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ABSTRACT—This paper addresses pattern classification in the framework of domain adaptation by considering methods that solve

problems in which training data are assumed to be available only for a source domain different (even if related) from the target domain

of (unlabeled) test data. Two main novel contributions are proposed: 1) a domain adaptation support vector machine (DASVM)

technique which extends the formulation of support vector machines (SVMs) to the domain adaptation framework and 2) a circular

indirect accuracy assessment strategy for validating the learning of domain adaptation classifiers when no true labels for the

target-domain instances are available. Experimental results, obtained on a series of two-dimensional toy problems and on two real

data sets related to brain computer interface and remote sensing applications, confirmed the effectiveness and the reliability of both the

DASVM technique and the proposed circular validation strategy.

Index Terms—Domain adaptation, transfer learning, semi-supervised learning, support vector machines, accuracy assessment,

validation strategy.

Ç

1 INTRODUCTION

THE complexity of pattern classification problems de-
pends on both the investigated application and the

available prior information. Two main families of learning
methods can be used for training a classifier: supervised
learning methods (when labeled training samples are given)
or unsupervised learning methods (when labeled training
samples are not available). Let us define a domain D as a
distribution P ðx; yÞ, x 2 ~X , y 2 �, which governs the
classification problem under investigation, where ~X and
� represent all possible instances and all possible
information classes for the considered problem, respec-
tively. In the supervised learning setting, classification
algorithms are designed under the hypothesis that the
distribution P̂ ðx; yÞ estimated from available labeled
training data T ¼ fðxi; yiÞgi, xi 2 X � ~X , yi 2 � drawn
from D well approximates P ðx; yÞ. Hence, it is possible to
obtain high classification accuracies over unseen test data
drawn from the same domain. In the unsupervised
learning setting, no training data are available. Thus, the
problem can be addressed only through clustering meth-
ods. However, in many operational applications, there are
hybrid situations where, even if prior information is
available, it is not sufficient to define a training set
representative of the distribution to which the trained
model should be applied. These kinds of problems can be
addressed according to transfer learning methods.

Transfer learning refers to the problem of retaining and
applying the knowledge available for one or more tasks,
domains, or distributions to efficiently develop an effective
hypothesis for a new task, domain, or distribution. Instead
of involving generalization across problem instances,
transfer learning emphasizes the transfer of knowledge
across tasks, domains, and distributions that are similar but
not the same. When the objective is to transfer knowledge
across different tasks, this results in the multitask learning
subproblem. Multitask learning methods aim at improving
the generalization capability by exploiting the information
contained in training data available for the considered tasks
(where the set of considered information classes is allowed
to vary). In particular, what is learned for each task is used
as a bias for other tasks in order to improve the
classification performances [1], [2], [3]. In the single-task
framework, the default assumption of supervised learning
methods is that training and test data are drawn from the
same distribution. When the two distributions do not
match, two distinct transfer learning subproblems can be
defined depending on whether training and test data refer
to the same domain or not: 1) learning under sample selection
bias and 2) learning under domain adaptation.

In the case of sample selection bias, unlabeled test data are

drawn from the same domain D of training data, but the

estimated distribution P̂ ðx; yÞ ¼ P̂ ðxÞP̂ ðy j xÞ does not

correctly model the true underlying distribution that

governs D since the number (or the quality) of available

training samples is not sufficient for an adequate learning of

the classifier. The small amount of labeled data generally

leads to a poor estimation P̂ ðxÞ of the prior distribution

P ðxÞ (i.e., P̂ ðxÞ 6¼ P ðxÞ). Moreover, if the few available

training data do not represent the general target population

and introduce a bias in the estimated class prior distribution

(i.e., P̂ ðyÞ 6¼ P ðyÞ), this may cause a poor estimation of the
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conditional distribution (i.e., P̂ ðy j xÞ 6¼ P ðy j xÞ). On one

hand, if both P̂ ðxÞ 6¼ P ðxÞ and P̂ ðy j xÞ 6¼ P ðy j xÞ, the

problem is referred to as sample selection bias [4], [5], [6].

On the other hand, the particular case where the true and

estimated distributions are assumed to differ only via

P̂ ðxÞ 6¼ P ðxÞ, but P̂ ðy j xÞ � P ðy j xÞ is denoted by covariate

shift [7], [8].
In the case of domain adaptation, unlabeled test patterns

X t ¼ fxtigi, X t � ~X , are drawn from a target domain Dt

different from the source domain Ds of training samples
T s ¼ fðxsi ; ysi Þgi, xsi 2 X s � ~X , ysi 2 �. This may happen when
the available labeled data are out of date, whereas the test data
are obtained from fast evolving information sources, or when
series of data acquired at different times should be classified,
but training samples collected only at one time are available.
In this context, let Psðx; yÞ ¼ Psðy j xÞ � PsðxÞ and Ptðx; yÞ ¼
Ptðy j xÞ � PtðxÞ be the true underlying distributions for the
source and target domains, respectively. The key idea is to
infer a good approximation of Ptðx; yÞ by exploiting
Psðx; yÞ. If Ptðy j xÞ deviates from Psðy j xÞ to a given
extent, domain adaptation is necessary. In the framework of
domain adaptation, most of the learning methods are
inspired by the idea that, although different, the two

considered domains are correlated.1 In particular, it is

intuitive to observe that considering the (unlabeled) data of

the target domain in the training phase could improve the

performances with respect to ignore this information

source.2 Table 1 summarizes the main characteristics of all

the aforementioned learning methods.
In the last few years, transfer learning has been

recognized as an important topic in the machine learning

and pattern recognition community. However, the attention

has been focused mainly on developing methodologies for

addressing multitask learning or learning under sample

selection bias, whereas less attention has been devoted to
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TABLE 1
Taxonomy of Learning Types and Problems

( ~X and � Represent All Possible Instances and All Possible Information Classes, Respectively, for the Considered Problem)

1. The correlation between probability distributions (which allows
estimating quantitatively how similar they are) can be empirically
evaluated according to some similarity metrics. Hence, two domains are
considered correlated if the distance between the corresponding underlying
distributions is relatively small according to proper metrics (e.g., [9], [10],
[11]).

2. A simple toy example for domain adaptation problems is described
and investigated in Section 6, where source-domain samples are distributed
according to two intertwining moons associated with two specific
information classes, while target-domain samples are obtained by a free
rotation of the original source-domain patterns (i.e., due to rotation, source-
and target-domain data exhibit different distributions: PsðxÞ 6¼ PtðxÞ and
Psðy j xÞ 6¼ Ptðy j xÞ).
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domain adaptation problems. This is due to two main
motivations: 1) Domain adaptation is a more critical and
challenging problem with respect to the other transfer
learning subproblems, as training data are assumed to be
available only for a source domain different (even if related)
from the target domain of the (unlabeled) test samples, and
2) unlike other problems, in practice, there are no strategies
to assess the effectiveness of the classification results using
standard statistical validation methods as no labeled
samples are assumed to be available for the target domain.
Considering the complexity of the problem, the lack of
procedures for the accuracy assessment is crucial, and at
present, seems to be a major limitation for the development
of operational domain adaptation learning methods.

In this paper, we address domain adaptation problems
by introducing two main novel contributions: 1) a domain
adaptation support vector machine (DASVM) technique
that extends support vector machines (SVMs) to the domain
adaptation framework by exploiting labeled source-domain
data and unlabeled target domain data in the training phase
of the algorithm and 2) a circular indirect accuracy
assessment strategy for the domain adaptation learning
that permits to automatically identify reliable solutions for
the target-domain classification problem by only exploiting
source-domain labeled samples.

The rationale for developing a domain adaptation
technique in the framework of SVMs [12], [13] is due to
the effectiveness of this classification methodology that
attempts to separate samples belonging to different classes
by defining maximum margin hyperplanes [14], [15], [16].
The relevance of SVMs is mainly related to their desirable
properties that can be summarized as follows:

1. Empirical effectiveness with respect to other tradi-
tional classifiers, which results in relatively high
classification accuracies and very good generaliza-
tion capabilities.

2. Convexity of the objective function used in the
learning of the classifier, which results in a unique
solution (i.e., the system cannot fall into suboptimal
solutions associated with local minima).

3. Possibility of representing the optimization problem
in a dual formulation, where only nonzero Lagrange
multipliers are necessary for defining the separation
hyperplane (sparsity of the solution).

4. Capability of addressing classification problems in
which no explicit parametric models on the distribu-
tion of information classes are assumed (distribu-
tion-free classifier).

5. Possibility of defining nonlinear decision boundaries
by implicitly mapping the available observations
into a higher dimensional space (i.e., kernel trick).

