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A novel SOM-SVM based active learning technique
for remote sensing image classification

Swarnajyoti Patra and Lorenzo Bruzzone, Fellow, IEEE

Abstract—In this article a novel iterative active learning
technique based on self-organizing map (SOM) neural network
and support vector machine (SVM) classifier is presented. The
technique exploits the properties of the SVM classifier and
of the SOM neural network to identify uncertain and diverse
samples, to include in the training set. It selects uncertain samples
from low-density regions of the feature space by exploiting
the topological properties of the SOM. This results in a fast
convergence also when the available initial training samples are
poor. The effectiveness of the proposed method is assessed by
comparing it with several methods existing in the literature using
a toy data set and a color image as well as real multispectral
and hyperspectral remote sensing images.

Index Terms—Active learning, support vector machine, self-
organizing map, hyperspectral imagery, multispectral imagery,
remote sensing.

I. INTRODUCTION

IN supervised techniques, the classification accuracy de-
pends on the quality of labeled patterns used for training.

The collection of informative labeled samples is usually expen-
sive and time consuming. When considering remote sensing
image classification problems, we may have several millions
of unlabeled patterns (pixels); thus the manual selection of the
training samples (usually carried out according to pre-defined
sampling strategies) is a complex process and often introduces
redundancy into the training set. In order to both reduce the
cost of labeling and optimize the performance of the classifier,
the training set should be as small as possible by avoiding
redundant samples and including only most informative pat-
terns (which have the highest training performance). The active
learning approach addresses this problem. Like in a human-
machine interaction scenario, the learning process repeatedly
queries unlabeled samples to select the most informative
patterns for the considered learning technique. Then it updates
the training set on the basis of a supervisor who attributes the
labels to the selected unlabeled samples. Thus, the unnecessary
labeling of noninformative samples is avoided greatly reducing
the labeling cost, while increasing the quality of the training
set.

Active learning techniques are widely used in pattern recog-
nition literature [1]–[9]. All the methods differ only in their
query function, which is the core of the active learning process.
The query function can be designed by taking into account
an uncertainty criterion followed by a diversity criterion. The
uncertainty criterion is associated to the confidence of the
supervised algorithm in correctly classifying the considered
sample, while the diversity criterion aims at selecting a set
of unlabeled samples that are as diverse as possible in the

feature space, thus reducing the redundancy among the sam-
ples selected at each iteration. Many active learning methods
at each iteration chose either i) single [1]–[3] or ii) multiple
[4], [5] informative samples for labeling by considering only
the uncertainty criterion. The first approach is inefficient since
the classifier needs to be retrained after adding only a single
sample into the training set. The second approach can be
inefficient due to the high possibility of selecting redundant
samples. To mitigate both the above-mentioned problems,
some active learning techniques query a batch of unlabeled
samples at each iteration by considering both uncertainty and
diversity criteria [6], [7].

In this paper, we focus on classification of remote sensing
images. However the proposed method is general and can be
used in any classification problem. Active learning methods
have been increasingly considered in remote sensing image
classification only in very recent years [10]–[18]. Some of
them select single [10], [11] and some multiple [12]–[14]
samples at each iteration of the active learning process by
considering only the uncertainty criterion. Mitra et al. [10]
presented an active learning technique that selects the most
uncertain sample closest to the current separating hyperplane
of an SVM classifier. Rajan et al. [11] presented an active
learning method that chooses the unlabeled sample that maxi-
mizes the information gain between the a posterior probability
distribution estimated from the current training set and the one
obtained by including that sample into it. The information gain
is measured by the Kullback-Leibler divergence. In [12], Tuia
et al. presented a technique that selects multiple samples at
each iteration of the active learning process with the help of the
entropy query-by-bagging algorithm. The samples that have
maximum disagreement among the committee of learners are
considered as most uncertain. Recently, few techniques were
developed that introduce cluster assumption to select the most
uncertain samples [13], [14]. In [13], we proposed a simple
cluster assumption based method that selects the samples
to be labeled from low-density regions of one-dimensional
SVM output space. In [14], Di and Crawford investigated a
coregularization method that incorporates the inconsistency
from both the local proximity and multiview perspectives,
whereby the local proximity is enforced and measured on the
spatial/spectral generated manifold space. All these methods
select a set of most uncertain samples at each iteration of
the active learning process without incorporating a diversity
criterion, thus possibly introducing redundancy into the se-
lected samples. Other active learning methods mitigate this
problem by incorporating a diversity criterion in the sample
selection process [12], [15], [16]. All these methods follow
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two steps, the uncertainty step and the diversity step. In the
uncertainty step, the m (m > 1) most uncertain samples
are selected using a given uncertainty criterion. Then in the
diversity step, h (1 < h < m) samples are selected among the
m most uncertain samples by applying a diversity criterion.
In [12], Tuia et. al. presented a method that selects the m
most uncertain samples which are closest to the SVM decision
hyperplanes; then the h samples among the m which are
closest to distinct support vectors are chosen for labeling. In
[15], Demir et al. investigated several SVM-based batch mode
active learning techniques by incorporating different diversity
measures. In [16], we developed a batch-mode active learning
technique based on multiple uncertainty for SVM classifiers.
Recently, Demir et al. proposed cost-sensitive active learning
methods for the classification of remote sensing images[19],
[20]. They modeled the query function of the active learning
not only considering the uncertainty and diversity criteria,
but also including explicitly the labeling cost information. A
survey of active learning methods in remote sensing literature
is presented in [21].

