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Abstract—This paper presents a novel protocol for the accuracy
assessment of the thematic maps obtained by the classification of
very high resolution images. As the thematic accuracy alone is not
sufficient to adequately characterize the geometrical properties of
high-resolution classification maps, we propose a protocol that is
based on the analysis of two families of indices: 1) the traditional
thematic accuracy indices and 2) a set of novel geometric indices
that model different geometric properties of the objects recognized
in the map. In this context, we present a set of indices that
characterize five different types of geometric errors in the classifi-
cation map: 1) oversegmentation; 2) undersegmentation; 3) edge
location; 4) shape distortion; and 5) fragmentation. Moreover,
we propose a new approach for tuning the free parameters of
supervised classifiers on the basis of a multiobjective criterion
function that aims at selecting the parameter values that result in
the classification map that jointly optimize thematic and geometric
error indices. Experimental results obtained on QuickBird images
show the effectiveness of the proposed protocol in selecting classi-
fication maps characterized by a better tradeoff between thematic
and geometric accuracies than standard procedures based only on
thematic accuracy measures. In addition, results obtained with
support vector machine classifiers confirm the effectiveness of
the proposed multiobjective technique for the selection of free-
parameter values for the classification algorithm.

Index Terms—Accuracy assessment, classification maps, geo-
metric accuracy, image classification, remote sensing, thematic
accuracy, very high resolution (VHR) images.

I. INTRODUCTION

W ITH the availability of very high resolution (VHR) im-
ages acquired by satellite multispectral scanners (e.g.,

GeoEye-1, QuickBird, IKONOS, and SPOT 5), it is possible to
acquire detailed information on the shape and geometry of the
objects that are present on the ground. This detailed information
can be exploited by automatic classification systems to generate
land-cover maps that exhibit a high degree of geometrical
details. The precision that the classification system can afford in
the characterization of the geometrical properties of the objects
that are present on the ground is particularly relevant in many
practical applications, e.g., in urban-area mapping, building
characterization, target detection, crop-field classification in
precision farming, etc.

In this context, it is necessary to further develop both algo-
rithms for characterizing the textural and geometric information
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that is present in VHR images, and effective classification
techniques that are capable of exploiting these properties for
increasing the classification accuracy. In the literature, several
techniques have been proposed for the classification of VHR
images. Among others, we recall the use of texture, geometric
features, and morphological transformations for characterizing
the context of each single pixel, and the use of classification
algorithms that can operate in large-dimensional feature spaces
(e.g., support vector machine (SVM)] [1]–[5]. Nonetheless,
a major open issue in classification of VHR images is the
lack of adequate strategies for a precise evaluation of the
quality of the produced thematic maps. The most common
accuracy-assessment methodology in classification of VHR
images is based on the computation of thematic accuracy
measures according to the collected reference data. However,
the thematic accuracy alone does not result to be sufficient
for effectively characterizing the geometrical properties of the
objects recognized in a map, because it assesses the correctness
of the land-cover labels of sparse test pixels (or regions of
interests) that do not model the actual shape of the objects in
the scene. Thus, often, maps derived by different classifiers
(or with different parameter values for the same classifier) that
have similar thematic accuracy exhibit significantly different
geometric properties (and, thus, global quality). For this rea-
son, in many real classification problems, the quality of the
maps obtained by the classification of VHR data is assessed
also through a visual inspection. However, this procedure can
provide just a subjective evaluation of the map quality that
cannot be quantified. Thus, it is important to develop accuracy-
assessment protocols for a precise, objective, and quantitative
characterization of the quality of thematic maps in terms of
both thematic and geometric properties [6]. These protocols
could be used not only for assessing the quality of thematic
maps generated by different classification systems but also for
better driving the model selection of a single classifier, i.e.,
the selection of the optimum values for the free parameter of
a supervised categorization algorithm.

An important area in which some studies related to the
aforementioned problem have been done in the past is that of
landscape ecology. Some approaches have been proposed in
the landscape ecology literature to compare different maps by
considering the spatial structure of the landscape [7] (and, thus,
not only the thematic accuracy). As an example, in [8], different
comparison methods that simultaneously consider both the spa-
tial structure and the pixel-based overlap (i.e., the thematic ac-
curacy) are presented. However, these methods are developed in
a different framework and do not consider the particular prop-
erties of classification maps derived from VHR remote-sensing
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images and the issues related to the tuning of the free parame-
ters of a classifier.

In this paper, we address the aforementioned problem by
proposing a novel protocol for a precise, automatic, and objec-
tive characterization of the accuracy of thematic maps derived
from VHR images. The proposed protocol is based on the eval-
uation of two families of indices: 1) thematic accuracy indices
and 2) a set of novel geometric indices that assess different
properties of the objects recognized in the thematic map. The
proposed protocol can be used in three different frameworks:
1) to objectively characterize the thematic and geometric prop-
erties of classification maps; 2) to select the map that better fits
specific user-defined requirements; and 3) to identify the map
that exhibits on average the best global properties if no specific
requirements are defined. Moreover, we propose a novel ap-
proach for tuning the free parameters of supervised classifica-
tion algorithms (e.g., SVM), which is based on the optimization
of a multiobjective problem. The aim of this approach is to
select the parameter values that result in a classification map
that exhibits high geometric and thematic accuracies.

This paper is organized into six sections. The next section
presents the background on the assessment of the thematic
accuracy of land-cover maps. Section III describes the proposed
accuracy-assessment protocol and discusses the two families of
presented geometric and thematic indices. Section IV illustrates
the proposed multiobjective criterion for the tuning of the free
parameters (model selection) of a classifier. Section V presents
the obtained experimental results, while Section VI draws the
conclusion of this paper.