In the literature, semi-supervised [17], [18], [19] and
transductive [20], [21] techniques based on SVMs have
been proposed for solving problems under sample selection
bias characterized by a large amount of unlabeled data but a
reduced number of labeled data.3 In particular, they try to
recover information from the distribution of unlabeled data

in the input space in order to improve the final classification
performances. Nevertheless, these techniques are designed
for handling problems where labeled and unlabeled data
come from the same domain; thus, they are ineffective on
domain adaptation problems, especially when the source-
and target-domain distributions are significantly different.
In order to overcome such a drawback, the proposed
DASVM technique exploits and extends to domain adapta-
tion problems principles of both transductive SVMs
(TSVMs) [20] and progressive transductive SVMs (PTSVMs)
[21]. From a general perspective, available labeled data
from the source domain Ds are used for determining an
initial unreliable solution for the target-domain problem;
then, unlabeled samples of the target domain Dt are
exploited for properly adjusting the decision function,
while labeled samples of Ds are gradually erased. The final
classification function is determined only on the basis of
semilabeled samples, i.e., originally unlabeled target-domain
instances that obtain labels during the learning process.

In order to estimate the correctness of the solutions for
domain adaptation problems (where no prior information
for Dt is available), we propose a novel validation strategy
developed under the assumption that there exists an
intrinsic structure intimately relating Ds and Dt. Under
the hypothesis that data in the two domains do not follow
uncorrelated distributions, we assume that it is possible to
obtain an indirect evaluation of the reliability of the solution
to the investigated target problem. The effectiveness of the
solution for the target-domain samples can be inferred at
the end of a circular procedure by exploiting available
labeled samples (i.e., prior information) related to the
source domain Ds.

Experimental results obtained on a series of simulated
domain adaptation toy problems and on two real domain
adaptation problems defined in the framework of brain
computer interface and remote sensing point out the
effectiveness and the reliability of both the presented
DASVM and the proposed circular validation strategy. It
is worth noting that the circular validation strategy is
general and can be used with any classification technique
applied to domain adaptation problems.

The paper is organized into seven sections. In Section 2, a
survey on domain adaptation methods is presented. Section 3
introduces the notation and the assumptions considered in
this work. Section 4 presents the proposed DASVM techni-
que. Section 5 describes the circular validation strategy
devised for assessing the accuracy of domain adaptation
learning algorithms. In Section 6, experimental results are
reported and discussed. Finally, Section 7 draws the
conclusions of this paper.

2 RELATED WORK

In the last few years, the scientific community has devoted a
growing interest to the definition of classification techni-
ques for addressing domain adaptation problems. It is
worth mentioning that a series of preliminary algorithms
has been developed under the assumption that a small
amount of target-domain labeled samples are available in
the learning phase, thus violating one of the key hypotheses
for domain adaptation. However, the role of these studies
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3. It is worth noting that the objective functions used in the learning of
semi-supervised and transductive SVMs are often not convex.
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has been particularly important for later development of
domain adaptation classifiers. In the following, we first
briefly review some of the most relevant algorithms
developed in the aforementioned framework; then, we
focus the attention on current state-of-the-art domain
adaptation techniques.

2.1 Algorithms Assuming Labeled Data Available
for the Target Domain

Most of the techniques presented in this framework have
been developed for solving text classification problems. A
common approach is to treat source-domain data as prior
knowledge and to estimate the target-domain model para-
meters under such prior distribution. Hwa [22] and Gildea
[23] proved that simple techniques based on using adequately
selected subsets of source-domain data and parameter
pruning can improve the performance on unlabeled target
data. In [24], Roark and Bacchiani used source-domain data to
construct a Dirichlet prior for MAP estimation of the target
domain. In [25], Li and Bilmes proposed an accuracy-
regularization objective function, which minimizes the
empirical risk on target data while maximizing a Bayesian
divergence prior determined on the source-domain data
distribution. Another approach proposed in [26] by Chelba
and Acero is to use the parameters of the maximum entropy
model learned from the source domain as the means of a
Gaussian prior when training a new model on target data. A
different technique based on the Conditional Expectation
Maximization (CEM) algorithm developed in the maximum
entropy framework has been presented by Daumè and Marcu
in [27]. Unlike the aforementioned techniques that do not
consider unlabeled samples of the target domain in the
learning phase, in [28], a domain adaptation method that can
exploit information intrinsic in unlabeled target-domain data
has been presented. Jiang and Zhai proposed a general
instance weighting framework that implements several
adaptation heuristics: removing misleading training samples
in the source domain, assigning more weights to labeled
target patterns than labeled source patterns, and augmenting
training samples with target samples with predicted labels.
Other techniques aim at bridging the gap between source and
target distributions by changing data representation. As an
example, in [29], Florian et al. developed an algorithm that
builds a source-domain model and considers its predictions
as features for the target domain. In this context, another
interesting approach has been recently proposed in [30],
where Daumè presented an algorithm based on the idea of
transforming domain adaptation problems into standard
supervised learning problems (to which any standard
algorithm may be applied) by augmenting the size of the
feature space of both source and target data.

2.2 Domain Adaptation Algorithms

At present, several domain adaptation algorithms rely on
defining new features for capturing the correspondence
between source and target domains [31], [32]. In this way,
the two domains appear to have similar distributions, thus
enabling effective domain adaptation. Moreover, as often
features are correlated, careful feature subsetting could lead
to significant accuracy gains [33]. In [31], Blitzer et al.
describe a heuristic method for domain adaptation, which
exploits unlabeled data from both domains to induce
correspondences among features in the two domains. The

unlabeled target samples are exploited for inferring a good
feature representation, which can be regarded as weighting
the features. In [32], rather than choosing a common feature
representation heuristically, Ben-David et al. try to directly
learn a new representation which minimizes a bound on the
target generalization error. The bound is determined both
using source-domain labeled samples and source and
target-domain unlabeled samples, and it is stated in terms
of a representation function designed to minimize domain
divergence, as well as classification error. The algorithm
aims at jointly minimizing a trade-off between source-target
similarity and source-domain training error. In [33], Satpal
and Sarawagi present a method for addressing domain
adaptation problems that selects a subset of features for
which the distance (evaluated in terms of a particular
distortion metric) between the source and target distribu-
tions is minimized, while maximizing the likelihood of
labeled training data.

Other interesting approaches for domain adaptation have
been presented by Dai et al. [34] and [35]. In [34], they
introduced a naive Bayes algorithm for addressing domain
adaptation in the context of text categorization, where the EM
algorithm is used to find a locally optimal posterior
hypothesis under the target distribution. An initial model
based on the source training data is first estimated. Such a
model is treated as a poor estimation of the target distribu-
tion. The EM algorithm is applied to find a local optimal in
the hypothesis space, where the estimation should gradually
approach the target distribution. In [35], a co-clustering-
based classification algorithm is presented, where co-cluster-
ing is used as a bridge to propagate the class structure and
knowledge from the source domain to the target domain.

Domain adaptation without labeled target-domain data
has also been previously analyzed by the authors in the
context of remote sensing image classification [36], [37], [38],
[39] for addressing automatic updating of land-cover maps.
In [36], a domain adaptation approach is proposed that is able
to update the parameters of an already trained parametric
maximum-likelihood (ML) classifier on the basis of the
distribution of a new image for which no labeled samples
are available. In [37], in order to take into account the
temporal correlation between images acquired on the same
area at different times, the ML-based domain adaptation
approach is reformulated in the framework of the Bayesian
rule for cascade classification (i.e., the classification process is
performed by jointly considering information contained in
the source and target domains). The basic idea in both
approaches is modeling the observed spaces by a mixture of
distributions whose components are estimated by the use of
unlabeled target data and according to a proper inference
applied to source samples of the reference image. This is
achieved by using a specific version of the EM algorithm with
finite Gaussian Mixture Models [40]. In [38], domain
adaptation approaches based on a multiple-classifier system
and a multiple-cascade-classifier system (MCCS) have been
defined, respectively. In particular, in [39], the proposed
MCCS architecture is composed of an ensemble of classifiers
developed in the framework of cascade classification, which
is integrated in a multiple-classifier architecture. Both a
parametric ML classification approach and a nonparametric
radial basis function neural network (RBF-NN) classification
technique are used as basic classifiers. In addition, in order to
increase both the effectiveness and robustness of the
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ensemble, hybrid ML and RBF-NN cascade classifiers are
defined.

3 PROBLEM FORMULATION AND ASSUMPTIONS

Given an input space ~X and a set of information
classes �, a classifier is any function gðxÞ : ~X ! � that
maps instances x 2 ~X to information classes. In super-
vised learning problems, training samples T ¼ fðxi; yiÞgi,
xi 2 X � ~X , yi 2 �, drawn from the probability distribu-
tion P ðx; yÞ ¼ P ðy j xÞ � P ðxÞ are assumed to be available.
Accordingly, the learning problem is to determine a
supervised classifier gðx j T ; ��Þ4 that permits to obtain
high predictive accuracy for unlabeled test samples
drawn from the same distribution P ðx; yÞ by exploiting
the available training set T . The discrimination capability
depends on the classifier model, which is described by a
vector of parameters �� that is specific for each family of
classifiers.

