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Remote sensing hyperspectral sensors are important and powerful instruments for addressing classification
problems in complex forest scenarios, as they allow one a detailed characterization of the spectral behavior of
the considered information classes. However, the processing of hyperspectral data is particularly complex both
from a theoretical viewpoint [e.g. problems related to the Hughes phenomenon (Hughes, 1968) and from a
computational perspective. Despitemany previous investigations that have been presented in the literature on
feature reduction and feature extraction in hyperspectral data, only a few studies have analyzed the role of
spectral resolution on the classification accuracy in different application domains. In this paper, we present an
empirical study aimed at understanding the relationship among spectral resolution, classifier complexity,
and classification accuracy obtained with hyperspectral sensors for the classification of forest areas. We
considered two different test sets characterized by images acquired by an AISA Eagle sensor over 126 bands
with a spectral resolution of 4.6 nm, and we subsequently degraded its spectral resolution to 9.2, 13.8, 18.4, 23,
27.6, 32.2 and 36.8 nm. A series of classification experiments were carried out with bands at each of the
degraded spectral resolutions, and bands selected with a feature selection algorithm at the highest spectral
resolution (4.6 nm). The classification experiments were carried out with three different classifiers: Support
Vector Machine, Gaussian Maximum Likelihood with Leave-One-Out-Covariance estimator, and Linear
Discriminant Analysis. From the experimental results, important conclusions can be made about the choice of
the spectral resolution of hyperspectral sensors as applied to forest areas, also in relation to the complexity of
the adopted classification methodology. The outcome of these experiments are also applicable in terms of
directing the user towards a more efficient use of the current instruments (e.g. programming of the spectral
channels to be acquired) and classification techniques in forest applications, as well as in the design of future
hyperspectral sensors.

© 2009 Elsevier Inc. All rights reserved.
1. Introduction

In the study of forest environments, and in particular of complex
forest areas, the choice of the most suitable spectral and spatial
resolution for classification is a very important problem. Many studies
have been carried out on the classification of forest areas with
multispectral sensors (e.g. Sedano et al., 2005; Wang et al., 2004).
However, satellite multispectral data are usually characterized by a low
spectral resolution that decreases when the spatial resolution increases.
Despite, a relatively low spatial resolution can be useful in the study of
plantation forests (orof forests characterizedby thepresence of onlyone
tree specie), often it is not suitable in the study of dense natural forests
with many mixed specie. Thus, the requirement to have accurate maps
. Dalponte),
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at a high spatial resolution increases the need to use airborne
hyperspectral data, which can acquire images having both high spectral
and spatial resolutions. These sensors acquire images in hundreds of
spectral channels, providing a huge amount of useful data on the
analyzed area. As an example, Dalponte et al. (2008) studied a forest
area in Italy characterized by 23 different classes reaching accuracies of
about 90% with hyperspectral data acquired at a spectral resolution of
4.6 nm in 126 bands. Clark et al. (2005) studied seven deciduous tree
species with the HYDICE sensor, using three different classifiers,
reaching accuracies to the order of 90%. Martin et al. (1998)
discriminated 11 forest classes with AVIRIS data, obtaining an overall
kappa accuracy of 68% using 9 spectral bands.

An important property ofmodern hyperspectral sensors (see Table 1
for a review of the most recent instruments) is that they have a
programmable definition of the spectral resolution and of the distribu-
tion of the channels in the spectrum. This means that, within the
boundaries of each sensor anddepending also on the consideredportion
of the spectrum, it is possible to tune the channels acquiredby the sensor
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Table 1
Major recent hyperspectral sensors and their related spectral properties.

Sensor name Manufacturer Platform Maximum number
of bands

Maximum spectral
resolution

Spectral range

Hyperion on EO-1 NASA Goddard Space Flight Center Satellite 220 10 nm 0.4–2.5 µm
MODIS NASA Satellite 36 40 nm 0.4–14.3 µm
CHRIS Proba ESA Satellite up to 63 1.25 nm 0.415–1.05 µm
AVIRIS NASA Jet Propulsion Lab Aerial 224 10 nm 0.4–2.5 µm
HYDICE Naval Research Lab Aerial 210 7.6 nm 0.4–2.5 µm
PROBE-1 Earth Search Sciences Inc. Aerial 128 12 nm 0.4–2.45 µm
CASI 550 ITRES Research Limited Aerial 288 1.9 nm 0.4–1 µm
CASI 1500 ITRES Research Limited Aerial 288 2.5 nm 0.4–1.05 µm
SASI 600 ITRES Research Limited Aerial 100 15 nm 0.95–2.45 µm
TASI 600 ITRES Research Limited Aerial 64 250 nm 8–11.5 µm
HyMap Integrated Spectronics Aerial 125 17 nm 0.4–2.5 µm
ROSIS DLR Aerial 84 7.6 nm 0.43–0.85 µm
EPS-H (Environmental Protection System) GER Corporation Aerial 133 0.67 nm 0.43–12.5 µm
EPS-A (Environmental Protection System) GER Corporation Aerial 31 23 nm 0.43–12.5 µm
DAIS 7915 (Digital Airborne Imaging Spectrometer) GER Corporation Aerial 79 15 nm 0.43–12.3 µm
AISA Eagle Spectral imaging Aerial 244 2.3 nm 0.4–0.97 µm
AISA Eaglet Spectral imaging Aerial 200 – 0.4–1.0 µm
AISA Hawk Spectral imaging Aerial 320 8.5 nm 0.97–2.45 µm
AISA Dual Spectral imaging Aerial 500 2.9 nm 0.4–2.45 µm
MIVIS (Multispectral Infrared and Visible

Imaging Spectrometer)
Daedalus Aerial 102 20 nm 0.43–12.7 µm

AVNIR OKSI Aerial 60 10 nm 0.43–1.03 µm
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to the characteristics of the specific problem under analysis. As an
example, it is possible to have a denser sampling of the spectral
signature in a given region of the spectrum, and a sparser sampling in
others regions.

