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Abstract

A successful method for removing artifacts from electroencephalogram (EEG) recordings is Independent Component

Analysis (ICA), but its implementation remains largely user-dependent. Here, we propose a completely automatic

algorithm (ADJUST) that identifies artifacted independent components by combining stereotyped artifact-specific

spatial and temporal features. Features were optimized to capture blinks, eye movements, and generic discontinuities

on a feature selection dataset. Validation on a totally different EEG dataset shows that (1) ADJUST’s classification of

independent components largely matches a manual one by experts (agreement on 95.2% of the data variance), and (2)

Removal of the artifacted components detected by ADJUST leads to neat reconstruction of visual and auditory event-

related potentials from heavily artifacted data. These results demonstrate that ADJUSTprovides a fast, efficient, and

automatic way to use ICA for artifact removal.

Descriptors: Electroencephalography, Independent component analysis, EEG artifacts, EEG artefacts, Event-related

potentials, Ongoing brain activity, Automatic classification, Thresholding

Due to its excellent temporal resolution, electroencephalography

(EEG) is a widely used experimental technique to investigate

human brain function by tracking the spatio-temporal neural

dynamics correlated to experimentally manipulated events

(Niedermeyer & da Silva, 2005). However, a major problem

common to all EEG studies is that the activity due to artifacts has

typically much higher amplitude than the one generated by neu-

ral sources. Artifacts may have a physiological origin as eye

movements or muscle contractions, or non-biological causes as

electrode high-impedance or electric devices interference (Croft

& Barry, 2000).

In a typical event-related potential (ERP) paradigm, data are

divided in epochs time-locked to the stimulus, and artifacts are

removed by discarding epochs in which the EEG activity exceeds

some predefined thresholds either in specific electrodes (e.g.,

electrooculogram (EOG) signals for ocular movements) or in all

electrodes throughout the scalp. Artifact-free ERPs are then

obtained by averaging the data over the remaining epochs,

thereby increasing the signal-to-noise ratio. However, this pro-

cedure is problematic when only a few epochs are available, or

when artifacts are very frequent, as in studies involving patients

or children. Moreover, it is inapplicable to studies focusing on

slow non-event-locked activity arising from the continuous EEG

(e.g., slow brain oscillations (Vanhatalo, Palva, Holmes, Miller,

Voipio, & Kaila, 2004) or long-range temporal correlations

(Linkenkaer-Hansen, Nikouline, Palva, & Ilmoniemi, 2001)).

Alternative procedures consist of modelling the signals gen-

erated by blinks or ocular movements and removing them from

the data while preserving the remaining activity. Most of these

methods are based on regressing out reference signals, usually

recorded near the eyes, from the EEG signals with a model of

artifact propagation, either in the time domain (Gratton, Coles,

& Donchin, 1983; Kenemans, Molenaar, Verbaten, & Slangen,

1991; Verleger, Gasser, & Mocks, 1982) or in the frequency do-

main (Gasser, Sroka, &Mocks, 1985;Woestenburg, Verbaten, &

Slangen, 1983). However, because EEG and ocular activity mix

bidirectionally (Oster & Stern, 1980; Peters, 1967), regressing out

eye artifacts inevitably involves subtracting relevant neural

signals from each recording as well as ocular activity (Croft &

Barry, 2002; Jung, Makeig, Westerfield, Townsend, Courchesne,
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& Sejnowski, 2000). Moreover, these methods do not work

without reference signals, which are not always present for ocular

movements, and very difficult to obtain for other types of ar-

tifacts (muscular, non-biological).

A recent successful approach to this problem is the use of

independent component analysis (ICA) (Jung, Humphries, Lee,

Makeig, McKeown, Iragui, & Sejnowski, 1998), a statistical tool

that decomposes EEG data in a set of sources with maximally

independent time courses. ICA proved very efficient in separat-

ing activity related to a large number of artifacts from neural

activity by automatically segregating the former in specific

independent components (ICs) (Jung, Makeig, Humphries, Lee,

McKeown, Iragui, & Sejnowski, 2000; Vigário, Särelä, Jousmä-

ki, Hämäläinen, & Oja, 2000). Since the number of sources is

potentiallymuch higher than the number of ICs (Baillet,Mosher,

& Leahy, 2001; Liu,Dale, & Belliveau, 2002), this separationwill

never be perfect (Groppe, Makeig, & Kutas, 2009). However,

after removing non-stereotyped artifacts by an accurate pre-

processing of the data, it is possible to obtain ‘clean’ ICA

decompositions (Onton, Westerfield, Townsend, & Makeig,

2006), such that removing artifacted ICs from the data by sim-

ple subtraction generally leads to marginal distortion of the

remaining EEG data (Joyce, Gorodnitsky, & Kutas, 2004; Jung,

Makeig, Humphries, et al., 2000).

Nevertheless, the practical usability of ICA as a tool for

artifact rejection has an important limitation: the detection of the

ICs associated with artifacts is time-consuming and involves

subjective decision making. Several attempts have been made to

guide IC classification by using a number of measures to dis-

criminate artifacted from non-artifacted ICs either in the time

domain (Barbati, Porcaro, Zappasodi, Rossini, & Tecchio, 2004;

Delorme, Sejnowski, & Makeig, 2007; Mantini, Franciotti,

Romani, & Pizzella, 2008), in the space domain (Li, Ma, Lu, &

Li, 2006; Viola, Thorne, Edmonds, Schneider, Eichele,

& Debener, 2009) or in both (Joyce et al., 2004; Okada, Jung,

& Kobayashi, 2007). A single discriminative measure may

already be very helpful in detecting specific artifacts (blinks

(Li et al., 2006; Okada et al., 2007; Viola et al., 2009), lateral eye

movements (Viola et al., 2009), heartbeat artifacts (Viola et al.,

2009)) or even a wide variety of biological and non-biological

artifacts (Mantini et al., 2008). Multiple measures (Barbati et al.,

2004) and additional information from EOG signals (when

available) (Joyce et al., 2004; Okada et al., 2007) have been used

to improve this detection. However, these algorithms are not

completely automatic since they either require a training set

(Delorme et al., 2007; Li et al., 2006; Mantini et al., 2008), the

arbitrary tuning of the thresholds separating artifacted fromnon-

artifacted components (Barbati et al., 2004; Joyce et al., 2004;

Okada et al., 2007) or an initial topography template (Viola

et al., 2009).

