniques at differ-
ent iterations (toy data set)

Itr Training OA

No Samples Proposed MS-ABD MS-cSV EQB RS

0 3 97.43 97.43 97.43 97.43 97.43

1 6 100 97.43 94.87 89.74 92.30

2 9 100 100 100 100 94.87

3 12 100 100 100 100 92.30

4 15 100 100 100 100 97.43

proposed method with those of the four techniques described in the previous
subsection on the three real data sets considered in this paper. For the iono-
sphere and the vowel data sets, initially only 17 and 42 labeled samples were
included in the training set, respectively, and 5 samples were selected at each
iteration of active learning. The whole active learning process was iterated 10
times resulting in 67 and 92 samples in the training sets at convergence. For
the remote sensing data set, initially only 70 labeled samples were included
in the training set and 20 samples were selected at each iteration of active
learning. The whole process was iterated 19 times resulting in 450 samples in
the training set at convergence. For all the three data sets, the active learn-
ing process was repeated for 20 trials with 20 different initial training sets
(generated randomly) to reduce the random effect on the results. Figs. 2(a),
(b), and (c) show the average overall classification accuracies provided by dif-
ferent methods versus the number of samples included in the training set at
different iterations for the ionosphere, the vowel and the remote sensing data
sets, respectively. From these figures, one can see that the proposed active
learning technique always resulted in better (or comparable) classification ac-
curacy than the other techniques. For a quantitative analysis, Table 3 report
the mean(OA), and standard deviation (s) of the overall accuracy, as well as
the average kappa (k) accuracies obtained on 20 runs at three different itera-
tions. From the table, one can see that the standard deviation of the proposed
approach is always smaller than those of the other techniques. This confirms
the better stability of the proposed method versus the choice of initial training
samples.

Most of the active learning approaches select the uncertain samples depending
on the current decision hyperplane. If the initial training samples are biased,
i.e., they do not provide precise representation of the classification problem,
then they may fail to select proper informative samples at the initial stage of
learning. This results in a slowing down of the convergence process. On the
contrary, the proposed technique selects the uncertain samples from the low-
density region in the classifier output space and thus it is less dependent on
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Table 3
Average overall classification accuracy (OA), its standard deviation (s) and average
kappa (k) accuracy obtained on twenty runs for different training data size of the
ionosphere, the vowel, and the remote sensing data sets

Data |L| Methods

sets Proposed MS-ABD MS-cSV EQB RS

OA s k OA s k OA s k OA s k OA s k

io
n
os
p
h
er
e

37 92.20 1.48 .826 91.41 2.42 .804 90.78 2.67 .790 89.90 2.36 .772 88.55 3.07 .739

52 94.10 1.30 .868 94.08 1.47 .868 93.97 1.92 .865 93.26 1.36 .850 90.20 2.80 .777

67 95.28 0.87 .895 95.25 .91 .894 95.24 1.21 .894 94.93 0.97 .887 91.47 2.39 .808

v
ow

el

62 79.24 2.65 .745 78.47 3.45 .736 78.44 3.77 .735 77.92 2.98 .729 76.92 3.48 .717

77 80.95 2.53 .766 80.90 2.83 .766 81.03 3.11 .767 80.03 3.06 .754 78.36 3.16 .735

92 82.81 2.37 .789 81.99 2.51 .779 82.61 2.47 .786 81.80 2.73 .776 79.77 2.37 .751

re
m
ot
e
se
n
si
n
g 250 85.84 0.65 .824 85.82 .69 .824 85.36 1.00 .818 84.72 1.17 .810 82.48 1.49 .783

350 86.51 0.39 .832 86.14 .57 .827 85.83 0.51 .824 85.84 0.71 .824 83.38 1.38 .794

450 86.62 0.31 .833 86.29 .37 .829 86.10 0.39 .827 86.39 0.48 .830 84.40 1.22 .806

the quality of the initial training samples. To shows the validity of the above
statement, in the third experiment, we started the active learning process with
biased initial training samples. To this end, for the ionosphere, the vowel and
the remote sensing data sets, the initial training sets were defined by taking
only 4, 12 and 16 labeled samples (two samples for each class), respectively,
which are not sufficient to model the actual decision boundary of the classifier.
Figs. 3(a), (b), and (c) show the average classification accuracies versus the
number of samples included in the training set at each iteration obtained by
different methods for the ionosphere, the vowel and the remote sensing data
sets, respectively. From these figures, one can see that the proposed technique
always provided higher classification accuracies compared to the other meth-
ods at the initial stage of learning process. From a different perspective, it can
achieve the same accuracy of the other techniques with a significantly smaller
number of samples. This confirms the robustness of the proposed technique to
biased (poor) initial training samples.

The fourth experiment deals with the computational time required by the
different techniques using the same experimental setting as described in the
second experiment. All the experiments were carried out on a PC (INTEL(R)
Core(TM)2 Duo 2.0 GHz with 2.0 GB of RAM). Table 4 shows the computa-
tional time (in seconds) required by the investigated techniques for all three
data sets. From this table, one can see that the computational time required
by the proposed approach is almost similar to the computational time taken
by the MS-ABD approach. On the contrary, the computational time taken
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(a)

(b)

(c)

Fig. 2. Average classification accuracy over twenty runs versus the number of train-
ing samples provided by the Proposed, the MS-ABD, the MS-cSV, the EQB, and
the RS methods for (a) the ionosphere, (b) the vowel, and (c) the remote sensing
data sets.

by the MS-cSV and the EQB techniques is higher compared to the proposed
technique. The RS method was obviously the most efficient in terms of com-
putational load. Nonetheless, it resulted in the lowest classification accuracy.

Finally, we carried out different experiments for assessing the stability of the
proposed technique by varying the values of m and the width of the histogram
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(a)

(b)

(c)

Fig. 3. Average classification accuracy provided by the Proposed, the MS-ABD, the
MS-cSV, and the EQB methods for (a) the ionosphere, (b) the vowel, and (c) the
remote sensing data sets by starting with biased training samples.

bins. The results of all these experiments pointed out the almost insensitivity
of the proposed algorithm to these parameters.
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Table 4
Computational time (in seconds) taken by the investigated active learning methods
on the three real data sets considered

Methods Data sets

ionosphere vowel remote sensing

Proposed 0.80 2.00 36.87

MS-ABD 0.80 1.97 34.66

MS-cSV 1.79 5.37 262.84

EQB 2.56 6.74 148.43

RS 0.48 1.22 14.32

6 Discussion and Conclusion

In this paper we have presented a novel active learning technique for solving
multiclass classification problems with SVM classifiers by applying cluster as-
sumption based uncertainty and kernel k-means based diversity criteria. To
empirically assess the effectiveness of the proposed method we compared it
with other three batch mode active learning techniques existing in the liter-
ature using a toy data set and three real data sets. In this comparison we
observed that the proposed method always provided better (or comparable)
accuracies with improved stability with respect to those achieved by some of
the most effective techniques presented in the literature (i.e., the MS-ABD,
the MS-cSV and the EQB). Moreover, it proved robust to handle biased ini-
tial training samples. Thus, in our experiments, the proposed algorithm pro-
vided the best trade-off among robustness to biased initial training samples,
classification accuracy, computational complexity, and number of new labeled
samples necessary to reach the convergence.
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