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Abstract—This paper presents an automatic context-sensitive
technique robust to registration noise (RN) for change detection
(CD) in multitemporal very high geometrical resolution (VHR)
remote sensing images. Exploiting the properties of RN in VHR
images, the proposed technique analyzes the distribution of the
spectral change vectors (SCVs) computed according to the change
vector analysis (CVA) in a quantized polar domain. The method
studies the SCVs falling into each quantization cell at different
resolution levels (scales) to automatically identify the effects of
RN in the polar domain. This information is jointly exploited with
the spatial context information contained in the neighborhood of
each pixel for generating the final CD map. The spatial context
information is modeled through the definition of adaptive regions
homogeneous both in spatial and temporal domain (parcels).
Experimental results obtained on real VHR remote sensing
multitemporal images confirm the effectiveness of the proposed
technique.

Index Terms—Change detection (CD), change vector analysis
(CVA), multitemporal images, registration noise (RN), remote
sensing, very high resolution (VHR) images.

I. INTRODUCTION

U NSUPERVISED change detection plays an important role
in many application domains related to the exploitation of

multitemporal images. Depending upon the considered applica-
tion, the change-detection problem has different properties and
peculiarities, and should satisfy specific constraints. In some
domains, the priority constraint is related to the need to guar-
antee a real time detection of changes (e.g., in video surveil-
lance [1]–[4], motion detection [5], [6], etc.). In other applica-
tions, the time constraint can be relaxed and the precision of the
change-detection result (also at the cost of a high computational
complexity) plays the most important role (e.g., remote sensing
[7], [8], biomedical applications [9], [10], etc). For some do-
mains, the change-detection problem can require multidimen-
sional (or multichannel) images: this is for instance the case of
data simultaneously acquired in different bands of the electro-
magnetic spectrum (multispectral images) or taken with multi-
modal acquisition protocols (multimodal images). In this per-
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spective, the change-detection procedure is more complex and
should be able to recognize the presence of changes by ana-
lyzing multidimensional vectors associated with each pixel of
the investigated multitemporal images. Typical applications re-
lated to the above-mentioned data are in the remote sensing and
the biomedical domains.

In this paper we focus the attention on unsupervised
change-detection techniques for multitemporal and multispec-
tral remote sensing images. In greater detail, we consider very
high geometrical resolution multispectral images acquired by
the last generation of satellite sensors (e.g., Ikonos, QuickBird,
EROS, SPOT-5, GeoEye-1, World View-2). These sensors can
acquire both multispectral and/or panchromatic images with a
geometrical resolution on the ground which varies from few
meters to 0.41[m] in the best case (at the time of writing). In the
literature, several unsupervised change-detection methods for
multidimensional remote sensing images have been proposed
[11]–[17]. These techniques have been successfully employed
in many different application domains related to land cover
monitoring, like analysis of growth of urban areas, cadastral
map updating, risk analysis, damage assessment, etc. However,
the most of the available methods are optimized for the analysis
of images acquired by medium resolution (MR) and high res-
olution (HR) sensors, and result ineffective when dealing with
images showing metric or submetric resolution. Therefore it is
necessary to develop novel methodologies capable to exploit
the properties of VHR images in detecting changes between
multitemporal images.

Change-detection techniques developed in other application
domains for the specific analysis of VHR images result inef-
fective when applied to remote sensing images. The main prob-
lems are related to the different conditions in which the remote
sensing images can be acquired, and in particular to differences
in: 1) sunlight and atmospheric conditions; 2) sensor acquisi-
tion geometry [8], [11], [18]; and 3) spectral signatures of veg-
etation due to seasonal effects. In order to reduce the impact
of these conditions on CD maps, preprocessing steps are re-
quired as: coregistration, radiometric and geometric corrections,
and noise reduction. Among them, coregistration plays a funda-
mental role and becomes more complex and critical (and there-
fore intrinsically less accurate), when the geometrical resolu-
tion increases. In practice, a perfect alignment between images
is impossible as differences in the acquisition view angles and
in geometrical distortions cannot be compensated, then causing
a significant residual registration noise which sharply impacts
on CD [18]–[20].
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Another important problem in change detection on VHR im-
ages concerns the modeling of the spatial context information
of the scene. Most of the classical change-detection techniques
generally assume spatial independence among pixels, which is
not reasonable in high geometrical resolution data. In order to
better exploit the spatial correlation among neighboring pixels
and to get accurate and reliable CD maps (both in regions corre-
sponding to border or geometrical details and in homogeneous
areas), it is necessary to integrate the spectral information with
the spatial one and to model the multiscale properties of the
scene. In the literature only few techniques capable to exploit
the above-mentioned concepts [21]–[24] are available.

In order to overcome the aforementioned problems, this paper
presents an adaptive context-sensitive technique, which: 1) re-
duces the impact of registration noise in change detection on
VHR multispectral images through a multiscale strategy; and
2) considers the spatial dependencies of neighborhood pixels
through the definition of multitemporal parcels (i.e., homoge-
neous region both in space and time domain). The proposed
technique is developed in the context of the polar framework for
change vector analysis (CVA) introduced in [16] for the analysis
of MR and HR multispectral images, and is based upon the anal-
ysis of the properties of registration noise presented in [25]. The
experiments carried out on multitemporal VHR images confirm
the validity of the theoretical analysis and the effectiveness of
the proposed technique.

The paper is organized into five sections. The next section re-
calls the notation and the background on the polar framework
proposed in [16], and describes the registration noise proper-
ties derived in [25]. Section III illustrates the proposed multi-
scale and context-based approach for change detection on VHR
images. Section IV presents the experimental results obtained
on two real multitemporal data sets made up of QuickBird im-
ages. Finally, Section V draws the conclusions of this work.
Appendix I provides a summary of the notation used in this
paper.