In the framework of domain adaptation, the problem is
more complex as test patterns are drawn from a target-
domain distribution Ptðx; yÞ ¼ Ptðy j xÞ � PtðxÞ different
from the source-domain distribution of training samples
Psðx; yÞ ¼ Psðy j xÞ � PsðxÞ. Obtaining a good adaptation
requires an adequate modeling of the relationship between
source and target domains Ds and Dt. There are two
extreme cases for domain adaptation problems: 1) If
Psðx; yÞ � Ptðx; yÞ, adaptation is not necessary and stan-
dard supervised learning algorithms can be employed and
2) if Psðx; yÞ and Ptðx; yÞ are uncorrelated, then source-
domain data are useless for building a model for Dt.
Nevertheless, in real applications, Ds and Dt are generally
neither identical nor uncorrelated. In these situations, it is
reasonable to assume the existence of an intrinsic relation-
ship between the two domains that makes it possible
adaptation. We expect that the probability to succeed in the
adaptation process is associated with the complexity of the
problem, which depends on the correlation between
Psðx; yÞ and Ptðx; yÞ.

In this context, let us consider two sets X s ¼ fxsl g
N
l¼1 and

X t ¼ fxtug
M
u¼1 composed of N source-domain and M target-

domain patterns, respectively. Let xs and xt be the
d-dimensional feature vectors related to Ds and Dt,
respectively (d represents the dimensionality of the input
space). The proposed techniques are formulated under the
following assumptions:

. The same set of L classes � ¼ f!igLi¼1 characterizes
Ds and Dt.

. A set of true labels Ys ¼ fysl g
N
l¼1 for X s is available,

thus, it is possible to define a training set T s ¼
fX s;Ysg ¼ fðxsl ; ysl Þg

N
l¼1 for Ds.

. A set of true labels Yt ¼ fytug
M
u¼1 for X t is not

available, thus, it is not possible to define a training
set for Dt.

Under such a hypothesis, our goals are:

1. to define a domain adaptation classifier gðx j
T s;X t;   Þ based on SVMs which permits us to

obtain an accurate classification for target-domain
samples by exploiting labeled training samples T s
from Ds and unlabeled samples X t from Dt (as for
supervised classifiers, the model adopted for classi-
fication is described by a vector of parameters   ,
which is specific for each family of domain adapta-
tion classifiers);

2. to develop a strategy for validating the learning of
the domain adaptation classifier without labeled
target-domain data.

4 PROPOSED DASVM TECHNIQUE

In this section, for simplicity, we describe the proposed
DASVM technique in the case of a two-class problem.
Unlike transductive and semi-supervised SVMs, the
DASVM algorithm takes into account that unlabeled
target-domain samples are drawn from a distribution
Ptðx; yÞ different from the one of source-domain training
patterns Psðx; yÞ. Therefore, source-domain samples are
only exploited for initializing the discriminant function for
the target-domain problem, while they are successively
gradually erased in order to obtain a final separation
hyperplane defined only on the basis of target-domain
samples. This represents an important conceptual differ-
ence with respect to both transductive and semi-supervised
SVMs techniques, which recover information from unla-
beled samples under the assumption that the labeled and
unlabeled samples are drawn from the same domain. Thus,
they cannot be used for solving domain adaptation
problems. On the contrary, the DASVM technique, by
iteratively deleting source-domain samples and adapting
the discriminant function step by step to the target-domain
instances, can recover useful information and properly seize
the target-domain classification problem.

The proposed DASVM algorithm is made up of three
main phases: 1) initialization (only T s is used for initializing
the discriminant function), 2) iterative domain adaptation
(T s and X t are used for gradually adapting the discriminant
function to Dt), and 3) convergence (only X t is used for
defining the final discriminant function). In the following,
we will denote by T ðiÞ and XðiÞt the training set and the
unlabeled set (i.e., the set containing the target-domain
samples that have not been inserted into the training set
T ðiÞ) at the generic iteration i, respectively. These phases are
described in the following.

4.1 Phase 1: Initialization

In the first phase, an initial separation hyperplane is

determined on the basis of source-domain training data

alone. We have that T ð0Þ ¼ fX s;Ysg ¼ fðxsl ; ysl Þg
N
l¼1 and

Xð0Þt ¼ fxtug
M
u¼1. As for standard supervised SVMs, the

bound cost function to minimize is the following:

min
w;b;�

�
1

2
k wð0Þ k2 þC

X
l

�sl

�
ysl
�
wð0Þ � xsl þ bð0Þ

�
� 1� �sl

�sl � 0
8l ¼ 1; . . . ; N;

�
xsl ; y

s
l

�
2 T ð0Þ;

8>><
>>:

ð1Þ
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where wð0Þ is a vector normal to the separation hyperplane

hð0Þ : wð0Þ � xþ bð0Þ ¼ 0, b is a constant such that bð0Þ=kwð0Þk2

represents the distance of the hyperplane from the origin, �i
are slack variables, and C is a penalization parameter (also

called regularization parameter).

4.2 Phase 2: Iterative Domain Adaptation

At the generic iteration i, all the original unlabeled target-

domain samples xtu 2 X
ð0Þ
t are associated with an estimated

label ŷtðiÞu ¼ sgn½fðiÞðxtuÞ�, determined according to the

current decision function f ðiÞðxtuÞ ¼ wðiÞ � xtu þ bðiÞ. Then, a

subset of the (remaining) unlabeled samples XðiÞt is

iteratively selected and moved (with the corresponding

estimated labels) into the training set T ðiþ1Þ. On one hand,

the higher the distance from the separation hyperplane

hðiÞ : wðiÞ � xþ bðiÞ ¼ 0, the higher the probability for an

unlabeled sample to be correctly classified. On the other

hand, the current unlabeled samples falling into the margin

bandMðiÞ ¼ fx j �1 	 f ðiÞðxÞ 	 1g are those with the high-

est probability to be associated with nonzero Lagrange

multipliers (and thus, to affect the position of hðiþ1Þ) once

inserted in T ðiþ1Þ with their current estimated label

(patterns falling outside the margin band are more likely

to be associated with null multipliers). According to these

two observations, at each iteration, we progressively take

into account the unlabeled target-domain samples falling

into MðiÞ closest to the margin bounds. Let us define the

following two subsets:

HðiÞup ¼
��

xtu; ŷ
tðiÞ
u

�
j xtu 2 X

ðiÞ
t ; 1 � f ðiÞ

�
xtu
�
� f ðiÞ

�
xtuþ1

�
� 0
�
;

HðiÞlow ¼
��

xtu; ŷ
tðiÞ
u

�
j xtu 2 X

ðiÞ
t ;�1 	 f ðiÞ

�
xtu
�
	 f ðiÞ

�
xtuþ1

�
< 0
�
;

ð2Þ

where HðiÞup and HðiÞlow are made up of the patterns of the

current unlabeled setXðiÞt (considered with their correspond-

ing estimated labels) lying in the upper and lower sides of

the margin bandMðiÞ, respectively. Samples ofHðiÞup andHðiÞlow

are sorted in ascending order with respect to their distance

from the upper and lower bound of the margin, respectively.

The DASVM approach exploits a strategy inspired by the

PTSVM algorithm [21] in which, at each iteration of the

learning process, the unlabeled samples inside the margin

band MðiÞ with the maximum and minimum values of the

decision function are moved into the training set. As two

patterns may not be sufficiently representative for tuning the

position of the hyperplane, in the proposed DASVM, at each

iteration, the first � patterns (where the parameter � � 1 is

defined a priori by the user) belonging to HðiÞup and to HðiÞlow,

whose current estimated labels ŷtðiÞu are “þ1” and “�1,”

respectively, are selected and inserted into the training

set T ðiÞ (see Figs. 1a and 1b). Such samples are defined as

semilabeled patterns. As the cardinality of HðiÞup and HðiÞlow may

be lower than �, the subset of target-domain patterns

selected at the generic iteration i becomes

HðiÞ ¼
��

xtu; ŷ
tðiÞ
u

�
2 HðiÞup j 1 	 u 	 �ðiÞ

�
[
��

xtu; ŷ
tðiÞ
u

�
2 HðiÞlow j 1 	 u 	 �ðiÞ

�
;

ð3Þ

where �ðiÞ ¼ minð�; jHðiÞupjÞ and �ðiÞ ¼ minð�; jHðiÞlowjÞ. Patterns

belonging to HðiÞ are then merged with T ðiÞ. A dynamical

adjustment is necessary for taking into account that the

position of the separation hyperplane hðiÞ changes at each

iteration. Let

SðiÞ ¼
�
ðxtu; ŷtði�1Þ

u Þ 2 T ðiÞ j ŷtðiÞu 6¼ ŷtði�1Þ
u

�
ð4Þ

represent the set of semilabeled samples belonging to T ðiÞ
whose labels at iteration i are different from those at

iteration i� 1. If the label of a semilabeled pattern at

iteration i is different from the one at iteration i� 1 (label

inconsistency), such a label is erased and the semilabeled

pattern is reset to the unlabeled state and moved to Xðiþ1Þ
t .