On the one hand, if the use of hyperspectral data allows one to face
complex classification problems, on the other hand the hyperdimen-
sionality of the feature space produces some drawbacks connectedwith
the classification algorithm to use. Indeed, only a few classification
algorithms are able to fully exploit the huge amount of data provided by
hyperspectral sensors. One of the main problems in classification of
hyperspectral data is the Hughes phenomenon (Hughes, 1968). This
phenomenon arises when the ratio between the number of input
features (and thus of classifier parameters) to the number of training
samples is small (ill-posed problems), and so results in a decrease of the
accuracy in the estimation of the classifier parameters when increasing
thenumberof features usedand thus inpoor generalization abilityof the
classifier. This is the case for theGaussianMaximumLikelihood classifier
where estimations of the covariance matrices and mean vectors are
affected by a small ratio between the number of training samples and
the number of features used. Thus it becomes very critical in the
hyperspectral case in which the number of features is higher than the
number of training samples for each class, thus resulting in singular
covariance matrices that cannot be used in the classification task.

Another important variable to consider in the analysis of hyperspec-
tral data is the “complexity” of the classification algorithm,which in this
paper is defined as the capability of a classifier to model highly non-
linear decision boundaries. Usually classifiers with higher complexity
are potentially more effective than algorithms with smaller complexity,
especially for difficult classification problems. However, effective
distribution free classifiers require the estimation of a high number of
parameters in the learning phase, thus resulting intrinsically more
vulnerable to the Hughes phenomenon. In this framework, it is very
important, given a specific application, to identify the limit of the
spectral resolution over which the discrimination between classes does
not change significantly. This limit is also determinedby the capability of
the classifier to exploit features with a very detailed characterization of
the spectral signature, and thus it depends on the complexity of the
classification algorithm. It is worth noting that by fixing the Instanta-
neous Field Of View (IFOV) and the radiometric resolution of the sensor,
a decrease in the spectral resolutionwill produceabetter signal-to-noise
ratio (SNR) on the acquired signal. This means that relatively simple
classifiers could take advantage of a decrease in spectral resolution,
especially if they cannot address the complexity of hyperdimensional
classification problems.

In the literature several studies have focused on the selection of the
optimal sets of hyperspectral channels for use in the classification phase.
Of these many focused on the development of algorithms for the
selectionof theoptimal features, givena certain classificationproblem. In
this context, we can recall the feature selection algorithms based on a
search strategyanda separabilitymeasure. Common search strategies on
hyperspectral data are the Sequential Forward Floating Selection (Pudil
et al., 1994) and the Steepest Ascent (Serpico & Bruzzone, 2001). As a
separability measure, we find the Bhattacharyya distance (Bhattachar-
yya,1943; Djouadi et al., 1990), the Jeffries–Matusita distance (Bruzzone
et al., 1995), as well as the transformed divergence distance (Richards &
Jia, 1999). Others studies have analyzed the location of the most
informative channels in the spectrum by considering the physical
meaning of each band (e.g. Backer et al., 2007; Schmidt & Skidmore,
2003). Among them, we recall the study of Backer et al. (2007), where
the authors analyzed different band selection methodologies and
different spectral resolutions on a CASI 2 image acquired in 46 bands.

Despite the aforementioned papers addressing the analysis and the
selection of the spectral channels, little attention has been devoted to
the study of the relationship among spectral resolution and classifier
complexity in forest applications. Nevertheless, given a certain classifier
it is interesting to know the optimal spectral resolution to use in the
classification of complex forest areas. Thus, the objective of this paper is
to present an empirical analysis on the relationship among spectral
resolution, classifier complexity and classification accuracy on a
complex forest area with hyperspectral data. In particular we analyzed
the behavior of the classification accuracy of different classifiers (based
on different theoretical principles) versus: i) the spectral resolution of
the sensor; and ii) the number of features acquired at a high spectral
resolution (4.6 nm). This analysis has practical applications in terms of
directing more efficient application of the current instruments (e.g.
programming of the spectral channels to be acquired) and in terms of
selection of classification techniques in forest applications, as well as
beinguseful for thedesign of future hyperspectral sensors. Although this
paper is focused on forest application, the proposed analysis is quite
general and can be easily extended to other domains.



Table 2
Distribution of reference data samples (pixels) among investigated classes of the Bosco
della Fontana dataset (in brackets the number of trees).

Class name Reference
data samples

Class
name

Reference
data samples

Class name Reference
data samples

Acer
campestris

170 (10) Juglans
regia

1573 (35) Q. rubra 1137 (21)

Acer
negundo

48 (3) Morus sp. 164 (5) Robinia
pseudoacacia

1008 (40)

Alnus
glutinosa

507 (27) Platanus
hybrida

2048 (68) Rubus 661

C. betulus 910 (68) Populus
canescens

244 (5) Shadows 290

Corylus
avellana

58 (6) P. hybrida 211 (7) Snags 205 (10)

Fraxinus
angustifolia

787 (28) Prunus
avium

261 (19) Tilia cordata 507 (10)

Grassland 496 Q. cerris 1796 (47) Ulmus minor 403 (17)
Juglans nigra 1283 (50) Q. robur 2049 (63)
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The paper is organized into four sections. The next section presents
the data sets used in the study, while the pre-processing procedures
applied to the data, and the classifiers used in the analysis are
presented in Section 3. Section 4 illustrates and discusses in detail the
empirical results obtained. Finally, Section 5 draws the conclusions of
the work.
2. Data set descriptions

In this study we considered two data sets related to forest areas
with different properties. These data sets are described in the
following two subsections.
Fig. 1. False color composition (channels 20, 70 and 110) of the hyperspectral image of Bosc
colour in this figure legend, the reader is referred to the web version of this article.)
2.1. Data set 1: Bosco della Fontana

The first data set considered is the natural reserve of Bosco della
Fontana, which is a Floodplain forest near the cityofMantua (Italy), and is
oneof thebest preserved forest relicts on thePoPlain. The central point of
the area has the following coordinates: 45°12′1.68″ N, 10°44′35.53″ E.
This area extends across approximately 230 ha and its topography is
almost perfectlyflat. It can be considered a complex forest area as, thanks
to the absenceof a significanthuman impact in the last century, it exhibits
the following interesting properties: i) it is a very dense forest area; ii) it
contains a high number of different species; iii) it consists of several
similar tree species, including Quercus cerris, Quercus robur and Quercus
rubra; iv) it does not exhibit a preordered spatial tree distribution.