II. NOTATION AND BACKGROUND

In order to develop the proposed change-detection technique
robust to registration noise, we take advantage from the theo-
retical and empirical analysis on the properties of this kind of
noise conducted in [25]. In particular, we consider the proper-
ties of registration noise derived in this work as a starting point
for the development of our approach. Both the analysis on the
properties of registration noise and the proposed technique are
developed in the context of a theoretical polar framework de-
fined for unsupervised change detection in [16], which is based
upon the change vector analysis (CVA) technique. In the fol-
lowing we briefly recall the main concepts of this framework
and the main properties of registration noise.

A. Polar Framework for Change Detection

Let us consider two VHR multispectral images and
(e.g., Ikonos, QuickBird, EROS, SPOT-5, GeoEye-1, World
View-2 images) acquired on the same geographical area at
different times and , respectively. Let us assume that
these images do not show significant radiometric differences;

in particular, let us consider that the spectral channels at the
two times have the same mean values (this can be easily ob-
tained with very simple radiometric correction procedures). Let

be the set of classes of changed and no-changed
pixels to be identified. In greater detail, represents the
class of no-changed pixels, while the
set of the possible classes (kinds) of changes occurred in
the considered area. For simplicity, the whole analysis on the
registration noise properties is carried out considering a 2-D
feature space (however it can be generalized to the case of
more features, see [16] for details). In this manner it is possible
to represent the information in a 2-D domain and to better
understand the implications of the analysis. Let be the
multispectral difference image computed according to the CVA
technique by subtracting the spectral feature vectors associated
with each corresponding spatial position in the two considered
images. is a multidimensional image made up of spectral
change vectors (SCVs) defined as

(1)

Under the assumption of 2-D feature vectors, the change in-
formation contained in the SCVs can be univocally described
by the change vector magnitude and direction defined as

and (2)

where is the random variable representing the th com-
ponent (spectral channel) of . Finally, let us
define the magnitude-direction domain (in which all the
SCVs of a given scene are included) as

and (3)

where is the highest magnitude of SCVs in the considered
images.

According to the previous definitions, the change information
for a generic pixels in spatial position can be represented in
the magnitude-direction domain with a vector having com-
ponents and computed according to (2).

From the theoretical analysis reported in [16] and under the
above-mentioned assumptions, it is expected that in the polar
representation no-changed and changed SCVs result in sepa-
rated clusters. Unchanged SCVs show a low magnitude and are
uniformly distributed with respect to the direction variable. In
the polar domain the region associated with them is the circle of
no-changed pixels , defined as

and (4)

This circle is centered at the origin and has a radius equal to
the optimal (in the sense of the theoretical Bayesian decision
theory) threshold that separates no-changed from changed
pixels. On the opposite, changed SCVs are expected to show
a high magnitude. The region associated with them in the polar
domain is the annulus of changed pixels , which is defined as

and (5)
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Fig. 1. Representation of the regions of interest in the CVA polar framework.

This annulus has inner radius and outer radius given by the
maximum among all possible magnitudes for the considered
pair of images . As changed SCVs show preferred
directions according to the kind of change occurred on the
ground, different kinds of changes can be isolated with a pair
of threshold values ( and ) in the direction domain. Each
pair of thresholds identifies an annular sector of change

in the annulus of changed pixels defined as

and
(6)

All the mentioned regions are depicted in Fig. 1. The reader is
referred to [16] for further details on both the polar framework
and the general properties of SCVs in this kind of representation.

B. Registration Noise Properties

As previously mentioned, residual misregistration affects
multitemporal data and represents an important source of noise.
In particular, this noise becomes more relevant when dealing
with VHR images, as the process of co-registration is more
complex and critical. RN is due to the comparison of pixels
that do not represent the same area on the ground in images
acquired over the same geographical area at different times. In
particular, the most critical component of RN is related to the
pixels that at the two dates belong to different objects/classes
on the ground due to the misalignment between the two images.
In fact, these pixels show a behavior similar to the one of real
changes, causing misclassification effects in the change-de-
tection process. It follows that it is important to identify these
pixels and separate them from pixels associated with real
changes in the definition of a change-detection technique robust
to registration noise.

In [25], the effects of misregistration have been analyzed in
the context of the previous described polar framework when:
1) the misalignment between the images increases, and 2) the
resolution (scale) of the images decreases. From this study, four
important properties of registration noise in VHR images can be
derived for both no-changed and changed pixels.

1) Property 1: Increasing the misalignment between the
images, it is possible to observe that RN affects no-changed
pixels by: (a) increasing the spread of the cluster in the circle
of no-changed pixels with respect to the case of perfectly
aligned images; (b) generating clusters of dominant registration

noise with properties very similar to clusters of changed pixel
in the annulus of changed pixels .

The first effect is related to the non perfect alignment be-
tween multitemporal pixels belonging to the same object, while
the second one is mainly induced from edge regions and details
(high spatial frequencies in the images), which lead to the com-
parison of pixels belonging to different objects. These pixels
result in clusters of registration noise in and involve false
alarms in the change-detection map.

2) Property 2: Statistical properties of clusters associated
with changed pixels in slowly vary with the amount of mis-
alignment.

This second property results in the conclusion that registra-
tion noise does not affect significantly the clusters of changed
pixels. This is reasonable because when changes are present the
effect of registration noise are often included in the modification
of the spectral signature due to the change on the ground.