In this way, it is possible to reconsider this pattern in the

following iterations of the learning procedure.
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Fig. 1. Separation hyperplane (solid line) and margin bounds (dashed lines) at different stages of the DASVM algorithm for a toy data set. Labeled
source-domain patterns are shown as white and black circles. Semilabeled target-domain patterns are shown as white and black squares,
respectively. Unlabeled target-domain patterns are represented as gray squares. Feature space structure obtained: (a) at the first iteration (the
dashed circles highlight the � semilabeled patterns selected from both sides of the margin; in the example � ¼ 3); (b) at the second iteration and (c) at
the last iteration, respectively, in an ideal situation (the dashed gray lines represent both the separation hyperplane and the margin bounds at the
beginning of the learning process).
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Let J ðiÞ represent the set containing all the semilabeled
patterns at the ith iteration. J ðiÞ is partitioned into a finite
number of subsets � 2 IN0,

J ðiÞ ¼ J ðiÞ1 [ J
ðiÞ
2 [ � � � [ J ðiÞ�

J ðiÞ1 ¼ HðiÞ

J ðiÞk ¼ J
ði�1Þ
k�1 � S

ðiÞ; 8k ¼ 2; . . . ; � � 1

J ðiÞ� ¼
�
J ði�1Þ
� [ J ði�1Þ

��1

�
� SðiÞ;

8>><
>>:

ð5Þ

where each kth subset includes all of the semilabeled
samples that do not change their label after the tuning of the
separation hyperplane at the ith iteration and that belonged
to the subset with index k� 1 at iteration i� 1. As will be
pointed out in the following, the DASVM algorithm aims at
gradually increasing the regularization parameter for the
semilabeled patterns according to a time-dependent criter-
ion; accordingly, � is defined as the maximum number of
iterations for which the user allows the regularization
parameter for semilabeled samples to increase.

As the main purpose of the proposed technique is to

define and solve a bound minimization problem with

respect only to the target-domain samples, at each iteration

a subset QðiÞ of the original source-domain training patterns

is deleted. The higher the distance from the separation

hyperplane hðiÞ, the lower the influence in affecting its

position. Accordingly, it is reasonable to erase from T ðiÞ the

source-domain samples lying farther from hðiÞ (see Fig. 1a).

Let us define the following two subsets:

QðiÞup ¼
��

xsl ; y
s
l

�
2 T ðiÞ j f ðiÞ

�
xsl
�
� fðiÞ

�
xslþ1

�
� 0
�
;

QðiÞlow ¼
��

xsl ; y
s
l

�
2 T ðiÞ j f ðiÞ

�
xsl
�
	 fðiÞ

�
xslþ1

�
< 0
�
;
ð6Þ

where QðiÞup and QðiÞlow contain the unlabeled target-domain

patterns that lie above and under the separation hyper-

plane, respectively, sorted in descending order with respect

to their distance from hðiÞ. At the ith iteration, the number of

patterns to erase from QðiÞup and QðiÞlow is set equal to the

number of semilabeled patterns selected from the upper

and lower sides of the margin band (i.e., �ðiÞ and �ðiÞ),

respectively. If none of the remaining unlabeled samples

fall into the margin band ðHðiÞ ¼ �Þ, the number of patterns

to delete is set to �. As a consequence, we have:

QðiÞ ¼
��

xsl ; y
s
l

�
2 QðiÞup j 1 	 l 	 �ðiÞ

�
[
��

xsl ; y
s
l

�
2 QðiÞlowj1 	 l 	 	ðiÞ

�
;

ð7Þ

where

�ðiÞ ¼
min

�
�ðiÞ;

��QðiÞup

��� if HðiÞ 6¼ �

min
�
�;
��QðiÞup

��� if HðiÞ ¼ �

(
and

	ðiÞ ¼
min

�
�ðiÞ;

��QðiÞlow

��� if HðiÞ 6¼ �;

min
�
�;
��QðiÞlow

��� if HðiÞ ¼ �:

(

Let 
ðiÞ ¼ jT ðiÞj � jJ ði�1Þj and �ðiÞ ¼ jJ ði�1Þj represent the
number of original source-domain and semilabeled samples
belonging to the current training set T ðiÞ, respectively. For
i � 1, the bound minimization problem can be written as

minw;b;��s;��t

�
1
2

		wðiÞ		2 þ CðiÞ
P

l �
s
l þ

P
u C


u�
t
u

�
ysl �

�
wðiÞ � xsl þ bðiÞ

�
� 1� �sl

8l ¼ 1; . . . ; 
ðiÞ;
�
xsl ; y

s
l

�
2 T ðiÞ

ŷtði�1Þ
u �

�
wðiÞ � xtu þ bðiÞ

�
� 1� �tu

8u ¼ 1; . . . ; �ðiÞ;
�
xtu; ŷ

tði�1Þ
u

�
2 T ðiÞ

�sl ; �
t
u � 0:

8>>>>>>>>><
>>>>>>>>>:

ð8Þ

The semilabeled samples ðxtu; ŷtði�1Þ
u Þ 2 T ðiÞ are associated

with a regularization parameter C
u ¼ C
uðkÞ 2 IRþ that
depends on the kth subset J ði�1Þ

k which they belong to at
iteration i� 1. The original source-domain patterns, in-
stead, are associated with a regularization parameter CðiÞ

that directly depends on the ith iteration. The purpose of
CðiÞ and C
u is to control the number of misclassified
samples of the current training set T ðiÞ drawn from Ds and
Dt, respectively. On increasing their values, the penalty
associated with errors increases. In other words, the larger
the regularization parameter, the higher the influence of the
associated samples on the selection of the separation
hyperplane. As Ptðx; yÞ in general could be rather different
compared to Psðx; yÞ, unlabeled samples should be con-
sidered gradually in the learning process in order to avoid
instabilities. For this reason, the algorithm adopts a
weighting strategy based on a temporal criterion. The
regularization parameter for the semilabeled patterns
increases in a quadratic way, depending on the number of
iterations k they had last inside the set containing the
semilabeled patterns J ðiÞ (see Fig. 2a):

8u ¼ 1; . . . ;
��J ðiÞ��;

C
u ¼
C
max � C


ð� � 1Þ2
ðk� 1Þ2 þ C
 ,

�
xtu; ŷ

tðiÞ
u

�
2 J ðiÞk ;

k ¼ 1; . . . ; �;

ð9Þ

where C
 is the initial regularization value for semilabeled
samples (this is a user-defined parameter), and C
max is the
maximum cost value of semilabeled samples and is related
to that of training patterns (i.e., C
max ¼ � � C, 0 < � 	 1
being a constant; a reasonable choice has proved to be
� ¼ 0:5). The greater k is, the higher the reliability of a
semilabeled sample is expected to be.

Likewise, the algorithm makes the cost factor for the
original source-domain labeled samples CðiÞ to decrease in a
quadratic way (see Fig. 2b). At the beginning, the position of
the separation hyperplane strongly depends on source-
domain patterns ðxsl ; ysl Þ, but their influence always gets
lower as the number of iterations increases (until i ¼ �):

CðiÞ ¼ max
C
 � C
�2

i2 þ C;C


 �

: ð10Þ

The second phase ends when the convergence criterion
described below is satisfied.

4.3 Phase 3: Convergence

From a theoretical viewpoint, it can be assumed that
convergence is reached if none of the remaining target-
domain samples lies into the margin band, HðiÞ ¼ �, after
all of the source-domain labeled samples have been erased,
QðiÞ ¼ � (see Fig. 1c). Nevertheless, such a choice might
result in a high computational load. Moreover, it may
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happen that even if the margin band is empty, the number
of inconsistent patterns is not negligible. For these reasons,
the following empirical stopping criterion has been defined:

QðiÞ ¼ �;
jHðiÞj 	 d
 �Me;
jSðiÞ 	 d
 �Me

8<
: ð11Þ

where M is the number of target-domain samples and 
 is a
constant fixed a priori that tunes the sensitivity of the
learning process. This means that convergence is reached if
both the number of mislabeled and remaining unlabeled
patterns lying in the margin band at the current iteration is
lower than or equal to d
 �Me. The final minimization
problem at the last iteration �i becomes

minw;b;��

�
1
2 k w k2 þ

P
u C


u�u

�
ŷtð

�i�1Þ
u �

�
w � xtu þ b

�
� 1� �u

8u ¼ 1; . . . ;
��T ð�iÞ��; �xtu; ŷtð�i�1Þ

u

�
2 T ð�iÞ

�u � 0:

8>>>>><
>>>>>:

ð12Þ

At the end, all of the target-domain patterns xtu 2 X t are
labeled according to the resulting separation hyperplane,
i.e., Ŷt ¼ fŷtu ¼ sgn½w � xtu þ b�g

M
u¼1.

The above-described algorithm is defined for two-class
problems. When a multiclass problem has to be investigated,
a One-Against-All (OAA) strategy [41] can be employed.

5 PROPOSED CIRCULAR VALIDATION STRATEGY

In this section, we present a novel general empirical
strategy for validating the solutions obtained with a domain
adaptation classifier when no labeled data related to the
target domain are available. This method can also be used
with the DASVM presented in the previous section.

5.1 Background and Rationale of the Proposed
Strategy

The proposed strategy is based on the two following
assumptions.