Here, a completely automatic ICA-based algorithm for iden-

tification of artifact-related components in EEG recordings is

proposed. The algorithm is built on the basis of two main

observations: (1) for a large number of artifacts, artifact-related

ICs are characterized by stereotyped features both in their tem-

poral course and spatial distribution; and (2) while single features

may not be accurate enough when discriminating artifact from

non-artifact components, their combination can efficiently and

systematically achieve this goal. The proposed algorithm is called

ADJUST (Automatic EEG artifact Detection based on the Joint

Use of Spatial and Temporal features) because it automatically

‘‘adjusts’’ its parameters to the data to compute the set of

artifact-specific spatial and temporal features needed for IC

classification without any additional information (e.g., EOG

channels).

The first step of ADJUSTconsists of decomposing the EEG

data into ICs. Four artifact classes are then considered: three

classes are related to ocular artifacts (blinks, vertical, and

horizontal eye movements), and a generic artifact class (called

discontinuity) is devoted to capturing anomalous activity

recorded at single electrodes due to high-impedance conditions

or electrical instabilities in the recording device. For each of the

four artifact classes, a detector is implemented by computing a

class-specific set of spatial and temporal features on all ICs. For

each feature, a threshold dividing artifacts from non-artifacts is

estimated on the whole set of ICs in a completely automatic way

by the Expectation-Maximization automatic thresholding meth-

od (Bruzzone & Prieto, 2000). For each detector, ICs are

classified as artifacts if all artifact-specific spatial and temporal

features belonging to that detector exceed their respective thresh-

old value.

ADJUST spatial and temporal features were optimized on a

feature selection EEG dataset. ADJUSTwas then validated on a

validation dataset recorded with a different EEG system in

a different laboratory and with a different paradigm with respect

to the feature selection dataset. Validation consisted of three

steps: first, ADJUST classification accuracy was evaluated by

comparing it to a manual classification performed by three

independent experts (as in Mantini et al., 2008); second, the

advantage of using a combination of features was evaluated;

third, ADJUST performance in recovering clean ERP topogra-

phies from artifacted data was assessed by comparing ERPs

computed after ADJUSTcorrection with the ones obtained from

uncorrected data and the ones obtained after the manual clas-

sification by experts.

Materials and Methods

EEG Data Acquisition and Experimental Design

Two different datasets were used in this study: a feature selection

dataset for selecting and implementing the optimal features for

the artifact detection algorithm, and a validation dataset for test-

ing the accuracy of artifact detection. Relative to the feature

selection dataset, the validation dataset uses data recorded with a

different EEG system in a different laboratory and with a differ-

ent experimental design.

The feature selection dataset consists of EEG recordings

drawn from a study investigating serial and parallel processing

during dual-task performance (details in Sigman & Dehaene,

2008). Twenty-one right-handed native French speakers (10

women; mean age 24 years, ranging from 20 to 33 years) par-

ticipated in the experiment. Data from one subject could not be

used for the current study because of data corruption. All par-

ticipants provided informed written consent to take part in the

experiment, which was approved by the Comité Consultatif pour

la Protection des Personnes dans la Recherche Biomèdicale,

Hôpital de Bicetre (Le Kremlin-Bicetre, France).

In brief, participants were asked to perform two tasks with

variable onset delay. Here, only trials with a delay onset of 1200

ms will be considered (240 trials per subject) since shorter delays

involve complex effects of interference between the two tasks that

were not of interest to the current study. Fourmore subjects were

discarded because of a high rate of artifacts in the selected trials.
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Subjects responded to both tasks with key presses, with the right

hand for the first task (number-comparison) and with the left

hand for the second task (auditory tone discrimination). In the

number-comparison task, a number, which varied randomly

among four different values (28, 37, 53, and 62), was flashed in

the center of the screen for 150 ms, and subjects had to respond

whether the number was larger or smaller than 45. In the au-

ditory task, subjects had to respond whether the tone (lasting 150

ms) was high (880 Hz) or low (440 Hz) frequency. Stimuli were

presented centrally on a black-and-white display on a 17-inch

monitor with a refresh rate of 60 Hz. Subjects sat 1 m from the

screen. Auditory stimulation was provided through headphones.

During the EEG recording, intertrial intervals (ITIs) were jit-

tered in the range from 3 to 4.2 s (mean ITI, 3.6 s). EEG re-

cordings were sampled at 250 Hz with a 128-electrode geodesic

sensor net (EGI, Eugene, OR) referenced to the vertex. Since a

high-density channel distribution is not a requirement for the

current study, for computationally faster ICA calculation the

number of channels was reduced from 128 to 63 while keeping

the channels’ distribution uniform throughout the scalp.

The validation dataset consists of EEG recordings drawn from

a study investigating the neural substrates of semantic represen-

tations with a semantic priming paradigm.1 Ten right-handed

native Italian speakers participated in the experiment (5 women,

mean age 29 years, ranging from 21 to 39 years). On each trial,

subjects were presented with two stimuli: a word presented

through headphones, and aword presented visually, for a total of

360 auditory-visual pairs. The onset delay between the two stim-

uli was 800 ms. During the EEG recording, ITIs were jittered in

the range from 1.7 to 2.7 s (mean ITI, 2.2 s). Trials comprised

equal proportions of semantically related pairs at three different

levels of semantic relatedness. Participants were asked to press a

button whenever they read the name of a city. Catch trials in-

cluding a city name were discarded from further analyses. Visual

stimuli were presented centrally for 160 ms on a black-and-white

display on a 17-inch monitor with a refresh rate of 75 Hz. Sub-

jects sat 1 m from the screen. Auditory stimulation was provided

through headphones. All participants provided informed written

consent to take part in the experiment, which was approved by

the Ethical Committee of the University of Trento (Italy). EEG

was recorded at 64 electrodes (BrainAmp, Munich, Germany)

referenced to the vertex, and sampled at 500 Hz.