In this area 19 tree species were identified, and four land-cover
types were considered in the classification procedure in order to have
an exhaustive coverage of all the classes present in the image (see
Table 2 for a detailed description of the investigated classes). It is
worth noting that among the 19 tree species under analysis there are
classes belonging to the same genus, which have very similar spectral
signatures. Another important consideration with respect to this data
set is that in the analyzed area the vegetation classes do not have the
same relative frequency, and that there are some dominant species
(e.g. Carpinus betulus, Q. cerris, Q. robur and Q. rubra).

The hyperspectral image (see Fig. 1) was acquired on June 28th,
2006 between 9:04 AM and 9:36 AM. It consists of six partially
overlapping images acquired by an AISA Eagle sensor in 126 spectral
bands, ranging from 400 nm to 990 nm, with a spectral resolution of
about 4.6 nm and a spatial resolution of 1 m. The flight direction of the
plane was the same for all the six images (from East to West) and the
flight height was approximately 750 m.

The reference data samples were collected during a ground survey
in autumn 2006 (approximately 540 trees). Samples were collated on
o della Fontana (a) and Val di Sella dataset (b). (For interpretation of the references to
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fieldwithin an orthophoto (with a geometrical resolution of 0.20m) of
the area analyzed according to ground observations. We extracted
these sample points from the entire study area, thus ensuring a precise
matching between the ground observations and the aerial ones (e.g.
we considered trees near roads, grassland, etc.). The samples were
collected on the basis of: i) the species (the reference data was
exhaustive, i.e. it represented all the species present in the area;
furthermore, it took into account the relative frequency of each class);
and ii) the spatial distribution (samples had a uniform distribution
across the scene). Starting from all the points collected we draw the
Region of Interests (ROIs) of the tree crowns on the mosaicked
hyperspectral data, and used them for the generation of the training
and test sets. Thismeans thatmany pixels are extracted fromeach tree.
The total number of reference data samples (16,816 pixels) repre-
sented about 0.7% of the whole investigated area.

2.2. Data set 2: Val di Sella

The second data set considered is Val di Sella, a forest area in the
Italian Alps near the city of Trento. The central point of the area has the
following coordinates: 46°0′55.06″ N, 11°25′39.67″ E. This area
extends across approximately 1500 ha and its morphology includes
both valleys and mountains.

Differently from the first data set, in this case we have only 6 tree
species, plus two other additional classes, i.e. shadows and grassland
(see Table 3 for a description of the investigated classes). Also in this case
the distribution of the species is random and the relative frequency
differs among all the species.

Thehyperspectraldatawere acquiredon July2008. Theyconsistof 12
partially overlapping images acquired by an AISA Eagle sensor in 126
spectral bands, ranging from400 to 990nm,with a spectral resolution of
about 4.6 nm and a spatial resolution of 1 m.

The reference data samples (approximately 190 trees) were
collected according to the same strategy used for the previous data
set. Starting from all the points collected we draw the Region of
Interests (ROIs) on the mosaicked hyperspectral data, and we used
them for the generation of the training and test sets. This means that
also on this case many pixels are extracted from each tree. The total
number of reference data samples (2760 pixels) represents about 0.2%
of the whole investigated area.

3. Methods

Before carrying out the analysis of the hyperspectral bands, we
applied some pre-processing to the images. First of all, wemosaicked the
available images, in order to obtain a single image for each study site. A
relative radiometric normalization was applied to the single images in
order to obtain a uniform mosaic image. Several algorithms have been
proposed in literature to apply these corrections (e.g.Duet al., 2001;Yuan
& Elvidge, 1996). In our study, we adopted a simple linear normalization
based on themean-standard deviation normalization algorithm (Yuan &
Elvidge, 1996). After that, data were de-noised with a simple low-pass
filter. In the literature several studies have pointed out the usefulness of
Table 3
Distribution of reference data samples (pixels) among investigated classes of the Val di
Sella dataset (in brackets the number of trees).

Class name Reference data samples

Abies alba 179 (28)
Acer pseudoplatanus 146 (20)
Alnus incana 76 (7)
Fagus sylvatica 604 (57)
Grassland 1010
Picea abies 314 (42)
Pinus sylvestris 239 (37)
Shadows 192
this method (e.g., Dalponte et al., 2008; Hsieh & Landgrebe,1998). In our
case, given the high geometrical resolution of the images, the spatial
degradation caused by the filter was acceptable given both the reduction
of the noise present in the images and the expected increase in the
separability of analyzed classes (Hsieh & Landgrebe, 1998).

In our investigation we considered three supervised classification
techniques characterized by different levels of complexity. There are
different ways to define the level of complexity of a classifier. In this
studywe consider empirically the level of complexity of a classifier as its
ability to define non-linear decision boundaries between the investi-
gated classes. The supervised classifiers considered are: i) a non-linear
Support Vector Machines (high complexity); ii) a Gaussian Maximum
Likelihood with Leave-One-Out-Covariance estimation (medium com-
plexity); and iii) a Linear Discriminant Analysis (low complexity). In the
following we provide greater details on these classifiers and motivate
the reasons for these choices.