1. Assumption 1: Under the assumption that Psðx; yÞ
and Ptðx; yÞ are neither uncorrelated nor identical, it
is reasonable to assume the existence of an intrinsic
relationship between solutions that are satisfactory

for the two domains. This relationship is associated
with the intrinsic structure of the considered
problem (which is related to the correlation between
Psðx; yÞ and Ptðx; yÞ). We expect that an adequately
trained domain adaptation algorithm seizes the
structure of the problem and can move from
modeling the source-domain problem to modeling
the target-domain problem, and vice versa. On the
contrary, if the learning process fails, the considered
domain adaptation algorithm completely loses the
structure of the problem and results in an unpre-
dictable behavior that involves a random solution.
This solution has no relation to the considered
problem. In this condition, it is no more possible to
recover the intrinsic structure of the problem, and
thus, moving from modeling the target-domain
problem to modeling the source-domain problem.

2. Assumption 2: The only labeled samples available are
those related to the source domain Ds. Thus, for
validating the learning for Dt, we should devise an
indirect procedure based on the training set T s.

On the basis of these observations, the proposed strategy

relies on the following rationale: Let us consider that,

starting from a reliable estimated distribution P̂ s
nðx; yÞ for

Ds (and thus, from an acceptable classification accuracy on

source-domain patterns), the nth generic domain adapta-

tion classifier results in an accurate estimate P̂ t
nðx; yÞ for

Ptðx; yÞ (and hence, in a satisfactory classification accuracy

for the instances related to Dt). In such a case, the domain

adaptation classifier seizes the structure of the target-

domain problem. In this condition, we assume that, by

again applying the same learning algorithm in the reverse

sense (using the classification labels in place of the missing

prior knowledge for target-domain patterns X t, keeping the

same learning parameters, and considering the problem of

classifying source-domain patterns X s), it is possible to infer

an accurate estimate for Psðx; yÞ (thus obtaining a good

discrimination capability also for the source-domain pro-

blem). On the contrary, if the domain adaptation algorithm

does not identify an acceptable solution for Dt, this means

that it does not capture the relationship between the two

domains but converges to a solution which is not related to

the investigated problem (i.e., the resulting P̂ t
nðx; yÞ does not
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Fig. 2. (a) Behavior of C
u, regularization parameter for the semilabeled patterns belonging to J ðiÞ ¼ J ðiÞ1 [ J
ðiÞ
2 [ . . . [ J ðiÞ� , versus k (index

corresponding to the subset J ðiÞk , which is related to the number of iterations in which a semilabeled pattern is associated with the same
label). (b) Behavior of the regularization parameter for the original source-domain labeled patterns, CðiÞ, versus the number of iterations i.
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represent an adequate estimation of the real distribution
Ptðx; yÞ). In this condition, by again applying the algorithm
in the reverse sense (from target to source), it seems
impossible to recover a reliable solution for the source-
domain problem, but rather, it is reasonable to expect a
poor estimate for Psðx; yÞ. This reasoning has some
analogies with the definition of specific trajectories that
model transitions between different states in chaotic
systems. On the basis of these expected properties, we can
use the accuracy evaluated on the original training samples
from Ds for validating the solution obtained for target-
domain instances after a circular (forward and backward)
application of the considered domain adaptation algorithm.

5.2 Formulation of the Proposed Circular Validation
Strategy

Given a classification accuracy measure �ðYj; ŶjnÞ that
evaluates the similarity between a set of labels Ŷjn (i.e., a
solution) predicted by the generic classifier gnðxÞ and the
corresponding set of true labels Yj, and given a threshold
�th for �, let us define the following four sets of classifiers
(see Fig. 3):

A ¼ fgnðxÞ j �ðYs; ŶsnÞ � �thg; ð13Þ

B ¼ fgnðxÞ j �ðYt; ŶtnÞ � �thg; ð14Þ

C ¼ fgnðxÞ j �ðYs; ŶsnÞ < �thg; ð15Þ

D ¼ fgnðxÞ j �ðYt; ŶtnÞ < �thg; ð16Þ

where Ŷsn ¼ fŷsin ¼ gnðxsi Þg and Ŷtn ¼ fŷtin ¼ gnðxtiÞg are the
labels predicted by gnðxÞ for source and target-domain
samples, respectively. It is worth noting that the subscript n
points out a classification model obtained starting from the
same classification technique using different values of
parameters in the training phase (e.g., a DASVM classifier
with different values of learning parameters). On one hand,
A and B contain all of the classifiers that permit to obtain
solutions whose accuracy is higher than or equal to �th for
source and target-domain samples (consistent solutions),
respectively. On the other hand, C and D contain all of the
classifiers that provide solutions whose accuracy is lower

than �th for source and target-domain samples (nonconsistent
solutions), respectively. �th represents the smallest value for
� such that a solution can be considered acceptable for the
problem under investigation.

Each classifier gnðxÞ is associated with an estimate of the
joint probability distribution P̂nðx; yÞ ¼ P̂nðy j xÞ � P̂ ðxÞ for
the considered domain. Indeed, while P̂ ðxÞ directly de-
pends on the instances available for the considered domain,
the estimated conditional posterior distribution P̂nðy j xÞ is
related to the information class associated by the classifier to
the generic sample x, i.e., P̂ nðy j xÞ ¼ P̂ ðgnðxÞ j xÞ. Accord-
ingly, both the source and target-domain estimated joint
distributions can be written as

P̂ s
nðx; yÞ ¼ P̂ s

nðy j xÞ � P̂ sðxÞ ¼ P̂ sðgnðxÞ j xÞ � P̂ sðxÞ; ð17Þ

P̂ t
nðx; yÞ ¼ P̂ t

nðy j xÞ � P̂ tðxÞ ¼ P̂ tðgnðxÞ j xÞ � P̂ tðxÞ: ð18Þ

Therefore, it is possible to relate the quality of these
estimated distributions with the four sets of classifiers
described above:

. If gnðxÞ 2 A, we assume that P̂ s
nðx; yÞ is consistent

with Psðx; yÞ (the system is in state �A).
. If gnðxÞ 2 B, we assume that P̂ t

nðx; yÞ is consistent
with Ptðx; yÞ (the system is in state �B).

. If gnðxÞ 2 C, we assume that P̂ s
nðx; yÞ is not consistent

with Psðx; yÞ (the system is in state �C).
. If gnðxÞ 2 D, we assume that P̂ t

nðx; yÞ is not consis-
tent with Ptðx; yÞ (the system is in state �D).

Starting from state �A, with a proper choice of the learning
parameters, a domain adaptation classifier is expected to
move to state �B (thus belonging to B). On the contrary, if the
choice of the parameters is not adequate (or Ptðx; yÞ is too
different from Psðx; yÞ), the classifier moves to state �D (thus
belonging to D). Let us now consider the solution obtained
for the target-domain samples. We can address the reverse
domain adaptation problem (from target to source) with the
same classifier keeping the same learning parameters and
jointly exploiting the classification labels Ŷtn (instead of the
training set, thus defining T̂t ¼ fX t; Ŷtng) and source-
domain samples X s (considered without their labels Ys).
As the true labels fysig

N
i¼1 for source-domain instances are

known, we can compute the value for � associated with the
results obtained after the circular learning process. If
� < �th, the classification accuracy for the source-domain
problem is considered nonacceptable, then the backward
classifier moves to state �C (thus belonging to C). On the
contrary, if � � �th, the solution is consistent, thus the
backward classifier belongs to A and the system moves
back to state �A.

Our assumption is that, when the domain adaptation
classifier starting from state �C is able to return into state �A, the
classification accuracy for target-domain data is satisfactory
and P̂ t

nðx; yÞ is a good approximation ofPtðx; yÞ. This aspect is
crucial because it means that, in such situations, we are able to
assess that target-domain data are classified with a proper
accuracy even if no prior knowledge is available. The two
main hypotheses under which the proposed validation
technique is effective are the following:
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Fig. 3. Diagram of all the possible state transitions exploited from the
proposed circular validation strategy.
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. Starting from state �D the system must never move back to
state �A. If the solution obtained in the forward sense
(from source to target) for target-domain instances is
not satisfactory (i.e., P̂ t

nðx; yÞ is not consistent with
Ptðx; yÞ), by applying the considered algorithm in
the backward sense (from target to source), it must
never be possible to obtain an acceptable solution for
source-domain instances (i.e., the resulting P̂ s

nðx; yÞ
is always not consistent with Psðx; yÞ).

. Starting from state �B the system can return to state �A. If
there exists a set of satisfactory solutions obtained in
the forward sense (from source to target) for target-
domain instances (i.e., the related P̂ t

nðx; yÞ are
consistent with Ptðx; yÞ), by applying the domain
adaptation classifier in the backward sense (from
target to source), it must be possible to obtain for at
least one of them an acceptable solution for source-
domain samples (i.e., the related P̂ s

nðx; yÞ is consis-
tent with Psðx; yÞ).

It is worth noting that, under the aforementioned assump-
tions, the system may reject some solutions that are actually
consistent with the target-domain problem as the learning
parameters are not optimized for the backward process and
we cannot assume a perfect symmetry between the domain
adaptation problems from source to target, and vice versa.
Nevertheless, the very important aspect is that the system
never accepts and validates solutions that are nonconsis-
tent, which is definitely a more critical aspect of validation
in operational problems.