EEG Data Preprocessing

Data were processed using the EEGLAB toolbox (Delorme &

Makeig, 2004) and custom-made software running on Matlab

7.5.0 R2007b (MathWorks, Natick,MA) on a CentOS 5.0 Linux

system (Xeon CPU X5365 @3.00 GHz quad core, 32 GB of

RAM, Intel, Santa Clara, CA).

Continuous data from both datasets were visually inspected

to discard paroxysmal portions of artifacted data and high-pass

filtered at 0.5 Hz with a basic FIR filter to remove linear trends

(EEGLAB tutorial, http://sccn.ucsd.edu/eeglab/) and improve

the reliability of ICA decomposition (Groppe et al., 2009).

Epochs of 2.5-s duration were extracted starting 500 ms before

the onset of the first stimulus. To further remove non-stereotyped

artifacts that would significantly affect the quality of the ICA

decomposition (Onton et al., 2006), epochs in which recordings

at any channel exceeded � 150 mVwere rejected (average num-

ber of rejected epochs: 31 � 9 for the feature selection dataset,

36 � 10 for the validation dataset). The remaining epochs were

low-pass filtered at 40 Hz for the feature selection dataset and at

25 Hz for the validation dataset to minimize muscular artifacts

(more frequent in the validation dataset), a class of artifacts that

is not considered in the current study.

ADJUST: Implementation

The three main steps of ADJUSTare illustrated in the scheme of

Figure 1, and described in the following.

Independent Component Analysis

ICA is a well known technique in signal processing literature

that detects and separates the information sources associated

with multidimensional signals (Hyvarinen, Karhunen, & Oja,

2001). ICA can be used for identifying the information sources

mixed in the EEG data (Lee, Girolami, & Sejnowski, 1999). Let

us assume that a set of qmeasured observations of random vari-

ables g(t)5 [g1(t), . . ., gq(t)]
T is given by linear combination of p

independent source signal components s(t)5 [s1(t), . . ., sp(t)]
T,

whose number is at most equal to the number of observations

(p � q); source activity is supposed to be non-Gaussian (Lee et

al., 1999) or non-white in time (Belouchrani, Abed-Meraim,

Cardoso, & Moulines, 1997).

The ICA model can be expressed in the general case as

gðtÞ ¼ AsðtÞ þ nðtÞ ð1Þ

indicating that the observations g(t) can be obtained by mixing

the sources s(t) via a constant [q � p] matrix A called mixing

matrix and adding the vector of white noise n(t) (which is not

considered in some implementations). The mixing matrix is full

column-rank (r(A)5 p).

Given these hypotheses, a solution to the problem of the

identification of the ICA components can be implemented, and
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Figure 1. Architecture of the ADJUST algorithm for a generic detector

with one spatial and one temporal feature. Any supplementary spatial or

temporal feature can be added in parallel to the existing ones within the

same architecture.
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the ICs can be estimated by determining a [p � q] matrix W

called unmixing matrix for which the vector

ŝðtÞ ¼ WgðtÞ ð2Þ
is the best estimate of s(t).

In this work, the INFOMAX algorithm (Bell & Sejnowski,

1995) implementation for ICA included in the EEGLAB toolbox

was used. The INFOMAX algorithm is based on a learning rule

which minimizes the mutual information between the source

signals estimates, which is equivalent to maximizing the joint

entropy between the estimates, in order to estimate the sources,

which are assumed to be super-Gaussian. INFOMAX ICA

estimates q ICs from a set of q observation vectors.

ICA decomposition was computed on all datasets, separately

for each subject. The number of epochs was sufficiently large to

ensure a good performance of the ICA algorithm, as the (number

of time points)/(number of electrodes)2 (considered as a predictor

of ICA reliability (Groppe et al., 2009)) ranged between 18.70

and 50.07 (38.8 � 7.2 average � std) for the feature selection

dataset, and between 68.02 and 120.93 (91.4 � 12.6 aver-

age � standard deviation) for the validation dataset.

Features Computation

We searched for spatial and temporal features that best

captured the behavior of the ICs associated with four different

artifact classes: eye blinks, vertical eye movements, horizontal

eye movements, and generic discontinuities (see Figure 2 for

examples of IC topographies and time courses typical of each

artifact class and of a neural component).

Since artifact-specific IC topographies are characterized by a

particular spatial shape, which is independent of the overall scale

of the topography, IC topography weights were normalized with

respect to their norm across the scalp: aðnÞ ¼
aoriginalðnÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
m a2originalðmÞ

q
, where a(n) is the topography

weight at sensor n, aoriginal (m) is the topography weight orig-

inally computed by ICA (the vector of all topography weights

aoriginal (n) corresponds to one column of the mixing matrix

A (Equation 1)) and the sum is computed across all sensors m.

For coherence with the ICA model (Equation 1), each cor-

responding IC activation was multiplied by the same factorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
m a2originalðmÞ

q
.

Ideal features should maximally discriminate artifact from

non-artifact ICs, resulting in a bimodal distribution of values, or

in case of few artifacts, in artifact IC values falling on the tails

(outliers) of the non-artifact IC values distribution. For each

artifact class, several measures were tested on the feature selec-

tion EEG dataset in a trial-and-error approach following this

criterion, and the most effective artifact-specific features were

selected for artifact classification.

Hereafter we describe the selected features for each artifact

class.