3.1. Support vector machine classifier

The Support Vector Machine (SVM) (Vapnick, 1998) is an effective
distribution free classifier that has beenwidely used in the recent years
for solving hyperspectral classification problems (Camps-Valls &
Bruzzone, 2005; Melgani & Bruzzone, 2004). The main reason for the
choice of this classifier is associated with its properties that are: i) high
generalization ability and high classification accuracies (with respect to
others classifiers); ii) convexity of the cost function (whichallows one to
identify always the optimal solution); iii) effectiveness in addressing ill-
posed problems (which are quite common with hyperspectral data);
iv) limited effort required for architecture design and training phase if
compared to other machine learning algorithms (such as multilayer
perceptron neural networks). The main concepts associated with non-
linear SVM are briefly described in the following.

Let us consider for simplicity a binary classification problem,
characterized by a set of N training samples χ={xn}n=1

N (where
xnaRq). Each pattern is a vector ofM features that represents the value
that the considered pixel assumes on the considered hyperspectral
bands. Let ψ={yn}n=1

N , yn∈{−1;+1} be the set of related reference
labels, where “+1” and “−1” are associatedwith one of the two classes
investigated. Thenon-linear SVMapproach consists ofmapping the data
into a higher dimensional feature space, i.e., Φ(xp)∈Rq′ (q′≫q), where
the two classes are separated by an hyperplane defined by a weight
vectorwaRqV(which is orthogonal to the hyperplane) and a bias baR
(which is a scalar value such that the ratio b/||w|| represents the distance
of the hyperplane from the origin). The function Φ represents a non-
linear transformation. The membership decision rule is defined
according to sign[f(x)], where f(x) represents the discriminant function
associated with the hyperplane and is written as:

f xð Þ = w · Φ xð Þ + b ð1Þ

The optimal hyperplane is the one that minimizes a cost function
which expresses a combination of two criteria, i.e., margin maximiza-
tion and error minimization. It is defined as:

W w; nð Þ = 1
2
j w j 2 + C

XQ
p=1

np ð2Þ

where the constant C represents a regularization parameter that
controls the shape of the discriminant function, and consequently the
decision boundary when data are non-separable. This cost function
minimization is subject to the following constraints:

yp · w � xp + b
� �

z1− np;8p = 1; :::;Q

npz0; 8p = 1; :::;Q

8<
: ð3Þ
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where ξp are the so called slack variables and are introduced to take
into account non-separable data (Bruzzone et al., 2006). The above
optimization problem can be reformulated through a Lagrange
functional as a dual optimization leading to a Quadratic Programming
(QP) solution (Vapnick, 1998). The final result is a discriminant
function conveniently expressed as a function of the data in the
original (lower) dimensional feature space:

f xð Þ =
X
iaS

αiyiK xi;xð Þ + b ð4Þ

where K(·,·) is a kernel function and S is the subset of training
samples corresponding to the nonzero Lagrange multipliers. A kernel
function is a function that satisfies the Mercer's theorem (Mercer,
1909) and that makes it possible to avoid a direct explicit representa-
tion of the transformation of the feature vectors, i.e. K(xi, x)=
Φ(xi)·Φ(x).

It is worth noting that the Lagrange multipliers αi effectively
weight each training sample according to its importance in determin-
ing the discriminant function. The training samples associated with
nonzero weights are termed support vectors. In particular the support
vectors where αi=C are referred to as bound support vector, and
support vectors with 0bαibC are called non bound support vectors
(Bruzzone et al., 2006).

The SVM classifier was developed to solve binary classification
problems, but it can be easily generalized to multiclass problems. The
two main strategies used for L-class problems are:

• One-Against-One (OAO)— the L-class problem is decomposed into L
(L−1)/2 binary problems, each focused on the recognition of a pair
of classes. A generic pattern is associated with the class that receives
the majority of the votes from the ensemble of binary classifiers.

• One-Against-All (OAA) — the L-class problem is decomposed into L
binary problems, each focused on the recognition of one class
against all the others. The “winner-takes-all” rule is used for the final
decision, i.e. the winning class is the one corresponding to the SVM
with the highest output (discriminant function value). We refer the
reader to (Melgani & Bruzzone, 2004) for greater details on SVM
classifiers in remote sensing and on the relatedmulticlass strategies.

3.2. Gaussian Maximum Likelihood classifier with Leave-One-Out-
Covariance Estimator (GML-LOOC)

The second classifier that we consider in this study is a Gaussian
Maximum Likelihood with Leave-One-Out-Covariance estimator
(GML-LOOC) (Hoffbeck & Landgrebe, 1996). This technique is based
on the GaussianMaximum Likelihood (GML) classifier and is suitable
for managing hyperdimensional feature spaces. The GML is a
parametric classifier based on the Bayesian decision theory. Differ-
ently from the SVM, this classifier assumes Gaussian distributions for
the class densities. The GML-LOOC approach differs from the
standard GML in the phase of estimation of the covariance matrices
of the analyzed classes. In fact, when the ratio between the number of
training samples for each class and the dimension of the feature space
is near one, the standard GML degrades its performances (Hughes
phenomenon). In the limit casewhen the number of training samples
is smaller than the number of features, the covariance matrices used
in the decision rule become singular, and thus the GML cannot be
used. In the literature several algorithms have been developed for the
estimation of a non-singular covariance matrix (e.g. Friedman, 1989;
Hoffbeck & Landgrebe, 1996; Lin & Perlman, 1985; Marks & Dunn,
1974; Wahl & Kronmall, 1977). In our study, we chose the algorithm
proposed in (Hoffbeck & Landgrebe, 1996), which is called Leave-
One-Out-Covariance (LOOC) algorithm. In the following we give
some more details on this classifier.