II. BACKGROUND ON THEMATIC ACCURACY

ASSESSMENT OF CLASSIFICATION MAPS

In this section, we briefly recall the main concepts on the pro-
cedures used to assess the thematic accuracy of a classification
map obtained by a supervised classifier [9], [10]. In general,
the following two main issues should be addressed: 1) the
collection of the labeled samples for both training and testing
a supervised algorithm (which may require the subdivision of
the reference-sample set into two or more disjoint sets) and
2) the choice of the statistical measure to evaluate the error
(or accuracy) in pattern classification.

With respect to the first issue, several resampling methods
have been proposed in the pattern-recognition and statistical
literature, e.g., resubstitution, holdout, leave-one-out, cross-
validation, and bootstrap [11]–[14]. Holdout is one of the
most widely adopted resampling strategies in remote-sensing
applications. It consists in partitioning the available labeled
samples in two independent sets or in directly collecting two in-
dependent sets of samples in separate areas of the scene. One set
is used for training the classifier, while the other one is used for
assessing the classification accuracy. In some cases, it is prefer-
able to split the available samples into three sets: 1) one for
training the algorithm (training set); 2) one for tuning the free
parameters of the classifier (validation set); and 3) one for
assessing the final accuracy (test set). Holdout is less com-
putationally demanding with respect to other methods (e.g.,
leave-one-out and k-fold cross-validation), and it is particularly

reliable when the available labeled samples are acquired in
two spatially disjoint portions of the scene. Indeed, in this
case, it is possible to assess the generalization capability of the
classifier for test pixels that are spatially disjoint from the ones
used for the training (which may present a different spectral
behavior). With all the aforementioned resampling methods, it
is important to adopt a stratified approach, i.e., the training and
test sets (or each of the k folds) should contain approximately
the same proportions of the class labels as the original data set.
Otherwise, imbalanced and skewed results can be obtained.

With respect to statistical measures for accuracy evaluation,
the complete description of the information that comes out
from the comparison of the classification of test samples with
the reference labeled data is given by the confusion (or error)
matrix N . N is a square matrix of size C × C (where C is
the number of information classes in the considered problem)
defined as

N =

⎡
⎢⎢⎢⎣

n11 n12 n13 · · · n1C

n21 n22 · · · · · · · · ·
n31 · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
nC1 · · · · · · · · · nCC

⎤
⎥⎥⎥⎦ . (1)

The generic element nij of the matrix denotes the number of
samples classified into category i (i = 1, . . . , C) by the super-
vised classifier that are associated with label j (j = 1, . . . , C)
in the reference data set. This representation is complete, as
the individual accuracy of each category is described along
with both the errors of inclusion (commission errors) and errors
of exclusion (omission errors) [9]. From the confusion matrix,
different indices can be derived to summarize the information
with a scalar value. Let us consider the sum of the elements
of row i, ni+ =

∑C
j=1 nij (which is the number of samples

classified into category i in the classification map), and the sum
of the elements of column j, n+j =

∑C
j=1 nij (which is the

number of samples belonging to category j in the reference data
set). Two commonly adopted indices are the overall accuracy
(OA) and the kappa coefficient of accuracy (kappa), which
are defined as

OA =

C∑
i=1

nii

n
(2)

kappa =
n

C∑
i=1

nij −
C∑

i=1

ni+n+i

n2 −
C∑

i=1

ni+n+i

(3)

where n is the total number of test samples. OA represents the
ratio between the number of samples that are correctly recog-
nized by the classification algorithm and the total number of test
samples. The kappa coefficient of accuracy is a measure based
on the difference between the actual agreement in the confusion
matrix (as indicated by the main diagonal) and the chance
agreement, which is indicated by the row and column totals
(i.e., the marginals). The kappa coefficient is widely adopted,
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as it uses also off-diagonal elements of the error matrix and
compensates for chance agreement. However, as pointed out in
[15], kappa statistics has also unfavorable features. The main
objection to the kappa coefficient is that it was introduced as a
measure of agreement for two observers (see [16]). Thus, the
kappa coefficient evaluates the departure from the assumption
that two observers’ ratings are statistically independent rather
than a measure of classification accuracy. For this reason, in
[15], it is suggested to use other measures instead of kappa
statistics, e.g., the class-averaged accuracy defined as

CA =
1
C

C∑
j=1

njj

n+j
(4)

or an alternative coefficient based on the Kullback–Leibler
information. We refer the reader to [9]–[11] for further details
on accuracy-assessment procedures in remote-sensing image
classification.

It is important to point out that all the aforementioned the-
matic accuracy measures do not consider the geometrical qual-
ity of the map under assessment and the shape of the objects that
are present in the scene, thus resulting in the impossibility to
assess the correctness of the geometry of the objects recognized
by the classification algorithm. This is reasonable to evaluate
the quality of the classification maps obtained by medium-
or low-resolution images, where the geometry of the objects
is difficult to characterize. On the contrary, for adequately
assessing the quality of the classification maps obtained by
VHR images, it is important to define indices that are capable
to evaluate the geometrical properties of the maps and to use
them together with more traditional thematic indices.

III. PROPOSED PROTOCOL FOR ACCURACY

ASSESSMENT IN VHR IMAGES

In this section, we present the proposed protocol for accuracy
assessment that is based on the computation of both thematic
and geometric indices. The proposed procedure for thematic
accuracy assessment is a simple refinement of the more tradi-
tional procedures described in the previous section, which takes
into account particular properties of the classification of VHR
images. On the contrary, the introduction of geometric indices
to characterize the properties of the objects that are present in
VHR images is one of the main contributions of this paper.
Thematic and geometric indices are described in the following
two subsections, respectively.