In this work we are more interested to properties 3 and 4
which are related to the impact of the scale on registration noise
properties. To properly illustrate these properties let us consider
a pansharpened QuickBird image of 984 984 pixels acquired
on the city of Trento (Italy) in July 2006 .1 From this image
a second image was generated simulating new houses on
the rural area. Such changes were introduced in order to be
as similar as possible to real changes. In particular, simulated
buildings have been added to the scene taking their geomet-
rical structures and spectral signatures from other real buildings
present in different portions of the available full scene [25]. This
choice allowed us to take into account the image dynamic and
also the noise properties. Moreover and were relatively
shifted for reproducing registration noise effects in a controlled
framework. To both images a Daubechies-4 stationary wavelet
multiscale decomposition [26] was applied in order to obtain a
set of multitemporal datasets at different resolution levels (for
further details, refer to [25]). Then we applied the CVA to the ob-
tained multiscale and multitemporal images. Misregistration ap-
pears in the magnitude image with linear (or non linear) and rel-
atively thin structures having different orientations. Therefore,
if we reduce the resolution of images, we implicitly decrease
the impact of the registration noise with respect to that on the
original scene. The scatterograms in Fig. 2 show the statistical
distributions of SCVs obtained according to CVA in the polar
domain for the misregistered dataset: (a) at full resolution; and
(b) at level 3 of the wavelet decomposition. Comparing the scat-
terograms it can be observed that reducing the scale, SCVs as-
sociated with [dashed circles in Fig. 2(a)] tend to disappear
collapsing into , while the cluster of pixels associated with
true changes (region marked with continuous circles in Fig. 2)
reduces its spread, but it is not completely smoothed out. This is
confirmed from Fig. 3, which separately reports the behavior of
the mean value of the magnitude of SCVs associated with RN
(continuous line) and real changes (dashed lines). As can be seen
from the diagram, the mean value of the magnitude of SCVs as-
sociated with RN decreases faster than the mean value of clus-
ters of changed pixels by reducing the resolution. Therefore, at
low resolution levels (where high spatial frequencies are cut off)

1For further detail about this image refer to Section IV-A.
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Fig. 2. Scatterograms in the polar coordinate system obtained by applying the
CVA technique to the simulated data sets containing changes (a) at full reso-
lution, and (b) at a lower scale. Continuous circle indicates the cluster of true
changes, while dashed circles identify regions of registration noise.

Fig. 3. Behavior of the mean value of the magnitude of SCVs versus the reso-
lution levels (scale) for clusters of change (dashed line) and of registration noise
(continuous line).

the impact of the registration noise is lower than at high resolu-
tion levels; accordingly, in the annulus of changed pixels mainly
clusters due to presence of true changes on the ground can be
detected. This simple observation on the behavior of SCVs with
respect to the scale, and in particular the different behaviors of
SCVs of changes and of RN versus scale variations, suggest us
important strategies to adopt in the definition of a change-de-
tection technique robust to registration noise. It is important to
note that this behavior of cluster associated with true changes
holds under the reasonable assumption that they are associated
with objects with a non negligible size, compared with the very
high geometrical resolution of images.

From the presented analysis and according to [25], two im-
portant properties can be derived for what concerns the effects
of a scale reduction on the registration noise properties:

3) Property 3: Clusters associated with registration noise in
exhibit significant variations of properties versus the scale;

4) Property 4: Clusters of changes exhibit slowly varying
statistical properties.

From these two properties it follows that the behaviors of
changed and no-changed (i.e., the ones due to RN) SCVs that
fall in versus the scale are different: decreasing the scale,
sectors of changes, unlike sectors of registration noise, are pre-
served. This results in an intrinsic robustness of changes to the
scale.

Fig. 4. General architecture of the proposed multiscale and parcel-based
change-detection technique.

III. METHODOLOGY

The multiscale properties of registration noise briefly recalled
in the previous section are at the basis of the development of a
change-detection technique based upon the analysis of the be-
havior of the distribution of SCVs in the polar domain at dif-
ferent scales. As reported in the previous section, we expect that
true significant changes are associated with objects with a non
negligible size (this assumption is reasonable and realistic when
dealing with VHR images), while misregistration appears in
the multispectral difference image with relatively thin structures
having different orientations. Therefore, by reducing the resolu-
tion of images we implicitly decrease the impact of the registra-
tion noise with respect to that on the original scene, while the
statistical properties of true changes maintain a good stability.
In other words, the lower the geometrical resolution is, the lower
the probability of identifying clusters associated with registra-
tion noise in the annulus of changed pixels. This means that at
low resolution levels in the annulus of changed pixels mainly
clusters due to the presence of true changes on the ground can
be detected. However, in order to obtain a change-detection map
characterized by a good geometrical fidelity, we should work at
full resolution. On the basis of these considerations, we propose
a change-detection technique that exploits a multiscale decom-
position in order to extract information about registration noise,
and generates the final change-detection map working at full
resolution. In this way we preserve the high geometrical detail
content of VHR images. In addition, in order to exploit the spe-
cific properties of VHR images, the proposed technique adap-
tively models also the spatial context information.

The proposed method can be divided into two main phases:
1) registration noise identification; and 2) context-sensitive de-
cision strategy for the generation of the final change-detection
map. The main idea of the developed technique is to detect the
regions of the polar framework where the registration noise is
dominant according to a multiscale strategy, and to consider
the spatial-context information through the definition of multi-
temporal parcels in order to generate the final change-detection
map (see Fig. 4). In the following details on the two phases are
reported.