Let xn be the n-th pattern to be classified, μi and Σi (with i=1,…, L)
the mean value and the covariance matrix of the i-th investigated class,
respectively, andΩ={ω1,ω2,…ωL} the set of the L land-cover classes in
the considered classification problem. The decision rule is as follows:

xnaωjfdj xnð ÞN di xnð Þ 8 i ≠ j ð5Þ

where di(xn) is computed as:

di xnð Þ = xn−μið ÞtΣ−1
i xn−μið Þ+ln jΣi j ð6Þ

Usually the true values of the mean vectors and of the covariance
matrices are not known and they should be estimated from the training
samples.When a reduced numberof samples is available, the covariance
matrices can be replaced with the common covariance matrix, defined

as: S = 1
L

PL
i=1

Σi (Hoffbeck & Landgrebe, 1996). The LOOC algorithm

proposes a more refined way to estimate the covariance matrices for
classes characterized by a reduced number of training samples. In
particular the covariance matrix Σi

LOOC of the i-th class is estimated as
follows:

ΣLOOC
i αið Þ =

1− υið Þdiag Σið Þ + υiΣi 0 V υi V 1
2− υið ÞΣi + υi − 1ð ÞS 1 b υi V 2
3− υið ÞS + υi − 2ð Þdiag Sð Þ 2 b υi V 3

8<
: ð7Þ

where υi is a mixing parameter. The value of this parameter is selected
according to the following procedure: i) removing one sample form
the training set, ii) computing the mean and covariance from the
remaining samples, iii) computing the likelihood of the sample which
was left out, given the mean and covariance estimates. Each sample is
removed in turn, and the average log likelihood is computed. The
value that maximizes the average log likelihood is selected (Biehl,
2001). This implementation proved to be particularly effective in
hyperspectral data classification.

In our experiments we used this classifier under the unimodal
Gaussian assumption for the distribution of information classes. This
assumption is widely used in the literature, even if a more complex and
accurate approachbased on thedecomposition of each information class
in a set of unimodal Gaussian data classes could be used. This could be
done by applying clustering to the training samples of each class.
However, when a high number of information classes is present in the
classification problem, this process results time consuming (also
because an adequate number of clusters for each class should be
identified). In addition, when few training samples for each class are
available, this may involve a high risk to overfit the training set in the
modeling of the multimodal class distributions. This can be particularly
critical when hyperspectral images are considered, where a significant
spatial variability of the spectral signature of each class in the image is
usually present (Chi & Bruzzone, 2007).

3.3. Linear discriminant analysis classifier

The last technique that we consider is a very simple linear
discriminant analysis (LDA) classifier (Duda et al., 2000; Fisher, 1936).
The rationale of this classifier canbe considered as the opposite of that at
the basis of the SVM classifier. LDA projects high dimensional feature
spaces into a low-dimensional space, with the target to keep informa-
tion classes as more separated as possible. This transformation is
obtained by minimizing the within-class distance and maximizing the
between-class distance simultaneously, thus achieving maximum
discrimination. Given its simplicity, this classifier is less suitable to the
analysis of hyperspectral data with respect to the previous ones, even if
some studies exist on the application of LDA techniques to hyperspectral
data (Bandos et al., 2009). In the following we recall the main concepts
associated with LDA. We refer the reader to (Bandos et al., 2009) for
more details.

Let us consider L classes classification problem. The idea of the
classical LDA classifier is to find a linear transformation G that project
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the sample xn from the original m-dimensional feature space to a
lower dimensional space a according to the following equation:

a = GTx aRl ð8Þ

where lbm. The goal of this transformation is to choose the direction
of v in the feature space along which the distances of the class means
are at maximum and the variances around these means are at
minimum. This corresponds to maximize the following criterion:

v4 = arg max
v

J vð Þf g = arg max
v

vTSbv
vTSwv

( )
ð9Þ

where Sb = 1
n

PL
i=1

ni μi − μð Þ μi−μð ÞT is the between-class variance,

Sw= 1
n

PL
k=1

P
iaAk

ni xi−μkð Þ xi−μkð ÞT is thewithin-class variance, μi is the

sample mean, and Ai denotes the index set for class i. As the total
scatter matrix (which is the estimate of the common covariance
matrix) can be written as S=Sw+Sb, the maximization criterion
becomes:

v4 = arg max
v

J vð Þf g = arg max
v

vTSbv
vTSwv

− 1

( )
ð10Þ

In this case the optimization problem maximizes the total scatter of
the data while minimizing the within scatter of the classes. The
criterion can be rewritten as follows:

G4 = arg max
G

trace GTSG
� �−1

GTSbG
� �� �

ð11Þ

The solution can be obtained by applying an eigen-decomposition
to the matrix S−1Sb, if S is non-singular. Note that there exist no more
than k−1 eigenvectors corresponding to nonzero eigenvalues, since
the rank of the matrix Sb is bounded by k−1. Therefore, the reduced
dimension of classical LDA is at most k−1 (Ye et al., 2006).

In this paper we have considered the standard LDA algorithm.
However, in presence of very small numbers of training samples, it is
possible to use some regularization algorithms to avoid singularity or
poor estimations of the within and between scattering matrices. For a
detailed description of such algorithms we refer the reader to (Bandos
et al., 2009).

3.4. Design of experiments

In order to achieve the goals of this paper, we defined two different
kinds of experiments: i) analysis of the effects of the spectral resolution
on the classification accuracy; ii) analysis of the effects of the number of
spectral channels selectedwith a feature selection algorithm (applied to
the original bands at full resolution) on the classification accuracy. For
both the experiments we carried out the training of all the considered
classifiers (including the model selection) and the accuracy assessment
according to a fivefold cross-validation procedure. This allowed us to
conduct the analysis from a rigorous statistical perspective. We
randomly divided the available ground-truth data into five subsets,
and thenwe adopted afivefold cross-validationprocedure,with training
samples distributed across the scene. The samples (pixels) of the
referencedata availablewere used as follows: 20% in the training set and
80% in the test set. It isworth noting that thegoal of this paperwasnot to
analyze the generalization ability of the classifiers, but to assess their
role in managing hyperdimensional feature spaces. Thus the choice to
use a cross-validation procedure appears to be themost suitable one for
a correct statistical analysis of the problem in hand. We used the same
cross-validation subsets for all the classifiers analyzed.