1. Eye Blinks: Eye blinks typically generate abrupt amplitude

jumps in frontal electrodes. Their time course is well cap-

tured by the kurtosis (Barbati et al., 2004; Delorme et al.,

2007), a measure that is very sensitive to outliers in the

amplitude distribution. Since its sensitivity to abrupt jumps

would be hampered by slow amplitude drifts on the whole

IC time course, here the kurtosis is computed within each

epoch after removing the epoch mean, and then averaged

over epochs:

232 A. Mognon et al.

Eye Blink

T
op

og
ra

ph
y

E
R

P
 im

ag
e

N
or

m
al

iz
ed

fe
at

ur
es

Vertical Eye
Movement 

Horizontal Eye
Movement

Generic Discontinuity Neural

EB

1 1 1 1 1

VEM HEM GD EB VEM HEM GD EB VEM HEM GD EB VEM HEM GD EB VEM HEM GD

Figure 2. Examples of typical ICs from each artifact class and of a typical neural IC drawn from the validation dataset. Top row: IC topography.Middle

row: ERP image illustrating the color-coded amplitude fluctuations (arbitrary units) of the IC in 100 contiguous epochs (time relative to visual word

presentation on the x-axis, epochs on the y-axis). Bottom row: histograms of feature values (Spatial Average Difference and Temporal Kurtosis for eye

blinks (EB); Spatial Average Difference and Maximum Epoch Variance for vertical eye movements (VEM); Spatial Eye Difference and Maximum

Epoch Variance for horizontal eye movements (HEM); Generic Discontinuities Spatial Feature and Maximum Epoch Variance for generic

discontinuities (GD)) normalized by the corresponding automatically calculated threshold value. Bars of features belonging to the same artifact class are

grouped together, and are marked in red color if they all cross the threshold, indicating that ADJUSTclassifies the IC as a component of that artifact

class.



Temporal Kurtosis ¼ trim and mean

siðtÞ4
D E

ep

siðtÞ2
D E2

ep

� 3

0
BB@

1
CCA

i

;

ð3Þ

where si(t) indicates the time course of the IC as defined by

Equation (2) within the epoch i, h. . .iep indicates the average

within an epoch, and trim_and_mean (. . .)i denotes the average

across epochs computed after the top 1% of the values have been

removed. This measure was preferred to the simple average be-

cause the latter would be too sensitive to spurious outliers.

To capture the spatial topography of blink ICs, we used a mea-

sure specifically sensitive to higher amplitude in frontal areas

compared to posterior areas:

Spatial AverageDifference ¼ ah iFA
�� ��� ah iPA

�� ��; ð4Þ
where a is the vector of normalized IC topography weights de-

fined above, h. . .iFA denotes the average over all channels in the

frontal area (FA) (radial range: 0.4oro1; angular range from

medial line: 0o|y|o601 (if present, electrodes below the eyes

would not be included), see Figure 3), and h. . .iPA denotes

average over all channels in the posterior area (PA) (radial range:

0oro1; angular range: 1101o|y|o1801, see Figure 3).
Two additional controls were imposed:

a) The average IC topography weights across the left eye area

(LE) (radial range 0.3oro1 and angular range � 611oy
o� 291, see Figure 3) must have the same sign of the aver-

age IC topography weights across the right eye area (RE)

(0.3oro1 and 291othetao611, see Figure 3) (to distinguish

blinks from horizontal eye movements);

b) Variance of scalp weights included in the FA (defined above)

must be higher than the variance of scalp weights included in

the PA; this control is quantified by the feature

Spatial VarianceDifference ¼ a2
� �

FA
� ah i2FA

� �
� a2

� �
PA

� ah i2PA
� �

; ð5Þ

which should be positive for eye blink components. This

control is useful against false positives in cases where IC

weights across the PA span both positive and negative values

such that their average is very low, resulting in a spuriously

high value of the spatial average difference (SAD).

2. Vertical Eye Movements: Vertical eye movements generate

large amplitude fluctuations in frontal channels that are typ-

ically slower than those generated by blinks, therefore not

efficiently identifiable by the kurtosis. They are well captured

by a temporal feature based on the variance of the signal

within each epoch:

MaximumEpochVariance

¼
trim and max siðtÞ2

D E
ep
� siðtÞh i2ep

� 	
i

trim and mean siðtÞ2
D E

ep
� siðtÞh i2ep

� 	
i

;
ð6Þ

where trim_and_max (. . .)i indicates the maximum of the

trimmed vector of variance values over the epochs (as for the

kurtosis, this measure was preferred to the simple maximum

because the latter would be too sensitive to spurious outliers);

this measure is normalized with respect to the average of

trimmed variance values (trim_and_mean (. . .)i, see Temporal

Kurtosis definition above) in order to better capture the

difference from the baseline behavior of the time course. Trim

was performed as explained for Temporal Kurtosis.

Since the spatial distribution of vertical eye movement artifacts is

similar to that of blink artifacts, the same spatial feature (SAD)

was used, together with the same additional controls.

3. Horizontal Eye Movements: Since the time course of artifacts

caused by horizontal eye movements is similar to the one

generated by vertical eye movements, the temporal feature

used is the same (Maximum Epoch Variance (Equation 6)).

The spatial distribution is characterized by large amplitudes

in frontal channels near the eyes, typically in anti-phase (one

negative and one positive). A spatial feature sensitive to this

pattern is

Spatial EyeDifference ¼ ah iLE� ah iRE
�� ��; ð7Þ

where h. . .iLE (h. . .iRE) denotes average overall channels in the

LE area (RE area) defined above, respectively.

To check that amplitudes are in anti-phase, one additional

control is added: the average of IC topography weights in the LE

and RE must have a different sign.