In remote sensing classification problems, the collection
of labeled samples for the labeling of selected samples at
each iteration of active learning can be obtained according
to the following: 1) ground survey, which is costly and time
consuming; 2) photointerpretation (expert interpretation of the
image), which is cheaper and faster; or 3) hybrid solutions,
where both photointerpretation and ground surveys are used.
The choice of the labeling strategy depends on the considered
problem and image type. For example, for very high resolution
(VHR) images, the labeling of a particular sample can be
usually easily obtained by photointerpretation. When medium
(or low) resolution multispectral images and hyperspectral
data are considered, the land-cover classes are characterized
usually on the basis of their spectral signatures. In these
cases, the visual analysis of different false color compositions
(i.e., photointerpretation) often is not sufficient to predict the
appropriate label of a particular sample. Thus, ground survey
is necessary for the labeling of samples. According to these
example we can conclude that depending on both the type
of classification problem and the considered image type, the
cost and time associated to the labeling process significantly
changes. Several iterations of the labeling step in the active
learning strategy can be carried out where photointerpretation
is possible. On the contrary, in cases where ground surveys
are necessary, only few iterations of the labeling step are
possible[15]. These iterations should be carried out minimizing
the cost of labeling (see [19], [20] for more details on the cost
issue).

In this paper we present a novel batch mode active learning
technique based on self-organizing map (SOM) neural net-
works [22] and support vector machine (SVM) classifiers [23],
[24]. The proposed technique exploits the cluster assumption
to find and select the most informative samples among those
selected by applying both uncertainty and diversity criteria
at each iteration of the active learning process. The clus-
ter assumption is equivalent to the low-density separation
assumption which states that the decision boundary among
classes should lie on a low-density region of the feature space.

According to this assumption, one can say that two points in
the feature space are likely to have the same class label if there
is a path connecting them passing through high-density regions
only [25]. In our active learning method, first, a SOM network
is trained in an unsupervised way with the available unlabeled
patterns or with a sub-sampled set of unlabeled patterns for
limiting the learning time. After training, we compute the aver-
age distance of each neuron in the output layer to its neighbor
neurons using their corresponding weight vectors. Under the
assumption that SOM preserves the topological property of the
input patterns, the neurons mapping the samples that belong
to low-density regions of the input space have larger average
neighbor distance than the neurons mapping the samples that
belong to high-density regions. In other words, according to
the cluster assumption we can say that neurons which have
higher average neighbor distance have a high probability to
map boundary samples. At convergence of the SOM process-
ing we start the iterative active learning procedure. Initially we
train the SVM classifier with the available labeled samples.
After training, we compute the confidence of correct classifi-
cation of each unlabeled sample with the help of the trained
SVM. Then the h1 unlabeled samples that both have the lowest
classification confidence and are mapped into distinct neurons
of the SOM are selected. This allows us to select the h1 most
uncertain samples which are diverse from each other. Then a
batch of h (h < h1) samples from the selected h1 samples
are chosen that correspond to the SOM mapping neurons
having the highest average neighbor distance. This allows us to
incorporate the cluster assumption property to select the most
informative samples for labeling. Thus, the proposed technique
can easily use the cluster assumption and a diversity criterion
in the sample selection process by exploiting the properties
of the SOM neural network. The main advantage of using
the cluster assumption is that in this way we can locate with
higher precision relevant training samples close to the decision
boundary between classes also when biased initial training
samples are considered.

The proposed method is compared with several other active
learning methods existing in the remote sensing literature by
using one toy data set, a color image, as well as two real
remote sensing data sets made up of a multispectral image
and a hyperspectral image. Experimental results show the
effectiveness of the proposed method.

The rest of this paper is organized as follows. The proposed
SOM-SVM based active learning approach is presented in
Section II. Section III provides the description of the four data
sets used for experiments. Section IV presents experimental
results obtained on the considered data sets. Finally, Section
V draws the conclusion of this work.

II. PROPOSED METHOD

We present a novel batch mode active learning technique
based on SOM neural networks and SVM classifiers for
solving multiclass classification problems. Before presenting
the proposed technique, we briefly recall the main concepts
associated with both SOM neural networks and SVM classi-
fiers. The reader is referred to [22] and [23], [26] for more
details on the SOM and the SVM approaches, respectively.
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A. Self-organizing map neural network

The self-organizing map is a popular artificial neural net-
work algorithm based on unsupervised learning. The SOM is
able to project high-dimensional data into a lower dimension
that can be useful for analyzing the patterns in the input space
[27], [28]. Fig. 1 presents the architecture of a SOM neural
network. The network consists of an input and an output layer.
The number of neurons in the input layer is equal to the
dimension of the feature input vector. The output layer consists
in a regular 2D grid of neurons called map. The neurons of the
map can be arranged either on a rectangular or a hexagonal
lattice, where each neuron in the map is connected with all
the neurons in the input layer by using a weight vector.

Fig. 1. Architecture of a SOM neural network.

The SOM algorithm is based on the competitive learning
concept. When a training sample (which does not include
information on the class label) is fed in input to the network,
a metric distance is computed for all weight vectors. The
neuron of the map with the weight vector most similar to
the input pattern is called the best matching unit (BMU).
The weights of the BMU and its neighboring neurons are
then adjusted towards the input pattern. The magnitude of
the change decreases with time and with distance from the
BMU. After training, the map produced by the SOM algorithm
preserves the topological property of the input patterns, i.e.,
weight vectors which are neighbors in the input space are
mapped onto neighboring neurons of the map.

In greater detail, let X ∈ ℜd and W ∈ ℜd be the set of input
and weight vectors in a d-dimensional space, respectively. Let
each neuron k of the map have an associated weight vector
wk ∈ W . The initial values for the weight vectors can be
set randomly. The SOM algorithm either follows sequential or
batch training to update the weight vectors [22].