6 EXPERIMENTAL RESULTS

In order to assess the effectiveness of both the proposed
DASVM technique and the presented circular validation
strategy, we carried out several experiments on different
data sets. We analyzed three different domain adaptation
problems: 1) a series of two-dimensional toy problems
having different complexity, 2) a real problem in the
framework of brain computer interface, and 3) a real
problem in the context of remote sensing. For all of the
data sets, true labels were available for both source and
target-domain instances. However, prior information re-
lated to the target domain Dt was considered only for an
objective and quantitative assessment of the performances
of the proposed techniques. In the following, we will
describe the common procedure adopted for analyzing the
considered data sets; then, in the next sections, we will
present in detail the results obtained for each of them.

In all of the trials, we employed Gaussian kernel
functions (ruled by the free parameter �) as they proved
effective in addressing different kinds of problems. We
chose the percentage overall accuracy OA% (i.e., the
percentage of correctly labeled samples over the whole
number of considered samples) as reference classification
accuracy measure � and fixed �th ¼ OA%th ¼ 85 in the
validation strategy. This means that, both for the source-
and target-domain classification problems, we assumed that
a solution was consistent if OA% � 85.

In order to estimate the complexity of the investigated
domain adaptation problems, we first analyzed the “dis-
tance” between source and target-domain distributions. To

this aim, a common choice in the literature is to compute the
Kullback-Leibler (KL) [10] divergence, which is defined as

D½P ðxÞ k QðxÞ� ¼
X
n

pn log
pn
qn
; ð19Þ

where pn and qn are point probabilities of the two
considered source and target distributions P and Q,
respectively [11]. Note that D½P ðxÞkQðxÞ� 2 ½0;1Þ. Even if
KL divergence is generally considered as a kind of distance
between two distributions, it is not symmetric (i.e.,
D½P ðxÞkQðxÞ� 6¼ D½QðxÞkP ðxÞ�). Therefore, in our experi-
ments, we considered the Jensen-Shannon divergence
(DJS), which is a symmetrized and smoothed version of
the KL divergence [11]. DJS is defined as

DJS½P ðxÞ; QðxÞ� ¼ � �D½P ðxÞ kMðxÞ�
þ 
 �D½QðxÞ kMðxÞ�;

ð20Þ

where MðxÞ ¼ � � P ðxÞ þ 
 �QðxÞ. In particular, we con-
sidered the case where � ¼ 
 ¼ 0:5, (referred in the
literature as specific DJS) for which it holds that
DJS½P ðxÞ; QðxÞ� 2 ½0; log 2�. The existence of both a lower
and an upper bound for DJS is particularly important as it
permits us to understand how different the two considered
distributions are. If DJS½P ðxÞ; QðxÞ� ¼ 0, then P and Q are
considered identical, whereas if DJS ¼ log 2 ’ 0:693, P and
Q are considered uncorrelated. Besides the distance
DJS½PsðxÞ; P tðxÞ� evaluated between general distributions,
we also analyzed the distance DJS ½Psðxj!iÞ; P tðxj!iÞ�
between class conditional distributions.

In all experiments, we trained several supervised SVMs
on the labeled source-domain samples T s ¼ fX s;Ysg, in
order to identify the models (and thus, the values of the
supervised parameters � and C) that resulted in accurate
(consistent) solutions for source-domain samples. Succes-
sively, we trained a number of DASVMs using T s as labeled
set and target-domain instances X t as unlabeled set. In the
learning phase, we assigned to � and C pairs of values
associated with solutions consistent with Ds. On the
remaining learning parameters (i.e., C
, �, and � ), we
applied a grid search. Note that, for the sake of comparison,
we also evaluated the performances obtained by other two
state-of-the-art domain adaptation techniques: 1) the re-
training technique for maximum likelihood classifiers
presented in [36] (denoted by MLretrain) and 2) the
maximum likelihood cascade classifier proposed in [37]
(denoted by MLcascade).

For validating the potentialities of the proposed domain
adaptation technique, we identified the DASVM that
provided the highest overall accuracy on the basis of the
available target-domain true labels (which were not taken
into account in the learning phase). This accuracy value
represents an upper bound for the performances of the
presented method. In order to assess the effectiveness of the
empirical circular validation strategy introduced in Section 4,
for all of the considered DASVMs, we applied the proposed
domain adaptation algorithm in the reverse sense. Starting
from the corresponding set of target-domain predicted
labels, Ŷtn, for the generic nth DASVM, we defined an
estimated training set T̂tn ¼ fX t; Ŷtng for Dt and trained the
correspondent nth “backward” DASVM using T̂tn as labeled
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set and source-domain samplesX s (considered without their
labels) as unlabeled set (the same learning parameters
employed in the forward learning were used). By exploiting
available prior information for Ds, we determined whether
the final solution Ŷsn was consistent or not and, accordingly,
inferred the correctness of the related solution to the target-
domain problem Ŷtn. By using the available target-domain
true labels, we could compute the average percentage overall
accuracy of the solutions correctly identified as consistent
with Dt by the circular validation strategy. This value is very
important as it represents an average measure for the quality
of the solutions consistent with Dt identified by the proposed
validation strategy without any prior information on X t.
Note that, in order to obtain significant estimations, for all of
the considered problems, we trained 350 backward DASVMs
both starting from consistent and nonconsistent solutions
with the target-domain problem. For the sake of comparison,
we also evaluated the accuracies exhibited on target-domain
samples by a supervised SVM trained on source-domain
data according to a 10-fold cross validation (CV).

In all experiments, we employed the Sequential Minimal
Optimization algorithm [42] for training both the super-
vised SVMs and, with proper modifications, the proposed
DASVMs. As pointed out in Section 4, we fixed � ¼ 0:5.
Concerning the convergence criterion, a reasonable empiri-
cal choice has proven to be 
 ¼ 3�10�2.

6.1 Problem I: Synthetic Data Set

The first set of experiments was aimed at characterizing the
behavior of both the DASVM algorithm and the circular

validation strategy when addressing a well-defined pro-
blem in a controlled environment at different levels of
complexity. This analysis is particularly important for
empirically understanding the operational conditions for
which we can expect to obtain satisfactory performances
with the proposed methods. We considered as source-
domain data a toy data set made up of 300 samples
generated according to a bidimensional pattern of two
intertwining moons associated with two specific informa-
tion classes (150 samples each), as shown in Fig. 4a. Target
data were generated by rotating anticlockwise the original
source data set 11 times by 10, 15, 20, 25, 30, 35, 40, 45, 50,
55, and 60 degrees, respectively. Due to rotation, source
and target-domain data exhibit different distributions (i.e.,
PsðxÞ 6¼ PtðxÞ and Psðy j xÞ 6¼ Ptðy j xÞ). In particular, the
greater the rotation angle (�), the more complex the
resulting domain adaptation problem, as confirmed by
the values for DJS reported in Table 2.

The proposed DASVM algorithm proved to be particu-
larly effective for solving this kind of problem and involved
very high accuracies even in very critical conditions. From
Table 3, one can observe that, for an optimal selection of
learning parameters (DASVMbest), we could obtain perfect
separation between information classes when � 2 ½10�; 50��
(see Figs. 4c, 4d, 4e, 4f, and 4g). The accuracies are always
higher than those exhibited by the supervised SVM trained
according to a 10-fold CV on source-domain data (the OA%
grows almost quadratically with respect to the rotation
angle, i.e., from þ0:33 for � ¼ 10� to þ67:33 for � ¼ 50�).
Only for greater values of � (i.e., 55� and 60�) the DASVM
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Fig. 4. Problem I: (a) original source-domain data; (b) decision regions obtained for the source-domain problem by a supervised SVM trained

according to a 10-fold CV strategy. Decision regions obtained for the target-domain problem by the proposed DASVM technique with optimal

selection of learning parameters when (c) � ¼ 10�, (d) � ¼ 20�, (e) � ¼ 30�, (f) � ¼ 40�, and (g) � ¼ 50�. (h) Superimposition of source data and target

data for � ¼ 50� (the dashed circles point out regions, where target data that belong to class !1 overlap source data that belong to class !2, and vice

versa) and decision regions obtained for the source-domain problem by a supervised SVM trained according to a 10-fold CV strategy.
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was not able to find a solution consistent with Dt. Never-
theless, this behavior seems reasonable due to the complexity
of the corresponding domain adaptation problems. In these
cases, the initial separation hyperplane determined accord-
ing to source-domain samples resulted in an average OA%
on target-domain data smaller than 30. Accordingly, it was
not possible to recover correct classification labels as more
than 70 percent of target-domain samples were misclassified
at the first iteration of the DASVM algorithm. The complexity
of this problem is also confirmed from the high values ofDJS .