A. Registration Noise Identification

The first phase of the proposed technique aims at identifying
the regions related to registration noise in the polar domain. To
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Fig. 5. Quantized magnitude-direction polar domain.

this purpose, we apply an analysis based upon the following
three steps: 1) CVA at full resolution (identification at full reso-
lution of regions in the polar domain candidate to include regis-
tration noise SCVs, i.e., ); 2) quantization-based analysis of
the SCV distributions at different resolution levels; and 3) adap-
tive identification of registration noise cells.

In the first step the CVA technique is applied to the original
images and , and the threshold value that separates the
circle of no-changed pixels from the annulus of changed pixels
is estimated. The value of can be retrieved either by a manual
trial-and-error procedure or by one of the automatic thresh-
olding algorithms proposed in the literature [17], [27]. SCVs
in are labeled as no-changed SCVs, whereas pixels in
should be further analyzed in order to separate SCVs associated
with registration noise from pixels of true changes.

To this end, in the second step, is divided into uni-
formly distributed quantization cells

of fixed shape and size. Each cell is
characterized by its extension and in the magnitude
and in the direction coordinates, respectively (see Fig. 5). It is
worth noting that the choice of the cell size can significantly
affect the performance of the quantization-based registra-
tion-noise-identification process. The proposed method aims
at overcoming this problem by exploiting different cell sizes
in the identification of registration noise clusters in (see
the third step of the estimation procedure). Once cells have
been defined, the two multitemporal images are decomposed
according to a multiscale transformation obtaining two sets
of images , where the
subscript ( ,2) denotes the acquisition date, and the
superscript indicates the resolution
level . The multiscale decomposition can be carried
out by using different algorithms, like gaussian pyramid de-
composition, wavelet transform, recursively upsampled bicubic
filter, etc. Images in show different tradeoffs between
registration noise and geometrical detail content. The CVA
technique is applied to each corresponding pair ,

, of low resolution images in
and . Then the distribution of SCVs within each cell is
studied at different scales. In particular, for each set of pixels
with SCVs falling in a given cell at full
resolution, the behavior of the distribution of the same SCVs
at resolution level (i.e., the lowest considered one) is
analyzed in order to identify whether the cell is associated with

registration noise or not. It is worth noting that the maximum
level of decomposition has to be selected according to
the size of expected main change structures in the considered
images. The main idea of this procedure is to identify cells
of registration noise through a comparison between the distri-
bution of the magnitude of SCVs at full resolution and at the
lowest considered resolution. At this level pixels of registration
noise tend to disappear given their properties that usually result
in small and thin structures. To this purpose, according to the
multiscale properties described in the previous section, the
behavior of the mean value of SCVs on the magnitude variable
at different resolutions is analyzed. In the proposed method
the mean value of the magnitude of SCVs that fall
within a cell at full resolution (level 0) is compared with the
mean value that the same SCVs have at resolution level

.2 A cell is associated with registration noise or
not according to the following decision rule:

if
if

(7)

where is a threshold value empirically set as equal to the
difference between the mean value of all the SCVs falling in

at full resolution and the mean value of the corresponding
SCVs at the lowest level, i.e.,

(8)

It is worth noting that small variations of the threshold value
around the automatic retrieved one do not significantly affect
the identification of registration noise clusters.

Let be a generic cell associated with registration
noise according to (7). A generic SCV is associated with
registration noise if it falls within a cell , i.e.,

if
otherwise.

(9)

In this way we locate the SCVs affected by registration noise in
the polar domain.

As pointed out previously, an important aspect to be consid-
ered is the choice of the quantization cell size. Slightly different
results can be obtained with different quantization character-
ized by cell sizes in different ranges of parameters and .
Therefore in the third step we adopt a strategy capable to take
advantage of different cell sizes, in order to make the technique
less affected from the choice of these parameters. First of all
the annulus of changed pixels is divided times into uniformly
distributed quantization cells with different size ,

.
Let us define the set of all the considered quantizations

as

(10)

2It is worth noting that in order to identify cells of registration noise we do not
analyze the behavior of SCVs that fall within the same cell at different resolution
levels, but we consider SCVs that at the highest resolution fall within a cell
and the same SCVs at the lowest considered level. This approach allows us to
follow the low-pass effect of the decomposition filter, which causes a migration
of SCVs toward the origin of the polar domain.
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is the th quantization made up of a set of
cells with the same size

(11)

where indicates the number of cells that results from the
quantization process, given and .

For each quantization the previously described procedure
is performed in order to obtain labels and for each
cell of each quantization . Let be the set
of labels (one for each ) associated to according to (9).
Labels in can assume values in . In order
to determine if a spectral change vector is of registration
noise or not, a majority voting rule is applied to . Therefore
a spectral change vector is of registration noise if the most
of the labels in is , i.e.,

if
if

(12)

where is the mathematical operator that returns the ele-
ment that occurs most often in a set of elements. In other words,
a generic region of covered by cells (one for each ) that
are mostly associated to registration noise according to (7) is
defined as registration noise region, otherwise it is registration
noise free. Actually, this procedure implicitly results in a quan-
tization of the annulus of changed pixels made up of re-
gions with different shapes and sizes. Each region is labeled as

or . We refer to these regions as adaptive cells
, and results defined as

(13)

Let be a generic adaptive cell which
includes contiguous SCVs in the magnitude-direction domain
that have been associated to label according to (12). Taking
into account this notation, the rule (12) can be rewritten as:

if
otherwise.

