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Abstract—This letter presents a novel composite semisupervised
support vector machine (SVM) for the spectral–spatial classifi-
cation of hyperspectral images. In particular, the proposed tech-
nique exploits the following: 1) unlabeled data for increasing the
reliability of the training phase when few training samples are
available and 2) composite kernel functions for simultaneously
taking into account spectral and spatial information included in
the considered image. Experiments carried out on a hyperspectral
image pointed out the effectiveness of the presented technique,
which resulted in a significant increase of the classification ac-
curacy with respect to both supervised SVMs and progressive
semisupervised SVMs with single kernels, as well as supervised
SVMs with composite kernels.

Index Terms—Composite kernels, kernel methods, remote-
sensing hyperspectral image classification, semisupervised classi-
fication, support vector machines (SVMs).

I. INTRODUCTION

IN THE LAST decade, hyperspectral imaging has rapidly be-
come an effective remote-sensing technology for many dif-

ferent applications. In particular, hyperspectral scanners, with
respect to earlier multispectral sensors, allow one to discrim-
inate species with very similar spectral signatures. However,
while, on the one hand, this increased spectral resolution makes
possible an accurate detection and identification, on the other
hand, the high dimensionality of data significantly increases the
complexity of the analysis [1], [2].

In this framework, kernel-based methods (KMs) have proven
to be an effective tool for addressing hyperspectral image clas-
sification [3], [4]. Supervised kernel classifiers (e.g., support
vector machines (SVMs) [5], [6] and kernel Fisher discriminant
analysis [7]) are generally preferred to unsupervised kernel
classifiers (e.g., support vector clustering [8] and support vector
data description [9]). However, since gathering reliable prior
information is often expensive (both in terms of time and
economic costs), in most real applications, the amount of avail-
able training data is relatively small compared to the number
of features (and thus of classifier parameters). This affects
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the learning of supervised systems, resulting in the Hughes
phenomenon [10].

Semisupervised approaches recently presented in the litera-
ture proved capable of mitigating the aforementioned problem
[11]–[13]. In particular, the exploitation of both training data
and unlabeled patterns allows semisupervised approaches to
outperform standard supervised techniques when few training
samples are available. The attention has been mainly focused
on the development of semisupervised techniques based on
SVMs, which demonstrated to be particularly effective in
classification of hyperspectral images. The authors defined a
progressive semisupervised SVM (PS3VM) technique, which
exhibited very good discrimination capabilities even in critical
situations [13]. The PS3VM technique is based on an iterative
self-labeling strategy: the most significant unlabeled samples
with the highest probability of being correctly classified are
selected and labeled according to the discriminant function
computed at the considered iteration. Then, these samples are
included into the training set with a proper regularization pa-
rameter in order to gradually drive the system toward a correct
solution.

As concerns the definition of feature mappings for handling
hyperspectral images with KMs, only the spectral information
is usually considered in the literature. However, recent works
have proven that accounting also for the texture (or the local
spatial information) permits one to increase the discrimination
capability. An effective strategy for combining spectral and spa-
tial information sources proved to be the use of kernel compo-
sition [14]. In [15], a new family of composite spectral–spatial
kernels in the framework of supervised SVMs was presented,
which resulted in a significant increase of the classification
accuracy with respect to the standard approach where only
spectral features are considered.

According to the previous observations, this letter presents
a novel composite classifier based on PS3VM for addressing
spectral–spatial categorization of hyperspectral images. In par-
ticular, the proposed technique properly integrates the follow-
ing: 1) PS3VMs, which exploit unlabeled data for increasing
the reliability of the training phase when few training samples
are available, and 2) composite kernel functions, which allow
one to effectively take into account spectral and spatial infor-
mation included in the considered image. Experiments carried
out on a hyperspectral image acquired by the Airborne Visible/
InfraRed Imaging Spectrometer (AVIRIS) sensor pointed out
the effectiveness of the proposed technique.

This letter is organized as follows. Section II presents the
formulation of the proposed composite PS3VM. Section III
reports and analyzes experimental results. Section IV draws the
conclusion of the work.
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II. COMPOSITE PS3VMS

In this section, we describe the proposed composite PS3VM
classifier by presenting first the rationale and then the mathe-
matical formulation.

A. Rationale of the Proposed Technique

The rationale of the proposed technique is based on the
following observations.

1) In hyperspectral data sets with a small ratio between the
number of training samples and the number of features,
PS3VMs resulted effective in obtaining good classifica-
tion accuracies by jointly exploiting both labeled and
unlabeled patterns for the learning of the algorithm [13].
However, PS3VMs have been studied by exploiting spec-
tral but not contextual information.

2) The good performances exhibited by KMs using the
original spectral bands as input features can be further
increased by including spatial (contextual) information
according to the use of kernel composition [15]. However,
while composite kernels have already proven to be partic-
ularly useful with supervised SVMs, their effectiveness
has not been demonstrated with semisupervised SVMs.

According to the two aforementioned observations, we aim
at defining a novel composite PS3VM, which integrates the
properties of PS3VMs and kernel composition for mitigating
the Hughes phenomenon and accurately modeling the presence
of different (spectral and spatial) information sources.