A. Thematic Error Indices

When VHR images are considered, we can clearly identify
two different contributions to the overall thematic accuracy:
1) the accuracy obtained on homogeneous areas, where pixels
are characterized by the spectral signature of only one class, and
2) the accuracy obtained on borders of the objects and details,
where pixels are associated with a mixture of spectral signatures
of different classes. These two contributions model the attitude
of a classifier to correctly classifying homogeneous regions and

Fig. 1. Example of a map of reference objects.

high-frequency areas, allowing a more precise assessment of
the quality of the classification map. The classification of mixed
pixels is a difficult task with crisp classifiers, which should
decide for the predominant class in the area associated with
the pixel (fuzzy classifiers may be adopted in their place for
considering the contributions of the different land-cover types
to the spectral signature associated with each single pixel [17]).
The proposed thematic accuracy assessment consists of the
calculation of two separate indices: 1) thematic accuracy on
homogeneous areas and 2) thematic accuracy on edge areas.
This is accomplished by extending the holdout strategy by
defining two independent test sets: one on homogeneous areas
(pixel “inside” objects), and the other one on edge areas (pixels
on the boundaries of objects). This results in the calculation of
two independent confusion matrices. Any index derived from
the confusion matrices (e.g., overall accuracy, kappa coeffi-
cient, etc.) may be adopted to calculate the accuracy on the
two separate test sets. It is worth noting that different indices
provide different information and can be used together (see
the next section for a detailed discussion on the combined use
of multiple indices for the tuning of the free parameters of a
supervised classifier).

B. Geometric Error Indices

The geometric accuracy of a classification map is related to
its precision in reproducing the correct geometry, the shapes,
and the boundaries of the objects (e.g., buildings, streets, fields,
etc.) that are present in the scene under investigation. In this
paper, in order to quantify the geometric accuracy of maps
characterized by very high spatial resolution, we define a set
of object-based indices (error measures) that evaluate different
geometric properties of the objects represented in a thematic
map with respect to a reference map. Some of these indices
are partially inspired to the measures used in the accuracy
assessment of segmentation maps, while others are imported
from different domains of image processing. These indices
are computed by using a reference map that defines the exact
shape, structure, and position of a set O = {O1, O2, . . . , Od}
of d objects (e.g., buildings) adequately distributed in the
scene under investigation and with different properties (see
the example in Fig. 1). Generally, given the high resolution
of VHR images, the map of reference objects can easily be
defined by photointerpretation (few objects are sufficient for
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Fig. 2. Example of reference object Oi and the regions in the map that overlap
with it. Region M1 has the highest overlapping area with Oi and is selected
according to (5).

a good characterization of the properties of the map). Please
note that the labels of the classes of the reference objects
are not required for the computation of geometric accuracy
indices. In this way, the evaluation of the geometric properties
of the objects recognized in the map can be separated from the
assessment of thematic accuracy. Moreover, we do not require
having reference objects for all the classes considered in the
classification problem, but only for the classes for which the
geometric properties are important and the precise shape can
easily be defined (e.g., buildings, fields, lakes, bridges, etc.).

Let us consider that the thematic map under assessment (e.g.,
obtained by an automatic algorithm or by photointerpretation)
is made up of a set M = {M1,M2, . . . ,Mr} of r different
regions of connected pixels (with 4- or 8-connectivity), such
that each pixel in Mj , j = 1, 2, . . . , r, is associated with the
same label Lj , where Lj is one of the C information classes
in Ω = {ω1, ω2, . . . , ωC}. In order to calculate the geometric
error measures, it is necessary to identify for each object Oi

in the reference map the corresponding region in thematic map
Mi. This can be done by considering the degree of overlapping
between the pixels in reference object Oi and in regions Mj ,
j = 1, 2, . . . , k. The region Mi in the map with the highest
overlapping area with the object Oi (i.e., with the highest
number of common pixels) is selected according to

Mi = arg max
∀Mi∈M

|Oi ∩ Mj | (5)

where | · | is the cardinality of a set and is used here to extract
the number of pixels (area) from a region (see the example
in Fig. 2). Given a pair (Oi,Mi), it is possible to calculate a
set of local geometric error measures err

(h)
i , i = 1, 2, . . . , d,

h = 1, 2, . . . , m, that evaluate the degree of mismatching (in
terms of m different specific geometric properties) between
the reference object and the corresponding region on the map.
Global error measures err(h), h = 1, 2, . . . ,m, can then be
defined on the basis of the local measures.

The adopted measures are as follows: 1) oversegmenta-
tion error; 2) undersegmentation error; 3) edge-location error;
4) fragmentation error; and 5) shape error.

1) Oversegmentation: Similar to the segmentation process,
this error refers to the subdivision of a single object into several

Fig. 3. (a) Example of oversegmentation. Region Mi that is recognized in the
map is smaller than reference object Oi. (b) Example of undersegmentation.
Region Mi that is recognized in the map is bigger than reference object Oi.

distinct regions in the classification map [see the example in
Fig. 3(a)]. The proposed local-error measure can be written as

OSi(Oi,Mi) = 1 − |Oi ∩ Mi|
|Oi|

. (6)

This measure evaluates the ratio between the overlapping area
of the two regions (Oi,Mi) and the area of the reference object.
The index OSi is defined in order to scale the output values
in the [0, 1) range. The higher the value of the error, the higher
the level of oversegmentation of the object Oi in the considered
classification map. The value of this error is 0 in the optimal
case where the two regions are in full agreement, while it tends
to 1 in the worst case of just one common pixel among the two
regions.