It should be pointed out that, as soon as the rotation
angle becomes greater than 35�, target-domain data that
actually belong to the class !1 overlap source-domain data
belonging to the class !2, and vice versa (see, for instance,
Fig. 4h). Note that, due to rotation, there are target-domain
instances that coincide with source-domain instances but
with different true labels. This represents a strong limitation
for other state-of-the-art domain adaptation techniques
reported in Section 2. The proposed DASVM technique,
due do to the fact that iteratively erases original training
samples in the iterative learning phase, does not suffer from
this drawback and is able to obtain satisfactory perfor-
mances also in such critical cases. It is worth noting that
DASVMs outperformed both MLretrain and MLcascade: the
greater the rotation angle � (and thus, the greater the
problem complexity), the higher the gap in terms of
classification accuracy (see Table 3). In particular, for
� ¼ 50�, the increase in OA% is around 30, thus further

confirming the effectiveness of the proposed technique in
addressing also very critical situations.

With regard to the presented circular validation strategy,
we obtained very promising results. In particular, for all of
the considered cases, the proposed strategy was always
able to correctly reject solutions that were not consistent
with Dt, thus satisfying the most critical assumption for the
operational employment of the proposed technique. As
expected, when the DASVM started from a solution that
did not adequately model the source-domain classification
problem, the system could not recover a solution consistent
with Ds, thus P ð �A j �DÞ ¼ 0. Table 3 also reports the
probability of correct validation of solutions consistent
with Dt, P ð �A j �BÞ, for the cases in which it was possible to
obtain at least one of them in the forward learning phase
(i.e., � 2 ½10�; 50��). It is possible to notice that, for small
values of �, the proposed circular strategy identified more
than one half of correct solutions, while, by increasing �
values, the number of correct solutions properly recognized
gradually decreased. This is a reasonable behavior if we
consider that the distance between distributions sharply
increases and learning parameters are not optimized for the
backward process.

Fig. 5 shows some examples of the empirical estimated
probability distribution P̂ ðOA%Þ of the OA% for the
solutions obtained for source-domain data at the end of the
backward learning process when the system starts from both
state �B (black line) and state �D (gray line). If we consider as
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TABLE 3
Problem I: Percentage Overall Accuracy Exhibited on Target-Domain Instances for Different Rotation Angles

(a) Percentage OA exhibited by: 1) A supervised SVM trained on source-domain samples according to a 10-fold CV strategy (SVMCV ); 2) the
proposed DASVM technique with optimal selection of learning parameters (DASVMbest). The average accuracy associated with the consistent
solutions obtained by the proposed DASVM technique and correctly identified by the circular validation strategy (DASVMave) and the probability
P ð �A j �BÞ of identifying consistent solutions with the proposed circular validation strategy are also given. (b) Percentage OA exhibited by: 1) The
retraining technique for maximum likelihood classifier (MLretrain); 2) the maximum likelihood cascade classifier (MLcascade).

TABLE 2
Problem I: Jensen-Shannon Divergence Values for Different Rotation Angles
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an example Fig. 2b (which refers to the case � ¼ 20�), we can
see that q0:85ðOA%Þ (i.e., the quantile corresponding to
OA%th ¼ 85) is equal to 0.48. Accordingly, as the systems
move to state �C if OA% < OA%th, we have that P ð �Cj �BÞ ¼
q0:85ðOA%Þ ¼ 0:48; therefore, P ð �Aj �BÞ ¼ 1� P ð �Cj �BÞ, which
means that the classifier can go back to state �A in the
52 percent of the cases. The very important conclusion of this
analysis is that even in critical situations, the proposed
circular validation strategy was able to identify correct
solutions without considering any prior information on the
labels of target-domain data. Moreover, if we consider the
average OA% of solutions correctly identified as consistent
with Dt, we can see that it is comparable with that obtained
with optimal selection of leaning parameters, thus confirm-
ing the effectiveness of the proposed circular validation
strategy.

6.2 Problem II: Brain Computer Interface Data Set

The second data set considered refers to a Brain Computer
Interface (BCI) problem. A BCI is an assistive communica-
tion system, which helps people with severe disabilities to
realize the control of motor neuroprotheses. The data set we
considered was made up of electrocorticogram (ECoG)
signals recorded from the same subject performing the
same task in two different days (i.e., at times t1 and t2) with
about one week in between. In the considered case, the
subject had to perform imagined movements of either the
left small finger or the tongue (associated with the classes !1

and !2, respectively) for at least 3 seconds. For greater
details about this data set, the reader is referred to [43], [44].
It is worth noting that the design of a classifier for a BCI
system is very challenging when a classifier trained on data

acquired on a certain day should classify data recorded in
other days without retraining. On one hand, the patient
might be in a different state concerning motivation, fatigue,
etc. Therefore, his brain will show different electrical
activity. On the other hand, the recording system might
have undergone slight changes concerning electrode posi-
tions and impedances.

Fig. 6a presents the system designed for extracting the
features used in our experiments. Original ECoG signals
were first low-pass (0-3 Hz) and band-pass (8-30 Hz)
filtered in order to acquire movement-related potentials
(MRD) and event-related desynchronization (ERD) signals,
respectively, which are electrical physiological phenomena
activated by limb movements or imagined movements [45],
[46]. Then, we used the common spatial subspace decom-
position (CSSD) technique, which allows us to extract signal
components specific to one condition and eliminate back-
ground activities [47]. For both frequency intervals, we
selected the two components that, according to the CSSD
technique, are more related to the considered information
classes. The final data set is obtained by merging together
these two pairs of features. For the source domain at time t1,
the brain activity was monitored for 278 events (139
associated with each information class), whereas, for the
target domain at time t2, 100 events were considered (50 for
each information class).

The resulting domain adaptation problem proved to be
particularly challenging, as confirmed by the values for the
DJS reported in Table 4. Source and target-domain overall
distributions were rather different (0.408), but the gap was
even more relevant for the conditional class distributions
(0.625 for the class !1 and 0.616 for the class !2). Even in such
critical conditions, the DASVM algorithm proved effective
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Fig. 5. Problem I: Empirical estimated probability distribution P̂ ðOA%Þ of the percentage overall accuracy (OA%) for the solutions obtained on the
source domain when the system starts from both state �B (black line) and state �D (gray line) for (a) � ¼ 10�, (b) � ¼ 20�, (c) � ¼ 30�, (d) � ¼ 40�, and
(e) � ¼ 50�. If OA% < 85, the system moves to state �C; if OA% � 85, the system moves to state �A.
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(see Table 5). In particular, in the best case, we were able to
obtain an OA% equal to 93.00, which corresponds to an
increase of þ14:00 with respect to the OA% yielded with the
standard supervised SVM trained according to the 10-fold
CV strategy at time t1. Moreover, DASVMs provided also
higher OA% than both MLretrain (þ5) and MLcascade (þ6). The
proposed technique exhibited a very good capability of
seizing the structure of the investigated domain adaptation
problem, as it is possible to infer from the behavior of
P̂ ðOA%Þ (see Fig. 6b). In particular, with the circular
validation strategy, we were able to correctly identify
66 percent of solutions consistent at time t2 (i.e.,
q0:85ðOA%Þ ¼ 0:44) with an average OA% equal to 91.65
(þ11:65 with respect to the supervised SVM). This means
that it was possible to recover a satisfactory accuracy for
source-domain data only starting from high accuracies for
target-domain data, thus confirming that solutions are
correctly validated as consistent only if the target-domain
problem is well modeled. Accordingly, also for this data set,
the system never moved back from state �D to state �A, thus
exhibiting the crucial property to be always able to reject
wrong solutions.

6.3 Problem III: Remote Sensing Data Set

The third set of experiments was carried out on a multiclass
problem in the context of a remote sensing application. We
investigated the task of automatic updating of land-cover

maps by classification of remote sensing images acquired
over the same geographical area at two different times t1
and t2. We considered two coregistered multispectral
images acquired in September 1995 and July 1996 by the
Thematic Mapper (TM) sensor of the Landsat 5 Satellite (see
Figs. 7a and 7b). The selected test site was a section of about
11:7 km� 10:8 km (i.e., 412� 382 pixels) of a scene includ-
ing Lake Mulargia on the Island of Sardinia, Italy. The five
information classes that characterized the investigated site
at both times were taken into account, i.e., forest, pasture,
urban area, water body, and vineyard. For both source and
target-domain problems, the same number of samples was
considered for each information class (see Table 6). It is
worth noting that, due to many differences at the two
acquisition times (e.g., different acquisition system state,
dissimilar illumination conditions, alterations in the phe-
nologic state of vegetation, changes occurred on the ground,
etc.), the distance between spectral distributions of the two
images is considerable.

Among the seven available spectral bands, as commonly
done in the literature, we did not take into account band 6,
which corresponds to the low-resolution channel acquired
in the thermal infrared. In order to characterize the texture
properties of the considered classes and to exploit the
distribution-free nature of SVMs, we extracted five texture
features based on the gray-level co-occurrence matrix (i.e.,
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TABLE 4
Problem II: Jensen-Shannon Divergence Values

TABLE 5
Problem II: Percentage Overall Accuracy (OA%) Exhibited on Target-Domain Instances by:

1) a Supervised SVM Trained on Source-Domain Instances According to a 10-Fold CV Strategy (SVMCV );
2) the Proposed DASVM Technique with Optimal Selection of Learning Parameters (DASVMbest);

3) the Maximum Likelihood Classifier (MLretrain); and 4) the Maximum Likelihood Cascade Classifier (MLcascade)

The average accuracy associated with the consistent solutions obtained by the proposed DASVM technique and correctly identified by the circular
validation strategy (DASVMave) is also given.