(14)

B. Context-Sensitive Decision Strategy for the Generation of
the Final Change-Detection Map

The retrieved information on each adaptive cell is used for
properly driving the generation of the final change-detection
map according to a context-sensitive parcel-based procedure.
Parcels are defined as regions that adaptively characterize the
local neighborhood of each pixel in the considered scene and
are homogeneous in both temporal images [23], [28]. The adap-
tive nature of multitemporal parcels allows one to model com-
plex objects in the investigated scene as well as borders of the
changed areas and geometrical details. In order to generate mul-
titemporal parcels from the two original images we first com-
pute two segmentation maps and applying a seg-
mentation algorithm separately to images and , respec-
tively. In this work a region growing segmentation algorithm
was considered, however any different kind of technique can
be adopted. Each represents a partition of image

( ,2) in disjoint regions of spatially contiguous pixels. Each
single region in both partitions satisfies a homogeneity mea-
sure that involves spectral and spatial properties [31], [32].
The desired representation of the spatio-temporal context of the
considered scene is obtained merging the two segmentations.
The final output is a partition shared by both con-
sidered images made of regions called
parcels. The defined multitemporal parcels satisfy the following
conditions:

AND

OR

and (15)

where represent the portion of image ( ,2) cov-
ered by parcel and and are adjacent.

The spatial-context information associated to each parcel
is integrated to the information about presence or absence
of registration noise retrieved from the multiscale analysis
in the previous phase. Let be the set of spectral change
vectors corresponding to the pixels included in parcel , i.e.,

. Each SCV in can assume one out of
three labels. Therefore the SCVs (i.e., the pixels) in a generic
parcel can be divided into three subsets: 1) which
includes SCVs of registration noise labeled according to (14);
2) which includes SCVs that are not affected by
registration noise according to (14); and 3) which includes
SCVs that fall into . According to this notation, all the SCVs
in a generic parcel (and, thus, the parcel itself) are classified
as changed or no-changed according to the following majority
rule:

if
otherwise

(16)

where is the mathematical operator that returns the cardi-
nality of sets. In other words a parcel (and therefore all the
pixels in it) is labeled as no-changed if the most of the SCVs
belonging to it either have been classified as SCVs affected by
registration noise according to (14) or fall into . It is worth
noting that the proposed approach allows us to create a relation-
ship between the RN information retrieved in the polar domain
(related to spectral change vectors) and the spatial information
of the original images (related to pixels and parcels). The final
change-detection map is obtained at full resolution, as low res-
olution components extracted from the multiscale analysis are
used only for detecting quantization cells associated with reg-
istration noise. Thus, the obtained change-detection map ade-
quately models geometrical details present in the analyzed VHR
images, reproducing accurately both border and homogeneous
changed regions.

IV. EXPERIMENTAL RESULTS

In this section the experimental analysis conducted on real
data is presented. First of all the data sets are described, then the
multiscale properties presented in Section II-B are analyzed on
the considered data. Finally the proposed multiscale and parcel-
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based technique is applied to the images and results are
discussed.

A. Data Set Description

In order to assess the effectiveness of the proposed technique,
two multitemporal data sets were considered. In particular, two
different portions of two images acquired on the city of
Trento (Italy) by the QuickBird multispectral sensor in Oc-
tober 2005 and July 2006 were analyzed. The QuickBird
sensor collects panchromatic images at 0.7 [m] resolution
and multispectral images with four spectral channels (blue
(450–520[nm]), green (520–600[nm]), red (630–690[nm])
and near-IR (760–900[nm])) at 2.8 [m] resolution. In the
preprocessing phase the two images were: 1) pan-sharpened;
2) radiometrically corrected; and 3) coregistered. In par-
ticular, we considered pan-sharpened images as we expect
that the pan-sharpening process can improve the results of
the change-detection process, as demonstrated in previous
work [29]. To this purpose we applied to the images the
Gram–Schmidt procedure implemented in the ENVI software
package [30] to the panchromatic channel and the four bands of
the multispectral images. Concerning radiometric corrections,
we simply normalized the images by subtracting from each
spectral channel of the two considered images its mean value.

The two different data sets were selected with the following
rationale: 1) the first data set (Data Set 1), which is made up of
images of 984 984 pixels, is a small portion of the investi-
gated scene for which we have a complete and detailed knowl-
edge of the changes occurred on the ground. This allowed us to
perform a quantitative detailed analysis under completely con-
trolled conditions; 2) the second data set (Data Set 2), which
is made up of images of 5000 5000 pixels, is related to the
largest portions of the two available QuickBird images that cor-
respond to the same area on the ground. These large images al-
lowed us to perform a less detailed quantitative analysis (based
upon a spatial random sampling as we did not have a complete
knowledge of the changes occurred on the ground) but an im-
portant qualitative analysis on the effectiveness and robustness
of the proposed technique in real operational conditions on large
scenes. The registration process was carried out by using a poly-
nomial function of order 2 according to 14 ground control points
(GCPs) for the first data set and according to 20 GCPs for the
second one, and by applying a nearest neighbor interpolation
[30]. In our experiments we did not use more advanced regis-
tration techniques and procedures for geometric corrections for
better assessing the robustness of the proposed method to the
residual registration noise.

Fig. 6(a) and (b) the pansharpened images and , re-
spectively, related to the Data Set 1 (984 984 pixels). Be-
tween the two acquisitions two kinds of changes occurred: 1)
simulated changes that consist of new houses introduced on the
rural area [continuous circles in Fig. 6(b)]; and 2) real changes
that consist of some roofs rebuilt in the urban area [dashed cir-
cles in Fig. 6(b)]. It is worth noting that simulated changes have
been introduced in a completely realistic way in order to in-
clude a second type of change in the analysis. In particular, sim-
ulated buildings have been added to the scene taking their geo-
metrical structures and spectral signatures from other real build-

Fig. 6. Data Set 1 (small images) made up of pansharpened images of the
Trento city (Italy) acquired by the QuickBird VHR multispectral sensor in:
(a) October 2005; and (b) July 2006 (simulated changes appear in the regions
marked with continuous circle, while real changes occurred between the two
acquisition dates appear in regions marked with dashed circles). (c) Change-de-
tection reference map.