The SVM classifier used was based on our own implementation.
We selected Gaussian RBF kernel functions and applied a grid search
strategy in a range between 5 and 240 for C, and in a range between 1
and 1000 for γ. The multiclass architecture adopted was based on the
One-Against-One multiclass strategy. With regards to the GML-LOOC
classifier we used the MultiSpec software (Biehl, 2001), while for the
LDA we used the implementation contained in the MATLABArsenal
software (Yan, 2006).
4. Experimental results

4.1. Experiment 1: analysis of the role of spectral resolution on classification
accuracy

Thefirst experiment focusedon the analysis of the roleof the spectral
resolution on the classification accuracy by varying the classifier
adopted. To develop this analysis, we simulated data with different
spectral resolutions averaging contiguous spectral bands of the acquired
image. Specifically, we degraded the resolution from 4.6 nm to 36.8 nm,
using a step of 4.6 nm. It is worth noting that to obtain a precise
simulation of the reduction of the spectral resolution, it would be
necessary to consider the frequency response of the spectral filter
associated with each channel. However, for the purpose of our analysis,
it was reasonable to approximate the frequency response as constant for
all the channels and to use an average operator for approximating the
reduction of the spectral resolution. Fig. 2 shows the behavior of the
kappa accuracies obtainedwith different spectral resolutions for each of
the classifiers used on the two datasets considered. From an analysis
of the figure, it is possible to derive some inferences of the effect of
changing spectral resolution upon thedifferent classifiers. First of all, the
SVMclassifierobtainedhigher accuracies thanall the other classifiers for
all the spectral resolutions considered and in both the datasets. The
difference in accuracy between SVMand the other classifierswas higher
in the Bosco della Fontana dataset where we have a very high number of
classes. This result underlines the effectiveness of the SVM classifier in
managing complex hyperspectral classification problems. LDA was not
able to model the complexity of the problem assessed with the Bosco
della Fontana dataset. This is mainly due to the oversimplification
obtained by projecting the high dimensional feature space in a low-
dimensional space. Concerning the Val di Sella dataset there is a small
difference between the accuracy provided by the SVM and the GML-
LOOC, and also LDA resulted in reasonable accuracies (at the maximum
spectral resolution the accuracies are very similar for all the classifiers).
This depends on the simplicity of the second problem which is
characterized by a small number of classes.

Secondly, it is interesting to analyze the behavior of different
classifiers to the degrading of the spectral resolution. Concerning the
Bosco della Fontana dataset, both the SVM and LDA classifiers reduced
their accuracy as the spectral resolution of the sensor was reduced. In
particular the LDA classifier was strongly influenced by the spectral
resolution. It reduced noticeably its accuracy as the spectral resolution
decreased. Also the SVM classifier decreased its accuracy as the spectral
resolution was reduced (approximately 1% from 4.6 nm to 9.2 nm, and
5% from9.2 nmto 36.8 nm).Despite this, the lowest accuracy of the SVM
classifier was still higher than the highest accuracy of the other
classifiers considered. The GML-LOOC presented the most stable
accuracy and in particular it did not result in significant differences
between the kappa accuracies obtained with a resolution in the range
between 4.6 and 23 nm. On the contrary, it exhibited a slight increase in
accuracy between 9.2 and 13.8 nm. Regarding the Val di Sella dataset,
given the simplicity of the problem, the behavior of the three classifiers
wasvery similar. Also in this case theLDAdegraded its accuracy reducing
the spectral resolution, even if the degradation is limitedwith respect to
the previous dataset. On this dataset the performance remains
acceptable also with a spectral resolution of 36.8 nm. SVM and GML-
LOOC provided very similar results, exhibiting a kappa accuracy always
higher than 95% for all the spectral resolution considered. It is worth



Fig. 2. Behavior of the kappa accuracy of the analyzed classifiers versus the spectral resolution for the two datasets considered.
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noting that in this case it seems that also a low spectral resolution is
enough to separate the considered forest classes.

Fig. 3 shows the behavior of the class producer accuracies versus
the spectral resolution obtained by the three classifiers analyzed on
the Bosco della Fontana dataset. Firstly, it is worth noting that the LDA
classifier always provided the lower accuracies and it reduced its
performances by reducing the spectral resolution, confirming the
behavior of the overall kappa accuracy. Concerning SVM and GML-
LOOC the behavior is quite different on the different classes analyzed.
In general, SVM provided the highest accuracy on the majority and
most relevant classes, thus confirming the results obtained in terms of
kappa accuracy. Nevertheless, as expected, some classes exhibited
higher accuracy on the maps produced by the GML-LOOC classifier.
This is intrinsic in the solution of a multiclass problem, where
different classifiers obtain different accuracies on many different
classes. Thus, the overall accuracy remains the most important
performance for a general estimation of the results in our study.

4.2. Experiment 2: effect of the number of spectral channels on the
classification accuracies obtained by different classifiers using the
highest spectral resolution

In this second experiment, we analyzed the effect of the number
of spectral channels on the classification accuracies obtained by
different classifiers, keeping the original spectral resolution of the
sensor (in this case 4.6 nm). In particular with this experiment we
wanted to determine: i) if all the bands at the highest spectral
resolution were significant, and to examine the behavior of the
different classifiers with respect to their selection; ii) if, given a fixed
number of bands, the selection of channels at the highest resolution
is more effective than the acquisition of bands at a lower resolution;
and iii) the physical meaning of the bands selected by the feature-
selection algorithm on our test areas. To achieve these goals, we
applied a feature selection algorithm based on the Sequential
Forward Floating Selection search strategy (Pudil et al.,1994) and on
the Jeffreys–Matusita (JM) distance (Bruzzone et al., 1995) to the
original image. The JM distance was adopted as it is correlated with
the Chernoff upper bound to the error probability of the Bayesian
classifier. This means that the feature-selection process adopted is
nearly optimum for the GML-LOOC classifier. Concerning the SVM
classifier, in the literature it is possible to find few methods for
feature selection which are especially developed for such a
classifier; however, in this study we preferred to use for all the
three classifiers the same feature-selection algorithm (and thus the
same set of features). This is reasonable at an operational level as
confirmed from many studies published in the literature that
combine such an algorithm with different kinds of classifiers
(including the SVM). It is worth noting that we did not consider
other feature selection algorithms as we aim at analyzing the
behavior of the classification techniques considered versus the
number of spectral channels at the maximum resolution, and of
comparing such results with those obtained in the first experiment.
Thus, it is reasonable to consider just one reference feature-
selection algorithm rather than exploring results obtained by
different methods.