Fig. 6. Problem II: (a) Architecture of the system employed for extracting the features used in the experiments. (b) Empirical estimated probability
distribution P̂ ðOA%Þ of the percentage overall accuracy (OA%) for the solutions obtained on the source domain when the system starts from both
state �B (black line) and state �D (gray line). If OA% < 85, the system moves to state �C; if OA% � 85, the system moves to state �A.
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correlation, sum average, sum variance, difference var-

iance, and entropy) and added them to the six TM

channels. As the images were acquired in different periods

of the year, the resulting overall DJS distance between

source-domain distribution at time t1 and target-domain

distribution at time t2 was considerable (i.e., 0.391). The

complexity of the investigated domain adaptation problem

is stressed up by the distances between conditional class

distribution at the two dates, which assume high values, in

particular, for the classes pasture (i.e., 0.517) and vineyard

(i.e., 0.567). As pointed out in Section 3, one of the

constraints imposed by the DASVM algorithm is the use of

the OAA multiclass architecture; therefore, we adopted the

same multiclass strategy also when dealing with super-

vised SVMs used for comparisons.

Table 7 shows the results obtained in terms of OA% and

both percentage producer’s and user’s accuracies5 (i.e.,

PA% and UA%, respectively) for each information class.

Taking into account the complexity of the problem under

investigation, the obtained classification accuracies con-

firmed also in this case the good adaptation capabilities of

the proposed DASVM technique, which was able to

sharply increase the accuracy with respect to the super-

vised SVM trained according to a 10-fold CV on source-

domain samples. In particular, in the best case, the OA%
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Fig. 7. Problem III: Spectral channel 5 of the multispectral Landsat-5 Thematic Mapper images used in the experiments. (a) Image acquired in
September 1995. (b) Image acquired in July 1996. (c) Empirical estimated probability distribution P̂ ðOA%Þ of the percentage overall accuracy (OA%)
for the solutions obtained on the source domain when the system starts from both state �B (black line) and state �D (gray line). If OA% < 85, the
system moves to state �C; if OA% � 85, the system moves to state �A.

TABLE 7
Problem III: Percentage Overall Accuracy (OA%), Producer’s Accuracies (PA%), and User’s Accuracies (UA%) Exhibited on

Target-Domain Instances by: 1) a Supervised SVM Trained on Source-Domain Instances
According to a 10-Fold CV Strategy (SVMCV ); 2) the Proposed DASVM Technique with Optimal Selection of Learning Parameters

(DASVMbest); 3) the Retraining Technique for the Maximum Likelihood Classifier (MLretrain);
and 4) the Maximum Likelihood Cascade Classifier (MLcascade)

The average accuracies associated with the consistent solutions obtained by the proposed DASVM technique and correctly identified by the circular
validation strategy (DASVMave) are also given.

TABLE 6
Problem III: Number of Both Source-Domain (September 1995 Image) and Target-Domain (July 1996 Image) Patterns

and Jensen-Shannon Divergence Values

5. For each specific information class: 1) Producer’s accuracy is defined
as the ratio between the number of samples correctly classified as belonging
to that class and the total number of reference samples available for that
class; 2) user’s accuracy is defined as the ratio between the number of
samples correctly classified as belonging to that class and the total number
of samples classified as belonging to that class.
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increased up to 94.78 (i.e., þ19:05). Moreover, the im-
provement in the PA% is huge for pasture (i.e., þ63:78)
and remarkable for vineyard (þ9:12), whereas the increase
in the UA% is noteworthy for vineyard (i.e., þ42:27), forest
(þ17:62), and pasture (þ9:07).

Also, in this case, DASVMs exhibited higher accuracies
than MLretrain and MLcascade (þ2:02 and þ3:03 in terms of
OA% for optimal selection of learning parameters), thus
confirming their effectiveness also when addressing multi-
class problems.

Fig. 7c points out the effectiveness of the proposed
circular validation strategy also on this data set. This
strategy allowed us to correctly reject all of the solutions
that were not consistent with Dt. In addition, when the
system started from state �B, we had q0:85ðOA%Þ ¼ 0:51,
which corresponds to almost one-half (i.e., 49 percent) of
consistent solutions properly validated without any prior
information for the image at time t2. It is worth noting that,
in most part of the cases, the system moved back to state �A
when the classification accuracy at t2 was particularly high.
This is confirmed by the high average OA% obtained for
target-domain instances for the solutions correctly identi-
fied as consistent by the validation strategy. The average
OA% is equal to 90.88 (þ15:15 with respect to the
supervised SVM), whereas as concerns both PA% and
UA%, the behavior is similar to that obtained for the best
case described above. In particular, the increase in pasture
PA% and vineyard UA% is considerable (i.e., þ52:93 and
þ29:00, respectively).

7 DISCUSSION AND CONCLUSION

In this paper, we have addressed domain adaptation
problems by introducing two main novel contributions: 1) a
domain adaptation classifier based on SVMs (DASVM) and
2) a circular strategy aimed at validating the results obtained
with a domain adaptation classifier.

The proposed DASVM technique extends the principles
of SVMs to the domain adaptation framework by taking into
account that unlabeled test samples are drawn from a target
domain Dt different from the source domain Ds of training
samples. Labeled patterns drawn from Ds are used only for
constraining the learning phase of the classifier, but the final
solution only models the structure of Dt. In particular,
labeled source-domain data are employed for determining
an initial discriminant function for the target-domain
problem; then, unlabeled samples from Dt are exploited for
properly adjusting the decision function, while samples from
Ds are gradually erased. The final classification function is
determined only on the basis of semilabeled samples, i.e.,
originally unlabeled target-domain instances that obtain
labels during the learning process. For better controlling the
behavior and stability of the classifier, an adaptive weighting
strategy for the regularization parameters based on a
temporal criterion is adopted. This permits us to tune the
influence of unlabeled patterns and, in general, prevents the
system from converging to improper solutions.

It is worth noting that the proposed DASVM is designed
for addressing a problem conceptually different from those
faced by transductive and semi-supervised SVMs, which
have been defined for handling problems where labeled

and unlabeled data are drawn from the same domain. Thus,
they are ineffective in domain adaptation, where training
data are assumed to be available only for a source domain
different (even if related) from the target domain of the
(unlabeled) test samples.

As for transductive and semi-supervised SVMs, also for
DASVMs it is not possible to guarantee for obtaining reliable
solutions to the classification problem. In fact, if the accuracy
after the initialization phase is particularly low (i.e., most of
the unlabeled target-domain samples are incorrectly classi-
fied at the beginning of the learning process), it becomes
difficult to obtain satisfactory performances. The conver-
gence of the algorithm to a consistent solution depends on
the intrinsic correlation between the two domains: The
farther Dt is from Ds, the harder the resulting domain
adaptation problem. This correlation can be measured by
computing similarity metrics between Ds and Dt.

In the framework of domain adaptation, due to the
absence of prior information for target-domain instances,
standard statistical validation strategies proposed in the
literature cannot be used for assessing the effectiveness of
learning and the validity of the resulting classifier. In this
context, we proposed an indirect circular validation
strategy based on the idea that an intrinsic structure relates
the solutions consistent with Ds and Dt. A solution for Dt

(for which no prior information is available) is assumed to
be consistent if the solution obtained by applying the same
domain adaptation learning algorithm in the reverse sense
(i.e., using the classification labels in place of missing prior
knowledge for target-domain instances) to source-domain
data (considered as unlabeled in the reverse domain
adaptation learning) is associated with an acceptable
accuracy (which can be evaluated due to the available true
labels for source-domain samples).

From the analysis of experimental results obtained on a
series of two-dimensional toy problems and on two real
problems defined in the context of brain computer interface
and remote sensing, we can conclude that the presented
DASVM resulted in high and satisfactory classification
accuracy, outperforming other state-of-the-art domain
adaptation techniques. Several trials also confirmed the
effectiveness of the proposed circular validation strategy,
which always proved able to reject solutions that were not
consistent with the investigated classification task and
identified acceptable solutions for Dt even in very critical
conditions. In this framework, the joint use of both the
proposed DASVM classification technique and the circular
validation strategy seems particularly suitable to define
systems capable of solving real application problems.

As a final remark, it is worth noting that, from a
computational viewpoint, each iteration of the DASVMs
requires a time equivalent to that taken from the learning of
a supervised SVM. In fact, as the number of target-domain
semilabeled patterns increases, the number of source-
domain labeled patterns decreases; therefore, the cardin-
ality of the training set does not increase with the number of
iterations. Accordingly, it is possible to state that the
computational load grows linearly with the number of
iterations. In general, the computational time is comparable
to the one of semi-supervised methods and higher than the
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one required by supervised SVMs (on average, a hundred

of iterations for each binary DASVM are needed). Never-

theless, taking into account both the very promising results

obtained and the complexity of the investigated problems,

we can consider this cost reasonable.
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