ings present in other portions of the available full scene in order
to take into account the image dynamic and noise properties.
Moreover, between the two dates other spectral changes that de-
pend upon differences in the vegetation phenology and have not
a semantic meaning are present, due to the different acquisition
seasons (i.e., summer and autumn) of the images under investi-
gation. To perform a quantitative assessment of the effectiveness
of the proposed method, a reference map (which includes 20602
changed pixels and 968256 no-changed pixels) was defined ac-
cording to both the available prior knowledge on the considered
area and to a visual analysis of images [see Fig. 6(c)]. According
to the previous observation, the reference map does not report
changes due to seasonal variations of the vegetation phenology.
However, if these changes show significant intesity in the mag-
nitude domain, they will appear in the final change-detection
map, even if, from a semantic point of view, the related area is
not changed.

Fig. 7(a) and (b) shows the pansharpened images and ,
respectively, related to the Data Set 2 (5000 5000 pixels). Be-
tween the two acquisitions different kinds of changes occurred
on the ground affecting urban, industrial, rural and forest areas.
From a visual analysis it is possible to note: 1) differences in
some roofs of the urban and industrial areas; 2) differences in
the bank of the river due to a reduction of the water level; 3) sig-
nificant differences due to shadows in the forest area; and 4) dif-
ferences in the cultivated fields due to different kinds of farming.
Considering the extent of the scene and the fact that we have no a
priori information on the whole area under investigation, in this
case it was not possible to derive a complete reference map. The
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Fig. 7. Data Set 2 (large images) made up of pansharpened images of the Trento
city (Italy) acquired by the QuickBird VHR multispectral sensor in: (a) October
2005 and (b) July 2006; (c) magnitude image.

magnitude image obtained according to (2) points out the main
spectral differences present between the two dates [Fig. 7(c)].
To perform a quantitative assessment of the effectiveness of the
proposed method on this large images, a set of points were ran-
domly collected in the scene and each of them was labeled as
changed or nonchanged according to a careful visual analysis.
In particular, 2300 points were collected (245 labeled as change
and 2055 as no-change). It is worth noting that in this case there
are some semantic changes in the crops (i.e., changes in the type
of cultivation), which are considered as changes in the reference
map and, thus, in the quantitative analysis. Finally, also in this
second data set changes related to different phenology of the
vegetation are considered as false alarms, since they have not
any semantic meaning.

B. Results: Multiscale Properties

To confirm the validity of the fundaments of the proposed
technique, we carried out an analysis on the multiscale proper-
ties of registration noise on the considered images. This anal-
ysis was conducted only on Data Set 1, as a complete reference
map on the investigated area was available only for the small
images. The aim of this analysis was to show that the proper-
ties derived on simulated data are effective also for real data.
To this purpose, as done for simulated data in [25] and reported
in this work in Section II-B, from the QuickBird multitemporal
images and we generated images at different scales by
applying the Daubechies-4 stationary wavelet transform [26] to
the multitemporal images and . To show the effect of
the multiscale decomposition in the polar domain, we applied
the CVA technique to the original images and to the dataset

Fig. 8. Scatterograms in the polar coordinate system of (a) the full resolution
original difference image, and (b) the low resolution image obtained at level four
of the wavelet decomposition. Dotted circle separates � from� , continuous
circles indicate sectors of true changes, while dashed circles identify regions of
registration noise.

Fig. 9. Behavior of the mean value of the magnitude of SCVs versus the res-
olution levels (scale) for the class of changes (dashed line) and of registration
noise (continuous line).

at lowest resolution. We considered only the red and near in-
frared spectral channels, as they revealed to be the most effec-
tive in emphasizing the changes occurred on the area of interest.
Fig. 8 reports the scatterograms obtained on both the images at
full resolution and the images at the fourth level of the decom-
position. Comparing these scatterograms (and the other ones
obtained at different resolution level, which are not reported
for space constraints) it is possible to observe that, decreasing
the resolution, clusters associated with changed pixels (see re-
gions marked with continuous circles in Fig. 8) only reduce
their spread, without being completely smoothed out. On the
contrary, clusters associated with RN tend to disappear [dashed
circles in Fig. 8(a)], collapsing within the circle of no-changed
pixels [dotted circle in Fig. 8(a)]. This behavior confirms what
expected from the analysis presented in Section II-B, i.e., SCVs
of real changes show a quite stable trend, while SCVs associ-
ated with registration noise have non stable properties versus
the scale. These results were conducted also on other data sets.

In greater detail, we studied the behavior of the mean values in
the magnitude domain of SCVs related to registration noise and
to real changes, when the resolution of the images decreases.
Fig. 9 reports the behavior of the mean value of the magnitude of
SCVs versus the scale: the mean value of RN clusters rapidly de-
creases by reducing the scale (continuous line), while the mean
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value of SCVs associated with true changes slightly varies with
the scale (dashed line), decreasing slower than the one of SCVs
related to RN.

C. Results: Change Detection on Data Set 1 (Small Images)

The effectiveness of the proposed technique was first
tested on the Data set 1. To this purpose cells of registration
noise were identified according to the procedure described in
Section III-A, and then the final change-detection map was
generated according to Section III-B. According to the pro-
posed technique, the first step aimed at identifying registration
noise. To this purpose the change vector analysis technique
was applied to images and and the decision threshold
that separates the annulus of changed pixels from the circle of
no-changed pixels was computed. The Bayes rule for minimum
error [17], [27] with estimates obtained by the Expectation
Maximization (EM) algorithm was used for retrieving a value

equal to 220. SCVs in were labeled as no-changed SCVs.
Five different quantizations were
considered for the annulus of changed pixels with cells of
size , where and

(for each ). It is worth noting that
different values for and can be selected according to
the considered data set. Images and were decomposed
according to the procedure described in Section IV-B, and the
CVA technique was applied to the full (i.e., level 0) and the
lowest (i.e., level four of the wavelet transform) resolution
images. Fig. 8 shows the polar scatterograms obtained for the
two mentioned resolution levels.