4. Generic Discontinuities: Artifacts generated by impedance

fluctuations or electronic device interference typically involve

sudden amplitude fluctuations in one channel, with no spatial

preference. The time course of this artifact is captured

by Maximum Epoch Variance (Equation 6). Its spatial dis-

tribution is captured by a feature sensitive to local spatial

discontinuities:

GenericDiscontinuities Spatial Feature

¼ max an � kmnamh im
�� ��
 �

n
; ð8Þ

where an is the nth topography weight, kmn5 exp

(� ||ym� yn||) decays exponentially with the distance

||ym� yn|| between channel m and channel n, h. . .im denotes

the average over all channels m 6¼n, and max(. . .)n indicates

the maximum over all channels n of the scalp.
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Automatic Classification

For each feature included in the detectors, the threshold value

was computed by means of a completely automatic image pro-

cessing thresholding algorithm based on the Expectation-Maximi-

zation (EM) technique (Bruzzone & Prieto, 2000). This algorithm

is expected to work in a 1-dimensional feature space where a set

O5 fon,oag of two information classes on and oa is defined. The

classes on and oa represent the cases in which an IC component is

not associated to an artifact or is associated to an artifact, respec-

tively. The EM algorithm estimates the a priori probabilities of the

classes and their probability density functions. The former model

the probability that a random sample belongs to a given class, while

the latter describe the distribution of each class’s random variable.

Probability density functions are assumed normally distributed,

and thus they are modelled by mean values mn, ma and variances

sn
2, sa

2 of the two Gaussian distributions.

In the first step, Expectation, an approximation for the two

Gaussian distributions is computed from the data. The overall

distribution is initially divided into two clusters that approxi-

mately contain entries from on and entries from class oa; given

the middle value of the histogram MD5 (maxfXDg1min

fXDg)/2, where XD indicates the vector of feature values, two

thresholds Tn and Ta equally distant from MD (distance: 0.01

(maxfXDg�MD) from MD) are used in this initial step to sep-

arate the clusters: entries in the interval [minfXDg, Tn] are

included in cluster 1, and entries in the interval [Ta, maxfXDg]
are included in cluster 2. Mean, variance and prior probability

computed from the clusters are assumed to be the statistics of

the classes’ distributions at step zero of the following iteration

process.

The iteration process, named Maximization, refines the sta-

tistics of the classes’ distributions by maximizing a log-likelihood

measure. At each iteration, the statistics prior probability, mean,

and variance of the distributions are updated as:

Ptþ1ðonÞ ¼
X

XðiÞ2XD

½PtðonÞptðXðiÞ=onÞ=ptðXðiÞÞ�
0
@

1
A=I ; ð9Þ

mtþ1
n ¼

X
XðiÞ2XD

PtðonÞptðXðiÞ=onÞ
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0
@

1
A

=
X

XðiÞ2XD

PtðonÞptðXðiÞ=onÞ
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0
@

1
A;
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ðs2
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X
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ptðXðiÞÞ ½XðiÞ � mtn�2

0
@

1
A

=
X

XðiÞ2XD
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0
@

1
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where the superscripts t and t11 indicate the current and suc-

cessive iteration, respectively, X(i) denotes the ith feature value

and I is the length of the feature vector XD. Analogous equations

can be written for class oa.

This iterative process is repeated until the difference between

any of the statistics at step i and the same statistic at step I11 is

lower than 10� 4 times the statistic at step zero. At convergence,

the threshold value is computed as the intersection between the

estimated Gaussian distribution of class on and the estimated

Gaussian distribution of class oa, where the Gaussian distribu-

tions are computed from the statistics estimated in Equations

(9)–(11).

In the last step of ADJUST, each detector checks whether

each IC feature value is above the respective threshold; if this

occurs for all the features belonging to that detector, the IC is

marked as artifacted IC (it belongs to oa) for that artifact class.

Virtually artifact-free EEG data are thus obtained by simply

subtracting the artifacted ICs from the data.

A free version of the ADJUSTsoftwarewith sample data used

in this study will be publicly released in the form of a plug-in

toolbox to be run under the EEGLAB software (http://

sccn.ucsd.edu/eeglab/).

ADJUST: Validation Procedure

The validation procedure was divided into three steps: (1) deter-

mination of the accuracy of IC classification; (2) evaluation of

the benefit of combining spatial and temporal features compared

to their separate use; and (3) determination of the accuracy in

ERP reconstruction after removal of the ICs detected as artifacts

by ADJUST.

Artifact Classification Accuracy

In the first step, ADJUST’s IC classification was compared to

manual IC classification performed by three independent scorers

with proven expertise in the field of EEG analysis and familiarity

with ICA decomposition of EEG data. Experts manually clas-

sified ICs from the feature selection datasets and the validation

datasets by visualizing IC properties via the EEGLAB software

package (Delorme & Makeig, 2004). Experts were invited to

inspect the IC topography, power spectrum, and ‘ERP image’

(Jung, Makeig, Humphries, et al., 2000), a useful graphic rep-

resentation displaying the IC time course of all epochs within the

same figure by coding amplitudes in color scale (see Figure 2,

middle row). Experts were asked to mark the ICs relative to the

four classes of artifacts defined above (blinks, vertical and hor-

izontal eye movements, discontinuities), and were invited to do

so by looking both at the topography and at the time course of

each component. Discontinuities were defined as sudden jumps

with localized, non-biological spatial distribution. Experts were

asked to mark only components that clearly belonged to one

artifact class, and to not mark components also containing some

presumably neural portion, as well as ambiguous components.

Experts classified a total of 1008 ICs of the feature selection

dataset and 630 ICs of the validation dataset. A unique classi-

fication, further referred to as ‘manual classification,’ was gen-

erated from the three scorers’ classifications by using a majority

criterion.

Manual and ADJUSTclassifications were then compared by

computing an agreementmeasure for each class-specific detector.

An additional agreement measure was generated for the detec-

tion of all types of artifacts (an ICwas considered to be artifacted

if detected by at least one single detector), which we will refer to

as ‘general artifact detection.’