2) Undersegmentation: Undersegmentation refers to the
classification errors that result in group of pixels belonging to
different objects fused into a single region. The proposed local-
error measure is defined as

USi(Oi,Mi) = 1 − |Oi ∩ Mi|
|Mi|

. (7)

Unlike the oversegmentation error, the undersegmentation error
is computed by considering the ratio between the area of
overlapping among Mi and Oi and the area of the region on
map Mi. Also, the USi error varies in the [0, 1) range. Value
0 of this index corresponds to perfect agreement between Mi

and Oi, while values that are close to 1 reflect a high amount
of undersegmentation (i.e., region Mi is much bigger than the
area of overlapping between regions Mi and Oi).

3) Edge Location: This index measures the precision of the
object edges recognized in the classification map with respect
to those of the actual object [see the example in Fig. 4(a)].
Let e(Oi) denote the operator that extracts the set of edge
pixels from a generic region Oi. In this framework, we consider
the possibility to introduce a tolerance in the recognition of
the object borders. This can be implemented by adopting an
operator e(·) that extracts the border line of the objects with
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Fig. 4. Example of a region Mi that is recognized in the map (with corresponding reference object Oi) that exhibits (a) large edge-location error, (b) high level
of fragmentation, and (c) relatively high shape error.

a width that is greater than 1 pixel (e.g., 2 or 3 pixels). The
definition of the border error is given by

EDi(Oi,Mi) = 1 − |e(Oi) ∩ e(Mi)|
|e(Oi)|

. (8)

This error measure varies in the [0, 1) range like the previous
ones. A perfect matching in the borders of the two regions Mi

and Oi leads to an error value that is equal to 0, whereas a large
mismatching among the region edges results in error values that
are close to 1.

4) Fragmentation Error: The fragmentation of a classifica-
tion map refers to the problem of subpartitioning single objects
into different small regions [see the example in Fig. 4(b)]. In or-
der to quantitatively measure this type of error, we define a mea-
sure based on the number ri of regions Mj , j = 1, 2, . . . , ri,
that have at least one pixel in common with reference object
Oi. For this reason, we define the set Ri of all the regions
overlapping with reference object Oi as

Ri = {Mj ,∀j = 1, 2, . . . , ri : Oi ∩ Mj �= ∅}. (9)

The proposed fragmentation error is then defined by the
following:

FGi(Oi,Mi) =
ri − 1
|Oi| − 1

. (10)

This error value is scaled in the [0, 1] range. The value is 0 in
the optimal case when only one region Mj is overlapping with
reference object Oi, whereas it is 1 in the worst case where all
the pixels of object Oi belong to different regions Mj on the
map. The measure is normalized with respect to the size (area)
of reference object Oi. It is worth noting that the fragmentation
error is correlated with the oversegmentation error but differs
from the latter because it takes into account all the ri regions
Mj that overlap with real object Oi, instead of the area of the
single region Mi obtained by (5).

5) Shape Error: This error is used to evaluate the shape
difference between an object Oi and the corresponding re-
gion Mj on the map [see the example in Fig. 4(c)]. In order
to characterize the shape of an object, several shape factors
have been proposed in the literature and can be adopted (e.g.,

compactness, sphericity, and eccentricity [18]). Thus, the shape
error can be defined as the absolute value of the difference in
the selected shape factor sf(·) of the two regions Mi and Oi

SHi = ‖sf(Oi) − sf(Mi)‖ . (11)

It is worth noting that, by adopting shape factors normalized in
the [0, 1] range, the defined shape-error measure will vary in
the same range.

On the basis of the previously defined measures of local
errors (i.e., errors associated with single objects in the map), it is
then possible to estimate the global behaviors of the geometric
properties of the classification map. Global error measurements
can be obtained by averaging the local errors over the d
measurements associated with the reference objects in O, i.e.,
a generic global-error-measure characterizing property err(h)

of the map can be expressed as

err(h) =
1
d

d∑
i=1

err
(h)
i (12)

where err
(h)
i is a local error h on object i. In this way,

we give the same weight to the errors over the d objects,
independently from their size. Other possible definitions of the
global measures may take into account the size of the different
objects, i.e.,

err(h) =
1
d

d∑
i=1

|Oi|err(h)
i (13)

or can weight differently the objects on the basis of specific
user-defined requirements, i.e.,

err(h) =
1
d

d∑
i=1

λi err
(h)
i (14)

where λi, i = 1, 2, . . . , n, are defined by the user. For example,
the user may specify that geometric errors on buildings are
more important than geometric errors on other objects, like
streets, crop fields, or lakes. Global measures are then used to
estimate different geometric properties of the map. Combining
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the different global indices in a single measure that averages
geometric indices is also possible. Nevertheless, this procedure
would result in a measure that is difficult to understand.