In order to identify whether a cell for a
given is of registration noise or not the dif-
ference in the mean values of the magnitude of SCVs between
the resolution level 0 and 4 was computed. This value was com-
pared with the threshold derived according to (8) (for equal
to 220, the value of resulted equal to 190). SCVs falling into
cells in which the difference resulted to be higher than were
labeled as belonging to registration noise according to (9). At
this stage, for comparison purposes, a set of five change-de-
tection maps was generated (one for each considered quantiza-
tion) by assigning SCVs in and SCVs of registration noise to
the class of no-changed pixels and all the others to the class of
changed pixels (see Table I). As one can see, for between
200 and 400 similar results were achieved, whereas higher or
lower values resulted in slightly worse performance.

In order to reduce the impact of critical values of and
on the change-detection performance, we applied the pro-

posed technique for adaptively modeling the cell shape and size
involving in the decision step all the five quantization intervals.
Each SCV was classified as belonging to registration noise or
not according to (12). Even at this stage, for sake of compar-
ison, a change-detection map was computed by assigning SCVs
in and SCVs of registration noise to the class of no-changed
pixels and all the others to the class of changed pixels (see results
for the pixel-based proposed technique in Table II). Comparing
these results with the ones in Table I it is possible to conclude
that the joint use of quantization cells of different size makes the
change-detection process more robust as results obtained with

TABLE I
CHANGE-DETECTION RESULTS OBTAINED ON DATA SET 1 (SMALL IMAGES)

AT A PIXEL LEVEL WITH THE PROPOSED MULTISCALE TECHNIQUE

WITHOUT THE ADAPTIVE ANALYSIS OF THE CELL DIMENSION

TABLE II
CHANGE-DETECTION RESULTS OBTAINED ON DATA SET 1 (SMALL IMAGES)

AT BOTH PIXEL AND PARCEL LEVEL BY THE PROPOSED ADAPTIVE

AND MULTISCALE TECHNIQUE, THE STANDARD CVA TECHNIQUE

AND THE MANUAL APPROACH

unreliable quantizations values are discarded thanks to the ma-
jority decision rule in (12).

Finally, the information about adaptive cells of registration
noise was used within the parcel-based decision strategy for
computing the final change-detection map according to the pro-
posed strategy. To this end, multitemporal parcels were gener-
ated as described in Section III-B and SCVs in each parcel were
labeled according to (16). As one can see from Table II, the
use of the spatial-context information significantly reduces both
false and missed alarms. It is worth noting that the use of spa-
tial-context information retrieved according to the parcel-based
strategy allows one to obtain a regularized change-detection
map without affecting the geometrical details content of the map
itself.

For a further assessment of the effectiveness of the proposed
technique, change detection was performed according to the
standard pixel-based [17] and parcel-based [28] change vector
analysis ignoring the information about registration noise. In
both cases (see Table II) it is clear that standard methods are
sharply affected by the presence of registration noise, which in-
volves a high number of false alarms mainly located in the high
frequency regions of the images. On the contrary, the proposed
method significantly reduces false alarms both at pixel (from
17.94% to 6.34%) and at parcel level (from 11.01% to 2.91%),
and generates change-detection maps characterized by high ac-
curacy both in homogeneous and border areas. Fig. 10 allows
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Fig. 10. Change-detection maps obtained on Data Set 1 with: (a) proposed mul-
tiscale approach with the adaptive estimation of the cell dimension at a parcel
level; and (b) the standard parcel-based CVA.

one a visual comparison between the change-detection map ob-
tained at parcel level with the proposed technique [Fig. 10(a)]
and the standard CVA [Fig. 10(b)].

A final comparison is made with the results achieved ac-
cording to a manual trial-and-error approach. In this case the
final change-detection map is computed assigning SCVs that
fall into to , and applying manual thresholds for isolating
within SCVs associated with changed pixels from those as-
sociated with registration noise on the basis of some prior in-
formation. Two maps were generated. The first considers the
spatial-context information arising from multitemporal parcels
while the second does not. Results yielded with this procedure
can be considered as an upper bound for the proposed technique.
Observing Table II, one can conclude that the proposed method
performs effectively both at a pixel and at a parcel level, as it
exhibits overall accuracies that are close to those obtained by
the manual (optimal) approach (i.e., 93.13% vs. 93.62% for the
pixel-based case and 96.69% vs. 97.18% for the parcel-based
one).

As final remark it is important to notice that the change-de-
tection map derived by the proposed approach presents residual
false alarms mainly due to the different acquisition seasons of
the considered images (i.e., summer and autumn). This char-
acteristic resulted in significant radiometric differences related
to seasonal variations in the crop rows and in the shapes of
shadows. The false alarms due to such acquisition conditions
can be reduced only considering additional semantic informa-
tion associated with changes. However, the overall accuracy
achieved by the proposed context-sensitive technique robust to
registration noise (i.e., 96.69%) due to sharp reduction of false
alarms and the high fidelity in the reproduction of changed ob-
jects (both in uniform and contour regions) confirms its validity.