The agreement measure g was computed as the ratio between

the variance accounted for by the ICs for which the two clas-

sifications agree (IC marked as artifact or non-artifact in both

classifications) and the total variance of all ICs:

g ¼

P
AgreementICs

niP
i

ni
ð12Þ
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where ni indicates the variance accounted for by the ith IC com-

puted (using the EEGLAB function eeg_pvaf()) as the average

variance of the IC activations back-projected into the electrode

space, and AgreementICs is the list of ICs for which the two

classifications agree. This measure is very similar to the agree-

ment measure used in Li et al. (2006), the only difference being

that in g each IC is weighted by the variance it accounts for. The

rationale behind this difference is that the more variance is ex-

plained by the IC, the more it is important to correctly classify

that IC as artifacted or not.

Effects of Combining Spatial and Temporal Features

ADJUST detectors can be thought of as AND-detectors be-

cause they identify an artifact only when all associated temporal

and spatial features have values higher than the decision thresh-

old. To evaluate the advantage of combining features in an ex-

clusive rather than inclusive way, ADJUST classification was

compared to the one obtained by using OR-detectors, which

identify an artifact when any of the associated features exceeds

the threshold.

To evaluate the statistical significance of the difference, a

paired t-test was computed between the accuracies of AND-

detectors and OR-detectors for each type of artifact, and for

general artifact detection.

ERP Accuracy from Artifact Corrected Data

The third step consisted of testing the efficiency of ADJUST

in reconstructing artifact-free topographies of well known ERPs

from sets of artifacted epochs. In order to have a reliable ref-

erence, ERPs computed from artifacted epochs after ADJUST

correction were compared with artifact-free ERPs from the same

subjects in the same experimental sessions. For this purpose, two

sets of epochs were extracted for each dataset: ‘Most Contam-

inated Epochs,’ in which there was at least one channel exceeding

65 mV, and ‘Least Contaminated Epochs,’ selected as artifact-

free epochs in the same number of the Most Contaminated

Epochs.

Three different ERP topographies were computed by aver-

aging the spatiotemporal ERP within an interval centered on the

latency of the peak of the grand-averaged ERP:

Auditory N1: latency [90–120] ms after the auditory stimulus;

Visual P1: latency [80–110] ms after the visual stimulus;

Visual N12: latency [160–190] ms after the visual stimulus.

These latencies are well matched with the typical latencies found

in the literature (e.g., Hine & Debener, 2007, for the Auditory

N1; Di Russo, Martinez, Sereno, Pitzalis, & Hillyard, 2001, for

the visual P1 andN1). The distortions caused by artifacts on each

ERP topography were quantified by the topography error e,
computed as the square root of the sum squared difference be-

tween the ERP topography calculated from the Least Contam-

inated Epochs and the one calculated from the Most

Contaminated Epochs, normalized with respect to the square

root of the sum squared amplitude of the Least Corrupted ERP:

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
scalp

ðgLCE � gMCEÞ2
s

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
scalp

ðgLCEÞ2
s

ð13Þ

where gLCE (gMCE) indicates the ERP topography map calcu-

lated from Least Corrupted Epochs (Most Corrupted Epochs),

and the sum is computed over all channels of the scalp.

Normalization is performed in order to scale the difference by

the size of the least polluted topography map; this was done

because the degree of distortion introduced by artifacts depends

on the magnitude of the ‘‘clean’’ ERP wave.

Results

EEG recordings from all datasets contained ocular artifacts and

artifactual discontinuities in a variable amount across subjects.

Several artifactual ICA components could be easily identified by

visual inspection in all subjects. Figure 2 (top row) shows exam-

ples drawn from the validation set of artifact-specific IC topog-

raphies for each artifact class defined in the Methods sections

(blinks, horizontal and vertical eye movements, discontinuities).

In contrast, neural ICs typically display a smooth dipolar to-

pography (see example of an IC representing a visual evoked

potential in Figure 2, last column). The time course of artifactual

signals is also archetypical: all artifacted ICs exhibit low-ampli-

tude fluctuations interspersed with high-amplitude jumps occur-

ring in only a few trials, represented by red or blue color spots in

the ERP images of Figure 2 (second row). In contrast, the neural

IC presents an activity distributed across all trials comprising a

clear event-related potential, which is visible in most trials.

Once ICA weights are computed, ADJUST is very fast: it

takes about 12 s to run the algorithm on a dataset of about 200

MBand display the classification results for further inspection on

a standard PC (Microsoft Windows XP Professional SP3, Intel

Core 2 Duo CPU E4600 @2.40 GHz, 2.00 GB RAM).

The joint use of spatial and temporal features revealed crucial

for artifact identification: even though single features may not

follow a bimodal distribution, the combination of more features

together led to a cluster of artifact-specific ICs clearly separate

from the rest of the ICs (see Figure 4 for an example).

ADJUST’s artifact-specific detector selectivity is evident from

the example of Figure 2 (bottom row): for each artifact-specific

IC, all features associated to that artifact visibly cross the thresh-

old (blue horizontal line), triggering the classification of that IC

as artifacted (red bars); in contrast, for the detectors specific to

the other types of artifacts there is always at least one feature that

has a value lower than the threshold, so that ADJUST does not

classify that IC as belonging to that artifact class (green bars).

The neural IC is not classified as artifact because none of the

artifact-specific groups of features crosses the threshold.

ADJUST Validation

As mentioned in the previous section, the effectiveness of AD-

JUST was assessed on a validation dataset completely different

and uncorrelated with the feature selection dataset used to

optimize ADJUST. The validation dataset is different from the

feature selection datasets in the EEG recording system, in the

laboratory in which it was recorded, and in the experimental

paradigm (see Methods for details). This validation was per-

formed by using the same spatial and temporal features that were

optimized on the feature selection datasets.