Sequential training: In this method the weight vectors are
updated immediately upon the presentation of an input pattern.
Thus the sequential SOM algorithm can be formalized as
follows:

Batch training: In this method the whole training set is
analyzed at once and only after this analysis the map is updated
considering the effects of all the samples. The new weight

Algorithm 1 Sequential SOM training
1: Randomly select a sample xi from the training set X .
2: Find the corresponding BMU, denoted as ci, as follows:

ci = arg min
k=1,2,...,|W |

{∥ xi − wk(t) ∥2}. (1)

3: Update the weight vector of neuron k(k = 1, 2, ..., |W |)
as follows:

wk(t+ 1) = wk(t) + η(t)hcik(t)[xi − wk(t)] (2)

where t denotes time, 0 < η(t) < 1 is the learning
rate parameter, and the scalar multiplier hcik(t) is the
neighborhood kernel around the winner neuron ci.

4: Repeat from step 1 for all training patterns xi(i =
1, 2, ..., |X|), completing one epoch.

5: Decrease the value of neighborhood kernel and learning
rate.

6: Repeat from step 1 until convergence criterion is met.

vectors are computed as follows:

wk(t+ 1) =

∑|X|
i=1 hcik(t)xi∑|X|
i=1 hcik(t)

(3)

The batch SOM algorithm can be formalized as follows:

Algorithm 2 Batch SOM training
1: Find the BMU for an input vector xi using (1).
2: Accumulate numerator and denominator of (3) for all

neurons.
3: Repeat from step 1 for all training patterns xi(i =

1, 2, ..., |X|), completing one epoch.
4: Update neuron weights with (3).
5: Decrease the value of neighborhood kernel.
6: Repeat from step 1 until convergence criterion is met.

The learning rate factor is not present in the batch method
which is faster than the sequential training. The training
process of both SOM algorithms can be decomposed into
two phases: an ordering phase followed by a convergence
phase. In the ordering phase, the learning rate parameter
and neighborhood function begin with large values and then
shrink slowly with time (epoch). In the convergence phase,
the learning rate parameter maintains small values and the
neighborhood function contains only nearest neighbors of the
BMU.

B. Support vector machine classifier

SVM is a supervised binary classifier, whose goal is to
divide the d-dimensional input feature space into two sub-
spaces (one for each class) using a separating hyperplane.
An important feature of SVM is related to the possibility to
project the original data into a higher dimensional feature
space via a kernel function K(., .), that implicitly models
the classification problem into a higher dimensional space
where linear separation between classes can be approximated.
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Let us assume that a training set consists of N labeled
samples (xi, yi)

N
i=1, where xi ∈ ℜd are the training samples

and yi ∈ {+1,−1} are the associated labels (which model
classes ω1 and ω2). The training phase of the classifier can
be formulated as an optimization problem, which by using
the Lagrange optimization theory, leads to the following dual
representation:

max
α

{∑N
i=1 αi − 1

2

∑N
i=1

∑N
j=1 yiyjαiαjK(xi, xj)

}
∑N

i=1 yiαi = 0

0 ≤ αi ≤ C

i = 1, 2, ..., N (4)

where αi are Lagrangian multipliers, and C is a regulariza-
tion parameter that allows one to control the penalty assigned
to errors. The decision function f(x) is defined as:

f(x) =
∑

xi∈SV

αiyiK(xi, x) + b (5)

where SV represents the set of support vectors. The training
pattern xi is a support vector if the corresponding αi has
a nonzero value. For a given test sample x, the sign of the
discriminant function f(x) defined in (5) is used to predict its
class label.

In order to address multiclass problems here, we adopt
the one-against-all (OAA) strategy, which involves a parallel
architecture made up of n binary SVMs, one for each infor-
mation class. Each SVM solves a two-class problem defined
by one information class against all the others [29].

C. Proposed SOM-SVM based active learning method

The proposed method first selects the h1 most uncertain and
diverse samples by exploiting the SVM classifier and the SOM
neural network. Then, by exploiting the topological property of
the SOM, it incorporates the cluster assumption in the process
to choose the h (1 < h < h1) most informative samples from
the h1 for labeling. Fig. 2 shows the complete block scheme
of the proposed method.

The proposed technique consists of two main steps. In the
first step, a SOM network is trained in an unsupervised way in
order to identify the available important samples that belong to
low-density regions of the feature space. This is accomplished
by updating the weight vector associated to each neuron in the
map so that when the network achieves convergence the weight
vectors describe a mapping from the higher dimensional input
feature space to a lower dimensional output/map space. In our
method, at the convergence of the training phase we compute
the average neighbor distance of each neuron of the map to
its neighboring neurons by using their corresponding weight
vectors. The average neighbor distance of neuron k, denoted
as wk, is computed as follows:

wk =
1

|Nr
k |

∑
i∈Nr

k

∥ wk − wi ∥2 (6)

where Nr
k represents the set of neurons in the map that are

in the rth order neighbor system of the neuron k. Under the

assumption that SOM preserves the topological property of
the input space (see the end of this section for a discussion
on this assumption), we can use the set of obtained average
neighbor distance measures to identify samples that belong to
low-density regions of the feature space. These samples are
associated with the neurons that have larger average distance
values. Accordingly we can state that due to the cluster
assumption, the neurons that have higher average neighbor
distance have a higher probability to map boundary samples
than the neurons having lower average neighbor distance.
This information is then exploited in the second step of the
proposed method. It is worth noting that SOM is run only once
on all (or a properly sub-sampled set) of the input samples
(i.e., the pixels of the considered images). This is done before
starting the iterative active learning process.