In this analysis we applied the feature selection so as to identify
eight sets of bands made up of the same number of features that we
obtained in the previous experiment by reducing the spectral
resolution. This allowed us to make some further considerations
comparing the results of the two experiments.

Fig. 4 shows the kappa accuracies versus the number of selected
features in the twodatasets consideredobtainedwith the three different
classifiers. From these results we firstly note that none of the classifiers
under investigation was significantly affected by the Hughes phenom-
enon. This was due to both the intrinsic robustness of these classifiers to
ill-posed problems and the relatively high number of reference data
samples available. Secondly, we observed that the SVM always obtained
the highest accuracy with respect to the other classifiers. In particular,
the difference in accuracy between using 16 or 126 spectral channels
was less than 2% in both the datasets considered. This is a point that we
would like to stress as it underlines the high discrimination ability of
high spectral resolution hyperspectral data. Moreover, these results
underline that with a high complexity classifier, like the SVM, it is
possible toworkwith a subset of hyperspectral bands, thereby reducing
the computational costs but not the classification accuracy. Additionally,
the results confirm the robustness of the SVM classifier to



Fig. 3. Behavior of the Producer Accuracy versus the spectral resolution for the classes analyzed in Bosco della Fontana dataset.
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hyperdimensional feature spaces. Also the LDA classifier seems to take
advantage of using features at the highest spectral resolution. Never-
theless, this classifier produced the lowest accuracies, but its kappa
coefficient increased in comparison to the previous experiment. For the
GML-LOOC classifier the behavior was quite different as it in general
provided lower kappa accuracies with respect to the previous



Fig. 4. Behavior of the kappa accuracy provided by the analyzed classifiers versus the number of spectral bands at a spectral resolution of 4.6 nm for the two dataset considered.
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experiment. In addition, this classifier increased its accuracy when the
number of spectral channels was increased.

4.3. Analysis of results and discussion

Comparing the results of all the experiments carried out on the two
considered datasets it is possible to draw some interesting conclusions
on the relationship among accuracy, classifier complexity and spectral
resolution. From an analysis of Fig. 2, it is clear that the different
classifiers have different behaviors with respect to the spectral
resolution. This underlines the complexity and the importance of our
study.

First of all, let us consider the behavior of the SVM classifier in the
two experiments. The ability of this classifier inmanaging hyperspectral
feature spaces and its robustness to noisy pixels is well known in the
literature (e.g., Bruzzone et al., 2006; Melgani & Bruzzone, 2004). The
analysis of the overall kappa accuracies confirms these characteristics:
SVM classifier provided the highest overall kappa accuracy for all the
spectral resolutions and it was not significantly affected by the Hughes
phenomenon. Moreover, comparing the results of the two experiments,
it seems that for the SVM it was better to apply a feature selection to the
original spectral bands, rather than reducing the spectral resolution
(and thus increasing the SNR of each spectral channel). This was
dependent upon on the effectiveness of the SVM to define effective non-
linear discrimination function in the original feature space starting from
high information content data like the original channels rather than
from those with reduced spectral resolution. Such a capability is due to
two main reasons: i) the potentially high complexity of the decision
boundary associated with the SVM classifier; ii) high robustness of the
SVM classifier to the outliers, and thus to the lowest SNR present in the
original spectral channels.

Concerning the LDA classifier, it decreased its accuracy reducing
both the number of original spectral channels considered and the
spectral resolution of the sensor. This behavior can be explained by the
intrinsic properties of LDA; this algorithm applies a transformation of
the original feature space into a space with a lower dimensionality, by
maximizing classes' separability. It is reasonable to expect that LDA
performs better this transformation when more discriminant infor-
mation (higher number of informative spectral channels) is available.
Moreover the reduced performances of this classifier in all the
experiments considered could also be due to the quality of estimations
of the within and between scattering matrices in presence of high
dimensional feature spaces and relatively few training samples.
Possible improvements might be obtained by using regularized
method in the matrix estimation process (Bandos et al., 2009).

The GML-LOOC classifier has a different behavior. From our results it
was possible to note that this classifier exhibited a higher accuracy if the
feature reduction was carried out by decreasing the spectral resolution
of the sensor rather than selecting original channels according to a
feature-selection algorithm. As observed in Experiment 1, it provided
almost the same accuracies in a range of spectral resolutions from 4.6 to
23 nm. This behavior can be explained as follows: i) by decreasing the
spectral resolution we increased the SNR of the signal acquired in each
channel by introducing a low-pass spectral filtering that reduces the
noise in the spectral domain; ii) the Gaussian assumption of the GML-
LOOC and the regularization method adopted resulted in relatively
simple quadratic decision boundaries that cannot seize the complexity
of the problem modeled with the original spectral channels. In other
words, as shownwith theSVMclassifier, the original spectral channels at
the highest resolution contain themaximum amount of information for
discriminating classes, but the GML-LOOC classifier cannot effectively
exploit thesedata. To illustrate this point, bycomparing the results of the
SVM and the GML-LOOC classifier obtained by using 32 bands at 2
different spectral resolutions (4.6 and 18.4 nm) for the Bosco della
Fontana dataset, we observe completely different behaviors: the SVM
provided the highest accuracy at the highest resolution considered
(4.6 nm), while GML-LOOC yielded the highest accuracy at 18.4 nm. It is
worth noting that the accuracy of the GML-LOOC classifier could be
increased by applying a more detailed modeling of the distributions of
the information classes through a decomposition in unimodal Gaussian
data classes. However this process would increase significantly the
complexity of the design of the classifier (especially when many
information classes are considered) and would result in the risk of
overfitting the training data when few training samples are available.