Artifact Classification Accuracy

In the first validation step, ADJUST’s IC classification was

compared tomanual IC classificationmade by three independent

expert scorers (see Methods for details). Agreement between

scorers’ classification was high (95.3% on all artifacts). Among
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the 630 ICs presented to the experts, 43 were classified as ocular

artifacts, 74 as generic discontinuities, and the remaining as neu-

ral or low-amplitude noise components. Even though ocular

artifact ICs were fewer than discontinuity ICs, they explained a

much larger amount of the total data variance (51.5% vs 1.7%of

discontinuity ICs), suggesting that most artifacts are captured by

a few ICs associated with ocular movements.

ADJUSTaccuracy was computed for each artifact class and

for the general artifact detection by means of the agreement

measure defined in Equation (12) as the ratio between the vari-

ance accounted for by the ICs classified in the same way by

ADJUSTand the independent scorers and the variance of all ICs

(see Methods). Accuracy relative to ocular artifacts was excel-

lent: 99.0% for blinks, 96.0% for vertical eyemovements, 99.2%

for horizontal eye movements. Despite the more heterogeneous

spatiotemporal features of generic discontinuities compared to

ocular artifacts, the associated accuracy was also high (97.7%).

Overall, the accuracy of the detection of any type of artifact

(general artifact detection) was 95.2%.3 This result is homoge-

neous across subjects (see black error bars for AND-detectors in

Figure 5). Figure 6 summarizes the agreement between ADJUST

classification and the manual classification for all artifacts. It is

worth noting that false positive errors (components classified as

artifact by ADJUST but considered non-artifact by manual

classification) are very infrequent for both datasets, meaning that

the probability of removing a neural component is very small

(2.5% of the total variance).

Effects of Combining Spatial and Temporal Features

In the second validation step, we evaluated the benefits of

characterizing each artifact class by the combination of spatial

and temporal features together with respect to using each feature

as a separate artifact-specific detector. To this purpose, perfor-

mance of ADJUST detectors (here indicated as AND-detectors

because they classify an IC as artifacted only when all associated

temporal and spatial features have a value higher than their

respective threshold) was compared with that obtained by OR-
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Figure 4. Scatter plot showing the values of the two features composing

the Blink detector (Temporal Kurtosis on the x-axis and Spatial Average

Difference on the y-axis) for the ICs belonging to one subject (validation

dataset). Distributions of ICs values for each feature are superposed on

the relative axis. Red lines indicate the thresholds computed

automatically for each feature. Red points indicate the values of ICs

marked as artifacted for the Blink detector.

Figure 5. Comparison of classification accuracies obtained by AND-

detectors (dark gray bars) and OR-detectors (light gray bars) for each

artifact detector and for the general artifact detection for the validation

dataset. Black error bars indicate the standard error of the mean.

Figure 6. Classification performance of the general artifact detector (an

IC is labeled as an artifact if marked as such by any of the four artifact

detectors) compared to the one provided by three independent experts for

the validation dataset. Bars represent the amount of True Negative (TN),

True Positive (TP), False Negative (FN), and False Positive (FP) ICs

weighted by the percent of total variance they account for, respectively.

Black error bars represent the standard error of the mean.

3The agreement measure relative to the general artifact detection (i.e.,
computed on all types of artifacts) is generally lower than the one relative
to a single type of artifact because the former comprises disagreements
(false alarms andmissed alarms) relative to all types of artifacts, while the
latter is only penalized by disagreements relative to that type of artifact
(see Equation 12). This effect is partially compensated by occasional
artifact mislabeling (e.g., a blink labeled as a generic discontinuity by
ADJUST), which affects the single artifact agreement measure but not
the general artifact detection one.



detectors, which classify an IC as artifacted when any of the

associated features exceeds the threshold value. AND-detectors

reach significantly higher accuracies than the respective OR-

detectors for all types of artifacts and for the general artifact

detector (for all t-tests, t(9)419.68, po.001) (Figure 5). The

performance of OR-detectors is sometimes near to that of AND-

detectors for the most stereotyped artifact (e.g., horizontal eye

movements), but drastically drops for more heterogeneous

artifacts, resulting in accuracy for the general artifact detector

of about 80%.

ERP Accuracy from Artifact Corrected Data

The last validation step consisted of testing the efficiency of

ADJUST in reconstructing artifact-free topographies of well-

known ERPs from sets of artifacted epochs. In order to have a

reliable reference, ERPs computed from artifacted epochs after

ADJUST correction were compared with artifact-free ERPs

from the same subjects in the same experimental sessions. For

this purpose, two sets of epochs were extracted for each dataset:

‘Least Contaminated Epochs’ were virtually artifact-free, while

‘Most Contaminated Epochs’ were the most contaminated

by artifacts (see Methods for selection criteria). The average

number of epochs in each set was 90 � 12 (mean � standard

deviation).

ADJUST was evaluated on the efficiency of reconstruction

from the Most Contaminated Epochs of the topographies of

three different ERPs: auditory N1 (latency 100 ms), visual P1

(latency 100 ms), and visual N1 (latency 175 ms). As expected,

artifacts considerably altered ERP topographies and time

courses (Figure 7). Anterior electrodes were particularly affected,
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Figure 7. Examples of ERP reconstruction at the three selected latencies drawn from three representative subjects. Each panel shows: 1) ERP

topographies at peak latency (top row) computed on Least Contaminated epochs (odd columns) and Most Contaminated epochs (even columns) with

no correction (left-hand columns) and after ADJUSTcorrection (right-hand columns); 2) ERP time courses (bottom row) at representative electrodes

(F3, Fz, F4, C3, Cz, C4, O1, Oz, O2) before and after ADJUST correction averaged over Least Contaminated epochs (blue lines) and Most

Contaminated epochs (red lines). Vertical red arrows mark the latency of the ERP components at the electrodes showing highest amplitude.



suggesting that ocular artifacts were the major cause of altera-

tion. ADJUST systematically removed the most important

artifacts distortions, reconstructing an ERP from the Most Con-

taminated Epochs that almost overlaps to the one computed

from the Least Contaminated Epochs, both in its topography

and in its time course (Figure 7).