The second step of the proposed technique is aimed to select
the most informative samples at each iteration of the active
learning process to solve a n (n > 1) class classification
problem. To this end, initially we train with the available
labeled samples n SVM binary classifiers (each one associated
with a separate class) organized in a OAA architecture. After
training, for each unlabeled sample x in the unlabeled pool
U , n functional distances fi(x), i = 1, 2, ..., n are obtained
which correspond to the n decision hyperplanes of the binary
SVM classifiers included in the OAA architecture. Then the
confidence value s(x) associated with the classification reli-
ability of each unlabeled sample x ∈ U can be computed.
It is worth noting that the confidence can be related to
the uncertainty associated with the considered sample. Two
alternative strategies can be used for computing the confidence
[15]. The first strategy is based on the widely used marginal
sampling (MS) technique [12], where the smallest distance
among the n decision hyperplanes is considered to compute
the confidence value s(x) of each unlabeled sample x ∈ U ,
i.e.,

s(x) = min
i=1,2,...,n

{|fi(x)|} (7)

The second strategy is based on the multiclass label uncer-
tainty (MCLU) technique [30]. In this technique the difference
between the first and second largest distance values to the
hyperplanes are considered to compute the confidence value
s(x) of each unlabeled sample x ∈ U as follows:

s(x) = fr1(x)− fr2(x) (8)

where

r1 = arg max
i=1,2,...,n

{|fi(x)|}, r2 = arg max
i=1,2,...,n;i ̸=r1

{|fi(x)|}.

With both strategies the uncertainty of each unlabel sample
x ∈ U is measured according to its corresponding s(x) value.
The samples that have lower confidence values are considered
as the most uncertain since they have the lowest correct
classification confidence.

After computing the uncertainty of each unlabeled sample
by using (7) or (8), we select the h1 samples from U which
have the lowest confidence values (this imposes the uncertainty
criterion) and are mapped into distinct neurons of the SOM
according to the results obtained in the first step (this imposes
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Fig. 2. Flowchart of the proposed method.

the diversity criterion). This allows us to select the h1 most
uncertain samples which are diverse from each other because
similar input patterns are mapped into the same neuron. Then a
batch of h (1 < h < h1) samples from the selected h1 samples
are chosen that correspond to the SOM mapping neurons
having the highest average neighbor distances computed in (6).
This allows us to incorporate the cluster assumption property
in the selection of the h most informative samples for labeling.
In other words we select samples that are both uncertain,
diverse and located in low density regions of the feature space
(i.e., under the cluster assumption on the boundary of decision
regions). This can be particularly useful when biased initial
training sets that do not model the real distribution of data
close to the decision boundary are available. The process is
iterated until a stop criterion (which can be related to the
stability of accuracy or to its value) is satisfied. Algorithm
3 provides the details of the proposed technique.

It is worth noting that the proposed method incorporates the
cluster assumption in the selection process by assuming that
the SOM neural network is able to preserve the topological
property of the input data. Like any other nonlinear dimen-
sionality reduction technique, a SOM neural network does
not guarantee the preservation of the topology in all kinds
of problems, especially when very high dimensional feature
spaces are considered [31], [32]. If for a given data set SOM
fails to preserve the topology, the proposed technique may not
be able to incorporate the cluster assumption criterion properly.
In this case, the uncertainty and diversity criteria play the main
role to select the most informative samples at each iterations
of the active learning. This results in a possible increase of
the number of iterations required to reach the convergence.

Algorithm 3 Proposed SOM-SVM based active learning
method

1: Train the SOM neural network by using available patterns
(both labeled and unlabeled).

2: Compute the average neighbor distance of each neuron
using (6)

3: repeat
4: Train with the available initial labeled samples n bi-

nary SVM classifiers (each one associated with a specific
informative class) organized in a OAA architecture.

5: Compute the confidence value of each unlabeled sam-
ple by using either (7) or (8).

6: Select the h1 samples from U which have the low-
est confidence (i.e., the lowest certainty) values and are
mapped into distinct neurons of SOM (diversity criterion).

7: Select the h (h < h1) samples from the h1 samples
that correspond to the SOM mapping neurons having the
highest average neighbor distances (exploitation of the
cluster assumption).

8: Assign labels to the h selected samples and include
them into the training set.

9: until the stop criterion is satisfied and the final training
set is obtained.

III. DATA SETS DESCRIPTION

In order to assess the effectiveness of the proposed active
learning technique, four data sets with significantly different
properties were used in the experiment. The first one is a toy
data set which is made up of four linearly separable classes as
shown in Fig. 3. It contains 1000 samples, and only 4 samples
(one from each class) were chosen as initial training samples;
the remaining 996 samples were in the unlabeled pool U.
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Fig. 3. Linearly separable toy data set in a two dimensional feature space.

The second data set is a simple color image as shown in Fig.
4. The image contains five different color balloons. It is used
for assessing the performance of the proposed technique on
a simple problem. First we manually generated some labeled
samples from the image. Then these samples were randomly
split into a training set T of 1553 samples and a test set TS
of 1617 samples. Initially, only 10 samples (two from each
class) were randomly selected from T as initial training set L,
and the rest were stored in the unlabeled pool U, as shown in
Table I.

Fig. 4. Color image used in the second experiment.

TABLE I
NUMBER OF SAMPLES FOR EACH CLASS IN THE INITIAL TRAINING

SET(L), IN THE TEST SET(TS) AND IN THE UNLABELED POOL(U) FOR THE
COLOR IMAGE DATA SET

Classes L TS U
Green 2 298 306
Blue 2 308 310

Yellow 2 298 325
Pink 2 319 336

Sky blue 2 320 340
Total 10 1543 1617

The third data set shown in Fig. 5 is a Quickbird multispec-
tral remote sensing image acquired on the city of Pavia (north-
ern Italy) on June, 2002. It consists of four pan-sharpened

Fig. 5. Multispectral image used in our experiments.