In order to better understand the effectiveness of the SVM classifier
at the highest resolution in relation to the specific considered forest
problem, it is also important to analyze the physical meaning of the
selected features. Fig. 5 shows the distribution on the spectrum of 32



Fig. 5. Spectral distribution of 32 hyperspectral bands selected by the feature selection algorithm for the Bosco della fontana dataset (a) and the Val di Sella dataset (b).
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spectral bands selected at the spectral resolution of 4.6 for the two
datasets. All the main regions of the spectrum analyzed by the sensor
have an important role in species classification. In the visible range 11
bands were selected for the Bosco della Fontana dataset and 7 for the Val
di Selladataset; specifically,five and three bandswere chosen in theblue
range (~400 to ~500 nm), characterized mainly by carotenoides
absorption peaks (Zur et al., 2000), but also by chlorophyll a with a
maximum absorption peak around 430 nm (a band at 435 nm was
selected for the Bosco della Fontana dataset). In the green (~500 to
~600 nm) and red spectra (~600 to ~650 nm) 5 bands were selected.
Chlorophyll has a reflectivity peak in the green area that gives the green
color to the vegetation, and the reflectance is strongly linked to
chlorophyll content (Gitelson et al., 1996), especially around 550 nm
(Gitelson &Merzlyak,1994). Bands around 531 and 570 nm (two bands
535 and 573 nmwere selected in our trials) were used by Gamon et al.
(1992, 1997) for PRI index calculation to estimate rapid changes in the
relative levels of xanthophyll cycle pigments and thus serves as an
estimate of photosynthetic light use efficiency. Neighbouring bands in
the green region (529 and 564 nm) were proposed by Darvishzadeh
et al. (2008) for leaf chlorophyll contentmeasurements. The red spectra
region is well known for chlorophyll peaks absorption (chlorophyll b,
with a maximum absorption of ~642 nm and a band at 649 nm was
selected).

As describedbyCeccato et al. (2002) thesefirst regions of the spectra
are primarily influenced by the pigment content and secondly by the
internal structure parameters. This aspect is more important in the red
edge region, where 8 and 6 bands were localized for the Bosco della
Fontana dataset and the Val di Sella dataset, respectively. This region is
between ~680 nm (themain red absorption peak of chlorophylls, Zur et
al., 2000; Sims & Gamon, 2002) and ~750 nm and ranges between the
absorption region of the visible and the reflective region of the near
infrared. Its position and behaviour is affected bymany factors including
changes of chlorophyll content, leaf area index, biomass and hydric
status, vegetation age, plant health levels, and seasonal patterns. The
interesting issue, from a classification viewpoint, is that the exact
wavelength and strength of the red edge depends upon the species
considered, and thusbands in this regionare important for classification.

In thenear infrared region (from~750 to ~1000nm)12 and18bands
were selected for Bosco della Fontana and Val di Sella dataset,
respectively. For deciduous species (as found in our study site) there is
a strong reflectance in this range (Gates et al., 1965). This is due to
chlorophyll pigments that are very absorptive at visiblewavelengths but
are not at all absorptive at near infrared wavelengths (Knipling, 1970).
These are linked with others parameters, such as leaf structure (that
makes light scattering highly efficient), Leaf Area Index (LAI),
(Thenkabail et al., 2004) and the presence of water in the leaf (for
example in the band around 970 nm, Peñuelas et al., 1993). Greater
transmittance occurs when water is more prevalent between the plant
cells of leaves and more reflectance occurs when the spaces between
cells are more filled with air. Additionally, the water content can be also
linked to the last three bands selected, which are usually used to
compute thefloating-positionWater Bands Index (Strachanet al., 2002).
5. Conclusions

In this paper an experimental analysis on the relationship among the
spectral resolution, the classifier complexity and the classification
accuracy has been presented. This analysis has focused on two complex
forest areas characterized by different numbers of classes, and can be
subdivided into three parts: i) analysis on the role of the spectral
resolution on the classification accuracy versus the classifier complexity;
ii) analysis of the effects on the classification accuracy of the number of
spectral bands (given a fixed spectral resolution) versus the classifier
complexity; iii) analysis of the effects on the classification accuracy of
both reducing spectral resolution and selecting features at the highest
resolution given a fixed number of channels as input to the classifier.

The experimental analysis resulted in interesting conclusions on
the relationship among the aforementioned factors. In particular, our
analysis points out that the option to acquire images at a certain
spectral resolution should be driven not only from the considered
problem, but also from the classifier used for the data processing. Not
all the classifiers were able to exploit the wide amount of data
provided by hyperspectral sensors, and not all the classifiers have the
same behavior reducing the spectral resolution.

In greater detail, we verified on the considered data set the
following issues:

i LDA (a simple classifier) even if obtained the highest accuracywith a
high spectral resolution, does not achieve acceptable classification
accuracies in complex forest classification problems with a high
number of classes;

ii GML-LOOC (medium complexity classifier) provided high classifica-
tion accuracies in all the considered experimental setups. Moreover,
from our analysis, it seemed that it does not take advantage from
increasing the spectral resolution over a given value (about 23nmon
the considered data sets);

iii SVM (complex classifier) fully exploited the discrimination ability of
channelswith very high spectral resolution. In our experiments SVM
provided always the highest accuracies among the considered
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classifiers. In addition it exhibits the best performances with the
maximum spectral resolution (4.6 nm).

As afinal remark it is important to observe that theproposed analysis
provides important hints on the sensor and data analysis setup to use for
classification of complex forest areas, as it supplies interesting
indications on the trade-off between the spectral resolution and the
classifier complexity in the study of such kinds of environments. It is
worth noting that this research does not want to present an exhaustive
analysis of the problem, but it should be considered as a starting point
for future analysis on different areas (also in relation to applications
different from forestry) and with different classifiers.
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