The amount of distortions caused by the residual artifacts on

each ERP topography was quantified by the topography error e
(Equation 13). Topography errors were significantly lower

for ADJUST than for uncorrected data for all examined ERPs

(Wilcoxon signed rank test (Wilcoxon, 1945): p5 .0097 for au-

ditory N1, p5 .0019 for visual P1, and p5 .0019 for visual N1)

(Figure 8). Topography error variability across subjects was also

remarkably lower for ADJUST than for uncorrected data (error

bars in Figure 8), suggesting that ADJUST typically provides a

stable performance across subjects.

To further validate the performance of ADJUST, topography

errors obtained using ADJUSTwere compared to those relative

to manual classification. The difference between the topography

errors from the two methods was not significant for all ERPs

considered (Wilcoxon signed rank test (Wilcoxon, 1945): p5 .56

for auditory N1, p5 .24 for visual P1, and p5 .70 for visual N1)

(Figure 8), suggesting that ADJUST performance is equivalent

to that of a manual classification by experts.

Discussion

In this paper, a completely automatic method for the detection of

artifacted ICs from EEG data (ADJUST) has been proposed.

The core property of ADJUST is the simultaneous use of mul-

tiple spatial and temporal features to detect the artifacted ICs.

The key applicative aspect of ADJUST is its completely auto-

matic nature: no trial-and-errors procedures are necessary for

tuning parameters, as features are defined a priori and the algo-

rithm that computes feature thresholds is completely unsuper-

vised (Bruzzone & Prieto, 2000). The efficiency of ADJUSTwas

demonstrated by a remarkable classification accuracy (95.2% for

all artifacts) and by its ability to reconstruct clean ERP topog-

raphies from heavily artifacted data. In the following, we discuss

these results in the context of the recent literature, and propose

future extensions and applications of our method.

Automaticity and Feature Combination

As clearly described in Onton et al. (2006), EEG artifacts can be

divided in two classes: non-stereotyped artifacts due to move-

ments of the electrodes on the scalp arising from large muscle

movements or external sources, and stereotyped artifacts, mainly

due to ocular eye movements and blinks. Artifacts from the first

class are problematic for ICA because, since their spatial distri-

bution is extremely variable, they introduce a large number of

unique scalp maps, leaving few ICs available for capturing brain

sources. Accordingly, ADJUST does not attempt to remove

these artifacts, and it relies on a suitable pre-processing for

removing them before the ICA decomposition. However, ste-

reotyped artifacts belonging to the second class also display a

wide spatial and temporal heterogeneity that is testified by the

wide range of measures that have been used to identify them:

high-order statistics (Barbati et al., 2004; Delorme et al., 2007),

entropy measures (Mantini et al., 2008), and spatial templates

(Li et al., 2006; Viola et al., 2009). Here we have proposed an

algorithm that identifies ICs due to stereotyped artifacts by

computing several measures simultaneously. Its effectiveness is a

demonstration that the diversity of EEG artifacts is limited, and

can be fully captured by a reduced set of spatial and temporal

features, provided that these are used together (see Figure 5). The

efficiency of the automatic procedure implemented in ADJUST

is based on this simple property: even though the distribution of

single feature values does not clearly separate artifact from

artifact-free components, this goal is achieved when combining

more features together (Figure 4). Remarkably, this result is

obtained with a simple thresholding algorithm (Bruzzone &

Prieto, 2000) in a completely unsupervised way. This is impor-

tant because most of the ICA-based artifact removal algorithms

proposed in the literature have a supervised seed, either in the

form of a training set (Delorme et al., 2007; Li et al., 2006;

Mantini et al., 2008) or in the arbitrary tuning of the thresholds

separating artifacted from non-artifacted components (Barbati

et al., 2004; Joyce et al., 2004; Okada et al., 2007).

ADJUST Potential Extensions

The architecture of ADJUST (Figure 1) is intrinsically flexible:

extensions to other types of artifacts may be implemented by

building new detectors for those artifacts and adding them in

parallel to the original ones. One type of artifact that may

be included in the future is the one generated by muscle con-

tractions, which may be identified by a spectral feature (Barbati

et al., 2004; Delorme et al., 2007; Joyce et al., 2004). Another

natural extension is to add features based on correlation with

ECG or EOG signals (Joyce et al., 2004; Okada et al., 2007).

In particular, EOG signals would improve the identification of

blink ICs as they typically display a polarity flip across the eyes

(Talsma&Woldorff, 2005), whichwould be easily captured by an

ad-hoc feature. More generally, ADJUST architecture might
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Figure 8. Mean topography error (Equation 13) of all subjects of the

validation dataset for the three selected ERPs: Auditory N1, Visual P1,

and Visual N1, for data with no correction (dark gray), data after

ADJUSTcorrection (mid-gray), and data after correction (light gray) by

manual classification. Bars indicate standard deviation of the mean.

Symbols over thin black lines indicate the results of a Wilcoxon signed

rank test performed between topography errors relative to the conditions

linked by the same lines. One asterisk (two asterisks) indicate po.05

(po.01), while N.S. indicates non-significant.



be used in the future for the classification of neural components

from continuous EEG data, for example, by integrating it

with algorithms of IC clustering as the one implemented in the

EEGLAB software. This approach is potentially promising for

studies focused on the relation between event-related and ongo-

ing activity (Buiatti, 2008). Contrary to the case of artifacts,

features expressing data regularity and stationarity might be

chosen.

Potentially, ADJUST can be adapted to MEG data. Spatial

filters for spatial features computation can be easily imported

since they are based on scalp areas, which are identified by polar

coordinates; sensors involved are automatically detected by in-

specting channels coordinates.

Due to its ease of application for its automatic nature, absence

of constraints on the experimental paradigm, and flexibility

to new extensions, we believe that ADJUST is suitable for rou-

tine automatic artifact removal in research and clinical settings.

Additional tests on populations prone to artifacts (like clinical

data, or data on children) will help to further improve the

method.
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