(merging high-resolution panchromatic and lower resolution
multispectral channels) bands and a panchromatic channel
with a spatial resolution of 0.7m. The size of the full image is
1024× 1024 pixels and there are eight classes. The reader is
referred to [33] for more details on this data set. The available
labeled samples were collected by photointerpretation. These
samples were randomly split into a training set T of 5707
samples and a test set TS of 4502 samples. In our experiments,
first only few samples were randomly selected from T as initial
training set L, and the rest were stored in the unlabeled pool U .
Table II shows the land-cover classes and the related number
of samples used in the experiments.

TABLE II
NUMBER OF SAMPLES FOR EACH CLASS IN THE INITIAL TRAINING

SET(L), IN THE TEST SET(TS) AND IN THE UNLABELED POOL(U) FOR THE
MULTISPECTRAL DATA SET

Classes L TS U
Water 2 215 178

Tree areas 4 391 344
Grass areas 4 321 319

Road 12 613 975
Shadow 9 666 709

Red building 29 1620 2267
Gray building 7 427 590
White building 3 249 255

Total 70 4502 5637

The fourth data set shown in Fig. 6 is a hyperspectral image
acquired on the Kennedy Space Center (KSC), Merritt Island,
Florida, USA, on March 23, 1996. This image consists of
512 x 614 pixels and 224 bands with a spatial resolution of
18 m. The number of bands is initially reduced to 176 by
removing water absorption and low signal-to-noise bands. The
available labeled data were collected using land-cover maps
derived from color infrared photography provided by KSC and
Landsat thematic mapper imagery. The reader is referred to
[34] for more details on this data set. After the elimination
of noisy samples, the labeled samples were randomly split
into a training set T of 5707 samples and a test set TS of
2556 samples. In our experiments, first only few samples were
randomly selected from T as initial training set L, and the rest
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Fig. 6. Hyperspectral image used in our experiments.

were stored in the unlabeled pool U . Table III shows the land-
cover classes and the related number of samples used in the
experiments.

TABLE III
NUMBER OF SAMPLES FOR EACH CLASS IN THE INITIAL TRAINING

SET(L), IN THE TEST SET(TS) AND IN THE UNLABELED POOL(U) FOR THE
HYPERSPECTRAL DATA SET

Classes L TS U
Scrub 15 380 366

Willow swamp 5 120 116
Cabbage palm hammock 5 128 123

Cabbage palm/Oak hammock 5 125 121
Slash pine 3 80 78

Oak/Broadleaaf hammock 5 114 110
Hardwood swamp 2 52 51
Graminoid marsh 9 215 207
Spartina marsh 10 260 250
Cattaial marsh 8 188 181

Salt marsh 8 209 201
Mud flats 9 231 222

Water 18 454 536
Total 102 2556 2463

IV. EXPERIMENTAL RESULTS

A. Design of experiments

In our experiments we adopted an OAA architecture of
SVM classifiers. Each SVM was implemented with radial basis
function (RBF) kernels. The SVM parameters {σ,C} (the
spread of the RBF kernel and the regularization parameter)
for all the data sets were derived by applying a grid search
according to a five-fold cross-validation technique. The cross-
validation procedure aimed at selecting the initial parameter
values for the SVM. For simplicity, these values were not
changed during the active learning iterations. In all our ex-
periments we used a number of neurons in the output layer
of SOM sufficiently larger than the number of classes of the
input patterns so that the samples that belong to a specific
class are mapped onto a group of neighboring neurons.

The proposed technique was implemented by considering
both the MS and the MCLU uncertainty criteria as described
in (7) and (8), respectively. Depending on the use of the MS

and the MCLU uncertainty criteria, we refer to MS-Proposed
and MCLU-Proposed technique. To assess the effectiveness
of the proposed method we compared it with other effective
methods recently proposed in the literature and with more
traditional techniques: i) the cluster assumption with histogram
thresholding (CAHT) [8]; ii) the multiclass label uncertainty
with enhanced cluster based diversity (MCLU-ECBD) [15];
iii) the marginal sampling by closest support vector (MS-
cSV) [12]; iv) the entropy query-by-bagging (EQB) [12]; and
v) the random sampling (RS). The CAHT approach, first
detects a threshold for each binary SVM classifier, which
identifies the low density regions of the SVMs output space.
The m (m > h) most uncertain samples from U are selected
considering the patterns having the output scores closest to
one of the selected thresholds. Then, by applying the kernel
k-means clustering algorithm, the selected m samples are
divided into h different clusters and the most uncertain sam-
ples from each cluster are chosen for labeling. The MCLU-
ECBD first selects the m most uncertain samples from U
that have minimum confidence values computed using (8).
Then, by applying the kernel k-means clustering algorithm,
the selected m most uncertain samples are divided into h
different clusters and the sample from each cluster that is
closest to the SVM decision hyperplane is chosen for labeling.
The MS-cSV approach selects m most uncertain samples from
U which have minimum confidence values computed using
(7). Then, the h samples from the selected m patterns which
do not share the same closest support vector are chosen for
labeling at each iteration of the active learning process. Note
that in the present experiments the value of m is fixed to
m = 3h for a fair comparison among the different techniques.
The EQB selects the h most uncertain samples according to the
maximum disagreement between a committee of classifiers.
The committee is obtained by bagging: first different training
sets are drawn with replacement from the original training
data. Then, each training set is used to train the OAA SVM to
predict the different labels for each unlabeled sample. Finally,
the entropy of the distribution of the different labels associated
to each sample is calculated to evaluate the disagreement
among the classifiers on the unlabeled samples. In the RS
approach, at each iteration a batch of h samples are randomly
selected from the unlabeled pool U and included into the
training set.

In the present experiment we used the batch algorithm to
train the SOM neural network. This algorithm is implemented
using Matlab (R2009b) functions. The multiclass SVM with
the OAA architecture has been manually implemented by
using the LIBSVM library (for Matlab interface) [35]. All the
active learning algorithms presented in this paper have been
implemented in Matlab.