IV. PROPOSED MULTIOBJECTIVE STRATEGY FOR

CLASSIFIER-PARAMETER OPTIMIZATION

Other than the quality assessment of the classification maps
obtained according to different procedures (e.g., different au-
tomatic classifiers, photointerpretation, etc.), an accuracy index
is also an important measure for tuning the free parameters of
supervised classifiers (this process is also indicated as model
selection). Let us consider a generic supervised algorithm for
which a vector θ of free parameters should be selected in order
to optimize the quality of the output map. Standard approaches
are based on the adoption of a scalar index to assess the
thematic accuracy of the map (e.g., the overall accuracy or
the kappa coefficient) and on the selection of vector θ that
maximizes such a scalar value on the test samples. If a vector
I of quality indices that characterize different thematic and
geometric properties of the classification map is considered,
the selection of θ should be based on a different optimization
strategy. The simplest (yet empirical and only partially reliable)
strategy is to define a single error function E(·) combining the
m proposed error measures according to a weighted average

E(O,M) =
m∑

j=1

cj err(j) (15)

where the terms cj , j = 1, 2, . . . ,m, are defined by the user.
The set of parameter values of θ that produces the classification
map that minimizes E(O,M) represents the solution to the
considered problem. Nevertheless, this formulation has an im-
portant drawback: The definition of cj (which significantly
affects the final result) is very critical because of the differ-
ent intrinsic scales of the considered errors. In addition, the
physical information conveyed by the resulting global index is
difficult to understand.

To overcome this drawback, we propose to model our prob-
lem as a multiobjective minimization problem, where the mul-
tiobjective function g(θ) is made up of m different objectives
g1(θ), g2(θ), . . . , gm(θ) that represent the set of adopted er-
ror measures computed for different values of the classifier
parameters (e.g., different thematic and geometric indices).
All the different objectives of g(θ) have to be jointly min-
imized and are considered equally important. In general, all
the proposed thematic indices (evaluated on homogeneous and
border areas with different statistical parameters) and geometric
indices could be used for the definition of g(θ). However,
depending on the application, it could be more appropriate to
use different subsets of the presented indices as objectives of the
optimization problem (e.g., for meeting some particular quality
properties of the classification map required by the end users).
Thus, the multiobjective problem can be formulated as follows:

min
θ∈S

{g(θ)} ,g(θ) = [g1(θ), g2(θ), . . . , gm(θ)]

subject to θ = (θ1, θ1, . . . , θh) ∈ S ⊆ R
h (16)

Fig. 5. Example of Pareto-optimal solutions and dominated solutions in a
two-objective search space.

Fig. 6. (a) Real color composition of the image acquired by the QuickBird
satellite in the city of Pavia (northern Italy). (b) Map of reference objects.

where S denotes the search space for the classifier parameters.
This problem is characterized by a vector-valued objective
function g(θ) and cannot be solved in order to derive a single
solution like in optimization problems characterized by a single
objective function. Instead, a set of optimal solutions P ∗ can
be obtained by following the concept of Pareto dominance. In
greater detail, a solution θ∗ is said to be Pareto optimal if it is
not dominated by any other solution in the search space, i.e.,
there is no other θ such that gi(θ) ≤ gi(θ∗) (∀i = 1, 2, . . . ,m)
and gj(θ) < gj(θ∗) for at least one j (j = 1, 2, . . . ,m). This
means that θ∗ is Pareto optimal if there exists no other subset
of classifier parameters θ that would decrease an objective
without simultaneously increasing another one (Fig. 5 clarifies
this concept with a graphical example). The set P ∗ of all
optimal solutions is called Pareto-optimal set. The plot of the
objective function of all solutions in the Pareto set is called
Pareto front PF ∗ = {g(θ)|θ ∈ P ∗}. The main advantage of
the multiobjective approach is that it avoids to aggregate
metrics capturing multiple objectives into a single measure.
On the contrary, it allows one to effectively identify different
possible tradeoffs between maps exhibiting different thematic
and geometric properties.

Because of the complexity of the search space, an exhaustive
search of the set P ∗ of optimal solutions is unfeasible. Thus,
instead of identifying the true set of optimal solutions, we aim
to estimate a set P̂ ∗ of nondominated solutions with objective
values as close as possible to the Pareto front. This estimation
can be done with different multiobjective optimization algo-
rithms (e.g., multiobjective evolutionary algorithms [19], [20]).
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TABLE I
NUMBER OF SAMPLES IN THE TRAINING AND TEST SETS (PAVIA DATA SET)

The final selection of the optimal solution among all estimated
nondominated solutions is demanded to the user, who can select
the best tradeoff among the considered objectives on the basis
of the specific application (e.g., one could tolerate to have
undersegmented maps rather than oversegmented ones or prefer
to have less fragmented objects rather than high precision in the
shape, etc.).

V. EXPERIMENTAL RESULTS

This section presents an experimental analysis aimed at
studying the reliability of the proposed protocol for the accu-
racy assessment of the classification maps obtained by VHR
images. We first applied the proposed indices to the quality
assessment of different thematic maps obtained by the classi-
fication (carried out with different automatic techniques) of a
QuickBird image acquired in the city of Pavia, Italy. Then, in
a second set of experiments, we applied the proposed multiob-
jective strategy to the model selection of an SVM classifier in
the analysis of a different QuickBird image acquired in the city
of Trento, Italy. In our implementation of geometric indices,
we considered a tolerance of 3 pixels for the edge-location
error, and we selected eccentricity [18] as shape factor for the
evaluation of the shaper error. The global geometric errors were
computed on the basis of (12).

A. Quality Assessment of Classification Maps

The first considered data set is made up of a QuickBird
multispectral image acquired in the city of Pavia (northern
Italy) on June 23, 2002. In particular, we used a panchromatic
image and a pan-sharpened multispectral image [see Fig. 6(a)]
obtained by applying a Gram–Schmidt fusion technique [21]
to the panchromatic channel and to the four bands of the
multispectral image. The image size is 1024 × 1024 pixels
with a spatial resolution of 0.7 m. Greater details about this
data set can be found in [1]. Table I presents the number of
labeled reference samples for each set and class. The test pixels
used for the assessment of thematic accuracy were collected on
both edge and homogeneous areas. Test set pixels were taken
from areas of the scene spatially disjoint from those related to
the training samples. Fig. 6(b) shows the map of the reference
objects used for the evaluation of geometric error indices. In

particular, six different buildings were manually selected and
considered as reference objects. It is worth noting that, given the
VHR of the images, the procedure for digitizing few reference
objects is simple and very fast.