D. Results: Change Detection on Data Set 2 (Large Images)

In order to study the effectiveness of the proposed method
in real operational conditions (where large images are consid-
ered), this sub-section reports the results obtained on the Data
Set 2. As described for the previous data set, cells of registra-
tion noise were identified and then the final change-detection
map was generated. In order to identify registration noise, we
decomposed the images through the Daubechies-4 stationary
wavelet transform and we applied the CVA technique to the

TABLE III
CHANGE-DETECTION RESULTS OBTAINED ON DATA SET 2 (LARGE IMAGES)

AT BOTH PIXEL AND PARCEL LEVEL BY THE PROPOSED ADAPTIVE AND

MULTISCALE TECHNIQUE AND THE STANDARD CVA TECHNIQUE

images and at full resolution and at the lowest con-
sidered level (fourth level of the wavelet transform). Also in
this case the threshold value that separated
from was retrieved according to the Bayes rule for minimum
error. Five different quantization of the an-
nulus of changed pixels with cells of size , where

and (for each
), were considered. Then the analysis on the dif-

ference in the mean values of the SCVs that fall within each cell
at full resolution and at low resolution was performed and com-
pared with the threshold derived according to (8) ,
in order to label each SCVs as belonging to RN or not according
to (9). At this point the proposed technique for adaptively mod-
eling the cell shape was applied to the five different considered
quantizations and the final change-detection map at a pixel
level was generated by assigning SCVs in and SCVs of reg-
istration noise to the class of no-changed pixels and the others
to the class of changes pixels (see results in Table III).

Finally, the contextual information was exploited through the
parcel-based proposed strategy and the final change-detection
map at a parcel level was generated. Numerical results obtained
on the test set described in Section IV-A are reported in Table III.
As one can observe, also in this case the number of false alarms
is significantly reduced in the parcel-based strategy.

As for the Data Set 1, we compared the results obtained with
the proposed method with the ones achieved by the standard
CVA both at pixel and parcel level ignoring the information
about registration noise. Observing Table III, it is clear that in
both cases the standard method is sharply affected by a high
number of false alarms (mainly due to RN), whereas the pro-
posed method exhibits a significant reduction of them, resulting
in an overall change detection accuracy 6% higher than that
achieved by the standard method (from 87.07% to 94.56% for
the pixel-based case and from 91.25% to 97.10% for the parcel-
based case).

Fig. 11(a) and (b) report the change-detection maps obtained
at a parcel level with the proposed method and with the standard
CVA, respectively. A visual analysis of them confirms the ef-
fectiveness of the parcel-based method in representing correctly
both homogeneous and border regions, and shows the sharp re-
duction of false alarms due to RN with the proposed method,
especially in the urban area of the considered scene (upper left
part of the image).
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Fig. 11. Change-detection map obtained on Data Set 2 with: (a) proposed mul-
tiscale approach with adaptive estimation of the cell dimension at parcel level;
and (b) the standard parcel-based CVA. (It is worth noting that the maps rep-
resent an area of 5000 � 5000 pixels and, thus, many changes are not clearly
visible).

Results obtained on the large data set are very similar to the
ones obtained on the small one. This proves the effectiveness of
the proposed method also on large images which are a typical
condition in real operational applications.

V. CONCLUSION

In this paper we presented a context-sensitive multiscale tech-
nique robust to registration noise for change detection on very
high geometrical resolution multispectral images.

When dealing with change detection in multitemporal VHR
images one of the most significant sources of errors is regis-
tration noise. Such kind of noise is due to the impossibility to
perfectly align multitemporal images even if accurate co-reg-
istration techniques are applied to the data. In order to under-
stand how to reduce the impact of residual misregistration on
the change-detection process, in this work we carried out an
analysis of the behaviors of registration noise that affect mul-
titemporal VHR data sets. This analysis was developed in the
context of a polar framework for change vector analysis. It was
observed that SCVs that fall into the annulus of changed pixels
but are associated with registration noise (and therefore are a
possible source of false alarms) exhibit significant variations
of statistical properties as the scale is reduced. According to
this observation, the proposed approach performs a quantiza-
tion-based multiscale analysis of SCVs in the magnitude-di-
rection domain in order to identify SCVs associated with reg-
istration noise. The retrieved information on registration noise
is then exploited in the framework of a parcel-based decision
strategy that takes advantage of spatial-context information in
defining the final change-detection map. This step is performed
at full resolution in order to preserve all the high geometrical
detail information characteristic of VHR images.

The qualitative and quantitative analysis of the results ob-
tained on two data sets made up of a small and a large pair
of QuickBird images point out that the proposed technique in-
volves a low amount of false alarms in change-detection maps
and a high accuracy in modeling both geometrical details and
homogeneous areas. In greater detail, the achieved results are
significantly better than the ones yielded by standard change-de-
tection techniques. The effectiveness of the proposed technique

was also tested on different data sets acquired by different re-
mote sensing sensors (that are not reported for space constraint),
which confirmed the conclusion drawn for the presented Quick-
Bird data.
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An additional remark concerns the residual false alarms
present in the final change-detection map yielded by the pro-
posed technique. These errors are mainly related to radiometric
changes induced by seasonal variations which are not relevant
to the considered application. Although we did not consider
this aspect in this work, such false alarms can be reduced only
considering additional semantic information about the kind of
changes present on the ground.

It is worth noting that despite the proposed method was de-
veloped for VHR remote sensing images (as the impact of mis-
registration on this kind of data is more relevant), it can be suit-
able also for the analysis of optical data at lower resolution and,
under given conditions, also for other kinds of images.

As a future work we plan to extensively test the proposed
method on other multitemporal images acquired by different
sensors representing different change-detection problems.

APPENDIX I

Please see the chart on the previous page.
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