B. Results: Toy data set (Experiment 1)

In order to understand the potential of the proposed tech-
nique and to illustrate its behavior, in the first experiment we
compared the different active learning methods by using the
simple toy data set described in Section III. For this data set,
we constructed a SOM neural network with 6 × 6 neurons
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arranged in a hexagonal lattice on its output layer (map).
The network was trained with all the available input patterns
x ∈ (U ∪ L). The network spent 500 epochs in the ordering
phase and 500 epochs in the convergence phase. The initial
value of the neighborhood function was set to 3, which was
gradually decreased and reached 1 at the end of 500 epochs.
Figs. 7 (a) and (b) show the distance between neighboring
neurons in the SOM map and the position of the weight vectors
in the input space, respectively, at the end of the SOM network
training. From Fig. 7 (a) one can see that a group of light
segments appear in the lower-left, lower-right, upper-left and
upper-right regions, bounded by some darker segments. This
grouping indicates that the network clustered the toy data into
four groups, one for each class. These four groups can also
be seen in the weight vector positions graph in Fig. 7 (b). The
four light segments of Fig. 7 (a) contain four groups of tightly
clustered data points where the two neighbor neurons in the
same segment have the smaller distance, as indicated by lighter
colors. Whereas the distances between two neighbor neurons
in different segments are larger, as indicated by darker colors.
This distance is also shown in the weight vector positions
figure. From these two figures one can see that the patterns
which are in the border regions of the input space are mapped
onto the neurons which have larger average neighbor distances.

In this experiment, initially only 4 labeled samples (1 from
each class) were chosen for the training and 4 additional
samples were selected at each iteration of active learning. The
process was iterated 5 times to have 24 samples in the training
set at the end. To reduce the random effect on the results,
the active learning process was repeated for 10 trials with
different initial labeled samples. For a quantitative analysis,
Table IV reports the classification accuracy obtained by the
MS-Proposed, the MCLU-Proposed, the CAHT, the MCLU-
ECBD, the MS-cSV, the EQB and the RS methods at different
iterations. From the table one can see that the proposed
technique obtained 100% classification accuracy after the 1st
iteration (i.e., by labeling only 8 additional samples), while the
CAHT technique needed at least 2 iterations (i.e., 12 samples)
and the other most effective techniques (i.e., the MCLU-
ECBD, and the MS-cSV) needed at least 3 iterations (i.e.,
16 samples) to achieve the same accuracy. This confirms that,
as the proposed technique selects the informative sample from
low-density regions (border regions) of the feature space by
exploiting the topological properties of SOM, it can converge
fast also when the available initial training samples are poor
(i.e. they are biased with respect to the representation of
the structure of the classification problem). Although this is
a simple example, starting from a suboptimal data set, the
proposed technique, thanks to the SOM that implement the
diversity criterion and the cluster assumption for selecting the
informative samples, reaches the convergence decreasing of
33% the number of required new labeled samples with respect
to the best literature methods used in our comparison.

C. Results: Color image data set (Experiment 2)

The second experiment was carried out to compare the
performance of the proposed technique with those of other

(a)

(b)

Fig. 7. SOM at the convergence of the network training phase. (a) Dis-
tances between neighbor neurons arranged in the hexagonal lattice. The
blue hexagons represent the neurons and the red lines connect neighboring
neurons. The colors in the regions containing the red lines indicate the
distances between neurons. The darker colors represent larger distances and
the lighter colors represent smaller distances. (b) Positions of the weight
vectors associated with the neurons in the lattice (toy data set).

TABLE IV
OVERALL CLASSIFICATION ACCURACY (OA) PRODUCED BY THE

DIFFERENT TECHNIQUES AT DIFFERENT ITERATIONS (TOY DATA SET)

Itr Training OA
No Samples MS- MCLU- CAHT MCLU- MS-cSV EQB RS

Proposed Proposed ECBD
0 4 98.15 98.15 98.15 98.15 98.15 98.15 98.15
1 8 98.56 98.48 98.68 98.37 99.26 97.69 98.91
2 12 100 100 99.79 99.66 99.72 98.17 99.23
3 16 100 100 100 99.95 99.99 98.94 99.24
4 20 100 100 100 100 100 99.87 99.14
5 24 100 100 100 100 100 100 99.14

techniques by using the color image data sets described in
Section III. For this data set, we constructed a SOM neural
network with 6 × 6 neurons arranged in a hexagonal lattice
on its output layer (map). The network was trained with all
the available input patterns. The network spent 500 epochs in
the ordering phase and 500 epochs in the convergence phase.
The initial value of the neighborhood function was set to
3, which was gradually decreased and reached 1 at the end
of 500 epochs. In this experiment, initially only 10 labeled
samples (2 from each class) were chosen for the training
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and 5 additional samples were selected at each iteration of
active learning. The process was iterated 5 times to have
35 samples in the training set at the end. To reduce the
random effect on the results, the active learning process was
repeated for 10 trials with different initial labeled samples.
For a quantitative analysis, Table V reports the classification
accuracy obtained by the MS-Proposed, the MCLU-Proposed,
the CAHT, the MCLU-ECBD, the MS-cSV, the EQB and the
RS methods at different iterations. From the table one can
see that the proposed technique obtained 100% classification
accuracy after the 1st iteration (i.e., by labeling only 10
additional samples), while the other most effective techniques
(i.e., the CAHT, the MCLU-ECBD, and the MS-cSV) needed
at least 3 iterations (i.e., 20 samples) to achieve the same
accuracy. This again confirms that, the proposed technique
converge fast also when the available initial training samples
are biased.