In our experiments, we obtained different thematic maps of
the scene by using different automatic classification systems.
The different systems were defined by varying the feature
vector (i.e., considering only spectral features and/or also mul-
tiscale/multilevel contextual features), the supervised classi-
fication algorithms (i.e., parallelepiped, maximum-likelihood
(ML), and SVM classifiers), and, in some cases, adding a
postprocessing phase for regularizing the final classification
map. These systems were chosen with the goal to obtain
classification maps with different properties. Fig. 7 shows the
thematic maps obtained by the different considered classifica-
tion systems. In particular, the (a)–(d) maps are obtained by
considering a feature vector that is made up of only the original
spectral features. Map (a) is obtained by using a very simple
parallelepiped classifier (with σ = 2) [22], map (b) is derived
by adopting a Gaussian ML classifier, map (c) is obtained by
applying a majority filter (with a sliding window of size 3 × 3)
as postprocessing to map (b) [22], and map (d) is the result of
classification with SVM (using Gaussian kernels). The (e)–(h)
maps are yielded using both spectral and contextual features
and adopting SVM as the classification algorithm. Map (e)
is obtained considering the features extracted on the basis of
the generalized Gaussian pyramid decomposition. In detail, the
images were iteratively analyzed by a Gaussian kernel low-
pass filter (with 5 × 5 square analysis window) and were
undersampled by a factor of two. We exploited five levels of
pyramidal decomposition to characterize the spatial context of
pixels and to label each pixel of the scene under investigation.
Maps (f)–(h) are obtained using the multilevel context-based
feature-extraction approach proposed in [1]; different statistical
parameters are extracted from the pixels in each region defined
at six different levels by a hierarchical-segmentation process.
In particular, for map (f), we considered the mean value for
the first five levels and the standard deviation for levels 3, 4,
and 5, while for map (g), we considered only the mean for all
first five levels. Map (h) is obtained considering the mean value
extracted from all six segmentation levels.

Tables II and III report the thematic accuracies and the
geometric error indices associated with the obtained maps,
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Fig. 7. Thematic maps obtained by different classification systems applied
to the Pavia QuickBird image. (a) Parallelepiped. (b) ML. (c) ML with
postprocessing. (d) SVM. (e) SVM Gaussian pyramid. (f) SVM multilevel
features—five levels (1). (g) SVM multilevel features—five levels (2). (h) SVM
multilevel features—six levels.

respectively. Considering the eight different maps, we can
easily observe that, as expected, the thematic maps obtained
by pixel-based classification approaches [maps (a), (b), and
(d)] are less accurate than those obtained by context-based
approaches. This general behavior is clearly pointed out also by
thematic accuracy indices. The geometric error measurements

give us important additional information about the different
properties of the maps. In particular, we note that the maps
obtained by pixel-based approaches are generally more over-
segmented and fragmented than the maps obtained by context-
based classification systems, but they have also the important
property to be less undersegmented. In the considered scene, we
can observe that the buildings are very close to each other. Thus,
most of the considered classifiers merge regions associated
with distinct objects (i.e., buildings) into a single region. The
aforementioned problem is captured by the proposed geometric
indices, which indicates that most of the maps have an un-
dersegmentation error that is higher than the oversegmentation
error [except for map (a)]. This problem strongly affects also
the recognition of the correct shape of the objects. For this
reason, we can observe that, on this data set, the shape error
is highly correlated with the undersegmentation error. We can
further observe that the edge-location error is, in general, quite
high for all the obtained maps (even if a tolerance of 3 pixels
is considered). This indicates that the considered classifica-
tion techniques can scarcely model the correct borders of the
objects.

Analyzing the single maps, we can observe that map (a) has
very low quality in terms of thematic accuracy and in terms of
most of the geometric indices. In particular, this map is sharply
oversegmented and fragmented, as indicated by the geometric
errors; this is confirmed by a visual inspection. Map (b) has
better quality than map (a): it exhibits higher thematic accuracy
(both on homogeneous and border areas) and better geometric
properties in terms of undersegmentation and border error. Map
(c) [obtained by a postprocessing applied to map (b)] results in
slightly higher thematic accuracy and in smaller oversegmenta-
tion, fragmentation, and border errors than map (b). Neverthe-
less, the majority postprocessing leads to a slight increase in the
undersegmentation error. Map (d) is the most accurate among
those obtained with a pixel-based approach: This is pointed
out by both thematic and geometric indices. In particular,
this map exhibits the smallest undersegmentation and edge-
location errors among all considered maps. Map (e) exhibits
important advantages with respect to the aforementioned maps,
showing smaller oversegmentation and fragmentation errors as
well as higher thematic accuracies. Nevertheless, the thematic
accuracies (particularly on border areas) are smaller than those
of maps (f)–(h). The geometric indices result to be particu-
larly important for the characterization of the different maps
obtained by the multilevel feature-extraction technique [maps
(f)–(h)], which have high and very similar thematic accuracies.
Map (f) is the most accurate from a thematic point of view,
but maps (g) and (h) exhibit better geometric characteristics
(e.g., undersegmentation and edge-location errors) than map (f).
As it is possible to observe in Fig. 8, map (f) is affected by
undersegmentation problems, as it merges different objects in
the same region. On the contrary, map (h) correctly models the
different buildings. This difference is clearly pointed out by the
values of the undersegmentation error. Thus, considering both
thematic and geometric indices, we can select map (h) as more
reliable than map (f) (which would be preferred considering
only thematic accuracies) because it presents a better tradeoff
among different properties of the maps. It is worth noting
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TABLE II
THEMATIC ACCURACIES COMPUTED ON THE TEST SET ON HOMOGENEOUS AND EDGE AREAS AND ON BOTH OF THEM (COMPLETE TEST SET)

EVALUATED IN TERMS OF OVERALL ACCURACY (OA) AND KAPPA COEFFICIENT (kappa) (PAVIA DATA SET)

TABLE III
GEOMETRIC ERROR INDICES (PAVIA DATA SET)

Fig. 8. Details of the thematic maps. (a)–(c) Undersegmentation problems in
map (f). (b)–(d) Correct recognition of distinct buildings in map (h) (Pavia data
set). (a) Detail of map (f). (b) Detail of map (h). (c) Detail of map (f). (d) Detail
of map (h).

that the property of correctly recognizing and distinguishing
single objects in the scene can be very important for urban-area
analysis, specifically in applications like building detection.

Fig. 9. (a) Real color composition of the multispectral image acquired by the
QuickBird satellite in the city of Trento (northern Italy). (b) Map of reference
objects.

In general, the selection of the highest quality map depends
on the kind of application and/or on end-user requirements. In
this context, the proposed indices are a valuable tool that can
drive the selection of the best thematic map in accordance to
the application constraints.

B. Multiobjective Strategy for the Model Selection of
Supervised Algorithms

In the second set of experiments, we used the proposed
multiobjective technique for the model selection of an SVM
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TABLE IV
NUMBER OF SAMPLES IN THE TRAINING AND TEST SETS (TRENTO DATA SET)

TABLE V
THEMATIC AND GEOMETRIC ACCURACIES/ERROR INDICES OF SEVEN SOLUTIONS SELECTED AMONG ALL PARETO-OPTIMAL POINTS

ESTIMATED BY THE GENETIC ALGORITHM. EACH SELECTED SOLUTION EXHIBITS AN ACCURACY INDEX THAT HAS THE HIGHEST

VALUE AMONG ALL SOLUTIONS (EXPERIMENTS WITH SEVEN ERROR INDICES IN THE OPTIMIZATION PROBLEM)

classifier with radial basis function Gaussian kernels [23], [24].
The free parameters of the classifier are the regularization term
C and the spread σ2 of the Gaussian kernel. The experiments
were carried out on a VHR image acquired by the QuickBird
multispectral scanner on an urban area in the south of the
city of Trento (Italy) in July 2006 [see Fig. 9(a)]. We used a
panchromatic image and a pan-sharpened multispectral image
obtained by applying a Gram–Schmidt fusion technique to the
panchromatic channel and to the four bands of the multispectral
image. The image size is 500 × 500 pixels with a spatial
resolution of 0.7 m. From the panchromatic and pan-sharpened
multispectral bands, we extracted textural features by applying
an occurrence filter with 5 × 5 window size and computing
mean, data range, and variance. Thus, the final feature vector
is made up of 20 features (5 spectral features and 15 textural
features). The available set of reference samples included a
training set, a test set on homogeneous areas, and a test set
on border areas. The following six classes were considered:
1) roads; 2) red buildings; 3) dark buildings; 4) bright buildings;
5) shadow; and 6) vegetation.

Table IV presents the number of labeled reference samples
for each set and class. Fig. 9(b) shows the map of the 11
reference objects used for the evaluation of geometric error
indices.

The strategy for the model selection proposed in Section IV
can be applied considering different sets of thematic and
geometric indices as objectives of the optimization problem,
depending on the specific application. In our analysis, we
performed two sets of experiments considering the following:
1) seven objectives (two thematic and five geometric error

Fig. 10. Details of the maps associated with different Pareto-optimal solutions
(experiments with seven error indices in the optimization problem; Trento data
set). (a) Detail of map (2a). (b) Detail of map (2g). (c) Detail of map (2c).
(d) Detail of map (2d).

indices) and 2) two objectives (one thematic and one geometric
error indices). These two sets of experiments represent exam-
ples of the practical use of the proposed multiobjective ap-
proach in real problems, but any other combination of thematic
and geometric indices may be used in the optimization problem
for parameter tuning.
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TABLE VI
PARETO-OPTIMAL SOLUTIONS ESTIMATED BY THE GENETIC ALGORITHM FOR THE EXPERIMENT WITH TWO ERROR INDICES (TRENTO DATA SET)

1) Experiments with Seven Error Indices in the Optimiza-
tion Problem: In this set of experiments, we defined model
selection as a multiobjective optimization problem made up
of seven objectives: the five geometric measures presented in
Section III (i.e., undersegmentation, oversegmentation, edge-
location, fragmentation, and shape errors) and the two thematic
errors based on kappa coefficient (calculated as 1 − kappa) on
the homogeneous and border test sets. Please note that, in our
experimental analysis, we used a thematic error index based
on the popular kappa coefficient, but any other index may be
used in its place (e.g., the overall error). For the estimation of
Pareto-optimal solutions, we adopted a genetic multiobjective
algorithm (a variation of NSGA-II) [25]. The population size
and the maximum number of generations were set to 30 and 20,
respectively. Among all Pareto-optimal solutions obtained by
the genetic algorithm, we selected seven solutions (used as an
example in this discussion), characterized by different tradeoffs
among the different indices (see Table V). The selected solu-
tions are characterized by the lowest error among all solutions
for each index [e.g., map (2a) presents the highest thematic
accuracy on homogeneous areas, map (2b) exhibits the highest
thematic accuracy on edge areas, map (2c) shows the minimum
undersegmentation error, etc.].