TABLE V
OVERALL CLASSIFICATION ACCURACY (OA) PRODUCED BY THE

DIFFERENT TECHNIQUES AT DIFFERENT ITERATIONS (COLOR DATA SET)

Itr Training OA
No Samples MS- MCLU- CAHT MCLU- MS-cSV EQB RS

Proposed Proposed ECBD
0 10 95.28 95.28 95.28 95.28 95.28 95.28 95.28
1 15 99.20 98.28 99.58 99.57 99.17 96.69 96.63
2 20 100 100 99.80 99.92 99.68 99.09 98.64
3 25 100 100 99.95 99.68 99.91 99.09 98.54
4 30 100 100 100 100 100 99.45 98.84
5 35 100 100 100 100 100 100 99.33

D. Results: Multispectral data set (Experiment 3)

The third experiment was carried out to compare the per-
formance of the proposed technique with other techniques by
using the multispectral data set described in Section III. For
this data set, we constructed the SOM neural network with
25× 25 neurons arranged in a hexagonal lattice on its output
layer (map). The network was trained with all the available
input patterns. The network spent 4000 epochs in the ordering
phase and 16000 epochs in the convergence phase. The initial
value of the neighborhood function was set to 20, which was
gradually decreased and reached 1 at the end of 4000 epochs.

Initially only 70 labeled samples were included in the
training set to train the SVM and 20 samples were selected
at each iteration of active learning. The whole process was
iterated 19 times resulting in 450 samples in the training set
at convergence. To reduce the random effect on the results, the
active learning process was repeated for 10 trials with different
initial labeled samples.

Fig. 8 shows the average overall classification accuracies
provided by different methods versus the number of samples
included in the training set at different iterations for the
multispectral data set. From this figure, one can see that the
proposed active learning technique based on either MS or
MCLU uncertainty criteria outperformed all other techniques.
The proposed technique produced better results also compared
to the CAHT, which is another cluster assumption based
method. This confirms that the proposed technique properly
exploits the diversity criterion and cluster assumption for

selecting informative samples. For a quantitative analysis,
Tables VI reports the average class accuracies (%), the mean
and the standard deviation of the overall accuracy, as well
as the average kappa accuracies obtained at convergence on
10 runs for the multispectral data set. From the table, one
can see that the proposed technique based on the MS and
MCLU criteria resulted in an overall accuracy of 87.37%
and 87.40%, respectively. Among the other techniques, the
highest overall accuracy (86.53%) was produced by the CAHT
technique. By analyzing the class wise accuracy, the proposed
technique produced highest accuracy for the larger number of
classes with respect to other techniques. Moreover the standard
deviation of the proposed approach is smaller than those of
the other techniques. This means that, as expected from the
exploitation of the cluster assumption, the proposed method is
more robust to the quality of initial training samples available.
This confirms the effectiveness of the proposed technique for
the multispectral data set.

Fig. 8. Average classification accuracy over ten runs versus the number
of training samples provided by the MS-Proposed, the MCLU-Proposed,
the CAHT, the MCLU-ECBD, the MS-cSV, the EQB, and the RS methods
(multispectral data set).

TABLE VI
CLASS ACCURACIES (%), AVERAGE OVERALL CLASSIFICATION

ACCURACY (OA) AND ITS STANDARD DEVIATION (std), AND AVERAGE
KAPPA (kappa) ACCURACY OBTAINED ON TEN RUNS (MULTISPECTRAL

DATA SET).

Methods MS- MCLU- CAHT MCLU- MS-cSV EQB RS
Proposed Proposed ECBD

Labeled samples 450 450 450 450 450 450 450
water 83.07 83.86 79.26 76.60 77.81 76.70 83.77

tree areas 83.22 83.60 83.48 83.02 83.53 83.76 79.85
grass areas 82.80 82.55 82.74 82.68 82.90 81.62 81.59

road 81.96 82.20 83.47 83.69 82.76 82.50 83.16
shadow 87.99 87.82 84.65 84.65 84.38 83.89 79.77

red building 96.81 96.48 96.73 96.46 96.53 96.70 95.56
gray building 67.56 68.67 65.39 66.67 65.19 68.08 57.07
white building 87.75 87.43 84.82 85.22 86.71 84.70 85.62

OA 87.37 87.40 86.53 86.43 86.36 86.34 84.38
std 0.23 0.21 0.36 0.29 0.51 0.37 0.61

kappa 0.843 0.843 0.832 0.831 0.830 0.830 0.806

E. Results: Hyperspectral data set (Experiment 4)
The fourth experiment was carried out by using the hy-

perspectral data set described in Section III. For this data
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set, the architecture of the SOM neural network and its
learning parameters are defined exactly same as described in
the experiment 3.

Initially only 102 labeled samples were included in the
training set to train the SVM and 20 samples were selected
at each iteration of active learning. The whole process was
iterated 20 times resulting in 502 samples in the training set
at convergence.

Fig. 9 shows the average overall classification accuracies
provided by different methods versus the number of samples
included in the training set at different iterations for the
hyperspectral data set. From this figure, one can see that
the MCLU-Proposed approach converged faster (in terms of
number of labeled samples) and produced better results than
the all other techniques. For a quantitative analysis, Tables
VII reports the average class accuracies, mean and standard
deviation of the overall accuracies, as well as the average
kappa accuracies obtained at convergence on 10 runs for the
hyperspectral data set. From the table, one can see that the
MCUL-Proposed technique resulted in an overall classification
accuracy of 95.18%. Among the other techniques, the best
overall accuracy (94.91%) was produced by the MCLU-ECBD
technique. An analysis of the class wise accuracies points out
that the proposed technique yield the highest accuracy for a
larger number of classes than the other methods. Moreover,
also in this case the standard deviation of the MCLU-Proposed
approach is smaller than those of the other techniques, thus
pointing out its high robustness to initial training conditions.
The MS-Proposed technique produced similar results as pro-
duced by the CAHT and the MS-cSV techniques. These
methods failed to find optimal solution for the highly mixed
class ”cabbage palm/hammock”, which is a critical class
because highly overlapped in the feature space to the others.
This is because of the uncertainty criterion (MS) used by these
techniques is not able to select proper samples from that class.