All these Pareto-optimal solutions are associated with maps
having different thematic and geometric properties. For ex-
ample, Fig. 10 shows some details of maps (2a)–(2g) and
(2c)–(2d). Map (2a) [Fig. 10(a)] exhibits the highest kappa
coefficient of accuracy on homogeneous areas, but the shape
of red-roof buildings is not well recognized. On the contrary,
map (2g) [Fig. 10(b)] has a smaller thematic accuracy but
better models the shape of the buildings. This behavior can
also be observed by a visual inspection of the maps. Map (2c)
[Fig. 10(c)] has the lowest undersegmentation error, whereas
map (2d) [Fig. 10(d)] has good oversegmentation properties, in
spite of significant undersegmentation errors (which also affect
the recognition of the shape of the objects).

2) Experiments with Two Error Indices in the Optimization
Problem: In this second set of experiments, two objectives
were considered in the optimization problem: 1) the kappa coef-
ficient of accuracy on homogeneous areas and 2) the underseg-
mentation error. This represents an example in which we would
like to select the SVM model that results in classification maps
with the best tradeoff among thematic accuracy and precision

Fig. 11. Estimated Pareto-optimal solutions for the experiment with two error
indices in the optimization problem.

in detecting separate buildings (undersegmentation error). The
genetic algorithm adopted for the estimation of the Pareto front
resulted in the estimation of the ten optimal solutions reported
in Table VI.

Fig. 11 shows the estimated Pareto front. The selection of one
model for the SVM classifier (i.e., the values of C and 2σ2) de-
pends on the requirements of the specific application. For exam-
ple, we selected three possible models from the Pareto-optimal
solutions that leads to: i) the map with the highest kappa co-
efficient of accuracy on homogeneous areas [map (3g)]; ii) the
map with the lowest under-segmentation error [map (3e)]; iii) a
good tradeoff between the two competing objectives [map (3c)].
A qualitative visual analysis of the obtained maps confirms that
map (3g) [Fig. 12(a)] has some under-segmentation problems
(but it has the smallest possible under-segmentation error for
the obtained kappa value), map (3e) [Fig. 12(b)] is less under-
segmented (and exhibits the highest possible kappa accuracy for
the value of the obtained under-segmentation error), and map
(3c) [Fig. 12(c)] can be considered a good tradeoff between the
two considered objectives.

It is worth noting that different error indices can be included
in the multiobjective model selection. The choice of error
indices should reflect the properties that the end users desire to
optimize in the classification map. Other experiments, carried
out using different error indices, confirmed the reliability of
the proposed multiobjective model-selection technique based
on the proposed accuracy-assessment protocol.
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Fig. 12. Details of the maps associated with the three selected solutions (experiment with two error indices in the optimization problem; Trento data set).
(a) Detail of map (3g). (b) Detail of map (3c). (c) Detail of map (3e).

VI. DISCUSSION AND CONCLUSION

In this paper, a novel protocol for the accuracy assessment of
the thematic maps obtained by the classification of VHR images
has been presented. The proposed protocol is based on the
evaluation of a set of error measures that can model the thematic
and geometric properties of the obtained map. In particular, we
presented a set of indices that characterize five different types of
geometric errors in the classification map: 1) oversegmentation;
2) undersegmentation; 3) edge location; 4) shape distortion;
and 5) fragmentation. The proposed geometric measures can
be jointly used with the traditional thematic accuracy measures
for a precise characterization of the properties of a thematic
map derived by VHR images. The presented protocol can be
used in three different frameworks: 1) assessing the quality of
a classification map in an automatic, objective, and quantitative
way; 2) selecting the classification map, among a set of different
maps, that is more appropriate for the specific application on the
basis of user-defined requirements; and 3) selecting the values
of the free parameters of a supervised classification algorithm
that result in the most appropriate classification map. Regarding
this latter point, we have introduced a new technique for tuning
the free parameters of supervised classifiers that is based on
the optimization of a multiobjective problem, which results in
parameter values that jointly optimize thematic and geometric
error indices on the classification map.

The experimental results obtained on two VHR images
confirm that the proposed geometric indices can accurately
characterize the properties of classification maps, providing ob-
jective and quantitative error measures, which are in agreement
with the observations derived by a visual inspection of the
considered maps. Moreover, the proposed approach for tuning
the free parameters of supervised classifiers resulted effective
in the selection of the free parameters of SVM classifiers. This
approach allows one to better characterize the tradeoff among
the different thematic and geometric indices and to select the
model in accordance with user requirements and application
constraints.

It is worth noting that the proposed approach represents a
step toward a new direction in accuracy assessment of the
classification maps derived from VHR images. However, some
issues need to be further studied. One open issue is related to the
definition of reference objects and the evaluation of geometric

indices in the case of adjacent objects that cannot be easily
separated (e.g., different overlapped tree crown). Other issues
are related to the definition of additional geometric indices to
include in the proposed protocol and multiobjective strategy
for considering different geometric properties. Moreover, as
additional future developments of this paper, we plan to extend
the proposed multiobjective approach based on the evaluation
of both thematic and geometric indices to the tuning of other
variables of the classification system (not only related to the
classification algorithm), e.g., for selecting the features to be
given as input to the classifier or the parameters defining a post-
processing, which strongly impact on the geometric properties
of the final classification map.
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