Fig. 9. Average classification accuracy over ten runs versus the number
of training samples provided by the MS-Proposed, the MCLU-Proposed,
the CAHT, the MCLU-ECBD, the MS-cSV, the EQB, and the RS methods
(hyperspectral data set).

TABLE VII
CLASS ACCURACIES (%), AVERAGE OVERALL CLASSIFICATION

ACCURACY (OA) AND ITS STANDARD DEVIATION (std), AND AVERAGE
KAPPA (kappa) ACCURACY OBTAINED ON TEN RUNS (HYPERSPECTRAL

DATA SET).

Methods MS- MCLU- CAHT MCLU- MS-cSV EQB RS
Proposed Proposed ECBD

Labeled samples 502 502 502 502 502 502 502
scrup 97.37 96.97 97.39 96.97 97.24 96.71 95.45

willow swa. 94.00 95.25 93.17 92.16 92.33 90.58 89.50
cabb. pl. ham. 92.97 90.86 92.50 93.67 93.67 94.14 90.47

cabb. pl./oak ham. 56.40 77.60 62.64 72.56 58.00 70.40 52.88
slash pn. 75.25 78.13 68.62 77.62 73.12 78.62 69.37

oak/broad. ham. 79.39 78.60 74.38 78.68 77.81 78.86 63.33
hardwood swa. 87.31 88.08 83.84 88.46 88.65 92.31 82.88
graminoid mr. 93.95 94.42 93.53 94.47 93.44 94.47 91.81
spartina mr. 99.54 99.50 99.34 99.35 99.42 99.50 98.77
cattaial mr. 99.79 99.95 99.68 99.89 99.41 99.95 98.30

salt mr. 100 99.95 99.90 100 99.71 99.95 97.85
mud flats 97.92 98.00 97.53 98.05 97.14 97.97 92.59

water 99.87 99.98 99.96 99.93 99.89 99.89 99.93
OA 94.11 95.18 93.76 94.91 93.84 94.83 91.31
std 0.41 0.18 0.25 0.23 0.27 0.31 .56

kappa 0.934 0.946 0.930 0.943 0.931 0.942 0.903

F. Results: Sensitivity analysis (Experiment 5)

In the fifth experiment, we analyzed the performance of the
proposed technique by varying the value of h1, i.e., the number
of most uncertain and diverse samples chosen before applying
the cluster assumption to select the h informative samples to
be labeled. Figs. 10(a) and (b) show the classification results
obtained by the MCLU-Proposed technique by considering
different values of h1 for the multispectral and the hyperspec-
tral data sets, respectively. From these figures one can see
that, when the proposed technique selected h samples without
involving the cluster assumption (i.e., h1 = h), it achieved
similar results as those produced by the best uncertainty and
diversity based active learning approaches. On the contrary,
when the proposed technique exploited the cluster assumption
in the selection of the h informative samples from the selected
h1 most uncertain and diverse samples, it converged with
increased accuracies for both the considered data sets. This
confirms the importance in using the information on the low
density regions of the feature space in the query function.
From the figures one can also see that when the value of h1

increases, the proposed technique needs a higher number of
labeled samples for converging, due to the inclusion of some
samples which are not uncertain enough. In our experiment,
we found that h1 = 2h is a suitable choice for the sample
selection process of the proposed technique. Note that the
same analysis is also valid for the MS-Proposed approach.

Finally, we carried out different experiments for assessing
the stability of the proposed technique both by increasing the
number of neurons on the map and by varying the initial value
of the neighborhood function for the SOM neural network.
The results of all these experiments pointed out the almost
insensitivity of the proposed algorithm to these parameters.

V. DISCUSSION AND CONCLUSION

In this paper, a novel batch mode active learning technique
for solving remote sensing image classification problems has
been proposed. The query function of the proposed technique
is modeled by incorporating uncertainty, diversity and cluster
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(a)

(b)

Fig. 10. Average classification accuracy provided by the MCLU-Proposed
technique with different value of h1 for (a) the multispectral and (b) the
hyperspectral data sets.

assumption criteria. The uncertainty criterion is incorporated
by exploiting the properties of SVM classifiers according to
either the marginal sampling or the multiclass label uncertainty
techniques. The diversity and cluster assumption criteria are
incorporated by exploiting the properties of SOM neural
networks. This is done by selecting uncertain samples that
are mapped to neurons that both are different and have
largest average neighbor distance. As the proposed technique
selects informative samples from low-density regions of the
feature space by exploiting the topological properties of SOM
neural network, it has fast converges also when the available
initial training samples are poor (i.e., the training set is bias).
To assess the effectiveness of the proposed technique we
compared it with others batch mode active learning techniques
existing in the remote sensing literature using a toy data set
and color, multispectral, and hyperspectral images. The results
of this comparison pointed out that the proposed method
always provided higher accuracies with improved stability
with respect to those achieved by some of the most effective
active learning techniques presented in the literature.

The computational time taken by the proposed technique
for selecting informative samples at each iteration of the
active learning process is similar to the one of the simple
MS based approach. However, the proposed method requires

some additional time to train the SOM network before the
iterative active learning is started. This time can be reduced
by regularly sub-sampling the pixels of the considered image
to be used as input to SOM network.

As future developments of this work, we plan to extend
the experimental comparison to other prototype based active
learning methods existing in the literature. Moreover, we plan
to incorporate the spatial information to the present active
learning framework for improving the classification results
[36].
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