B. Formulation of the Proposed Technique

In the following, for the sake of simplicity, we describe the
proposed composite PS3VM in the case of a two-class problem.
Let us consider a hyperspectral image Iω made up of Bω

spectral bands. According to specific feature extraction applied
to the neighborhood of each sample of the image (e.g., the local
mean or standard deviation per spectral band), from the set of
Bω available “spectral” features, we define a new set of Bs

“spatial” contextual features. Accordingly, let Iωs ∈ R
(Bω+Bs)

represent the resulting new image obtained by stacking both
spectral and spatial features. Each pattern xn = {xω

n ,xs
n} ∈

Iωs is given by the concatenation of xω
n and xs

n, which represent
the spectral and spatial components, respectively.

Let us now consider the training set T = {X ,Y}, where
X = {xl}N

l=1 ∈ Iωs is a subset of Iωs composed of N pat-
terns for which true labels are available, i.e., Y = {yl}N

l=1,
yl ∈ {−1,+1}. Moreover, let X ′ = {x′

u}M
u=1 ∈ Iωs be another

subset of M unlabeled samples drawn from Iωs, such that

X ∩ X ′ = ∅. Finally, let us define the transformation Φ(xn) Δ=
{ϕω(xω

n), ϕs(xs
n)} as the concatenation of nonlinear mappings

ϕω(·) and ϕs(·) into Hilbert spaces for spectral and spatial
features alone, respectively.

The proposed algorithm is made up of three main phases
[13]: 1) initialization (only training samples in T are used for
initializing the discriminant function); 2) iterative semisuper-
vised learning (training samples in T and unlabeled samples in
X ′ are used for gradually adapting the discriminant function);
and 3) convergence (all the unlabeled samples in X ′ are labeled
according to the final discriminant function). In the following,
T (i) and X ′(i) will denote the current training and unlabeled

set at the generic iteration i, respectively, whereas both the
subscripts and superscripts ω and s will refer to spectral and
spatial components, respectively.

1) Phase 1—Initialization: In the first phase, as for su-
pervised SVMs, input data are transformed by Φ(·), and an
initial separation hyperplane h(0) : f (0)(xn) = w(0) · Φ(xn) +
b(0) = 0 (xn represents a generic sample of Iωs) is determined
on the basis of training patterns alone in the Hilbert space
Hωs = Hω ⊕Hs, where ⊕ represents the direct sum opera-
tion in Hωs. We have that T (0) = {(xl, yl)}N

l=1 and X ′(0) =
{x′

u}M
u=1. Accordingly, the function to minimize is

⎧⎪⎪⎨
⎪⎪⎩

minw,b,ξ

{
1
2

∥∥w(0)
∥∥2

+ C
N∑

l=1

ξl

}
yl

[
w(0) · Φ(xl) + b(0)

]
≥ 1 − ξl

ξl ≥ 0 ∀l = 1, . . . , N

(1)

where w is a vector normal to h, b is a constant such that
b/‖w‖2 represents the distance of h from the origin, ξn denotes
the slack variables allowing for (permitted) errors, and C is the
associated penalization parameter, which permits to tune the
generalization capability. The resulting dual Lagrange function
to maximize is defined as

L(α)=
N∑

n=1

αn−
1
2

N∑
n,m=1

ynymαnαmΦ(xn)·Φ(xm). (2)

To avoid consideration of the Φ(·) mapping explicitly, it is
possible to exploit Mercer’s theorem [6]. As all mappings in
(2) occur in the form of an inner product, we can replace them
with a proper kernel function Kωs(xn,xm) = Φ(xn) · Φ(xm)
which ensures that the Lagrangian function is convex

L(α) =
N∑

n=1

αn − 1
2

N∑
n,m=1

ynymαnαmKωs(xn,xm). (3)

Any function K(·, ·) : X × X → R is a valid kernel if (and
only if), for any finite set of N samples, it produces ker-
nel matrices K = [Knm]Nn,m=1 = [K(xn,xm)]Nn,m=1 that are
both symmetric [i.e., Knm = Kmn] and positive definite [i.e.,
αT Kα ≥ 0, ∀α ∈ R

N ]. With respect to the standard approach
with single kernels, we can exploit the significant advantage of
modeling the solution as the sum of positive-definite matrices
accounting for both the spatial and spectral counterparts

Kωs(xn,xm) = Φ(xn) · Φ(xm)
= {ϕω (xω

n) , ϕs (xs
n)} · {ϕω (xω

m) , ϕs (xs
m)}

=Kω (xω
n ,xω

m) + Ks (xs
n,xs

m) (4)

where Kω(·, ·) and Ks(·, ·) are kernel functions associated
with spectral and spatial components, respectively. Note that
αT (Kω + Ks)α = αT Kωα + αT Ksα ≥ 0, so (Kω + Ks)
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is positive semidefinite and Kωs(·, ·) is a valid kernel function.
The dual problem can be formulated as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

maxα

{
N∑

n=1
αn− 1

2

N∑
n,m=1

ynymαnαm

[Kω (xω
n ,xω

m) + Ks (xs
n,xs

m)]

}
N∑

n=1
ynαn = 0

0 ≤ αn ≤ C, ∀n = 1, . . . , N

(5)

where the coefficients αN
n=1 represent the Lagrange multipliers.

According to the Karush–Kuhn–Tucker conditions [6] (which
are necessary and sufficient conditions for solving (5) with
respect to α), the solution is a linear combination of the only
training patterns associated with nonzero multipliers (i.e., either
mislabeled training samples or correctly labeled training sam-
ples falling into the margin band M = {xn| − 1 ≤ f(xn) ≤
1}), denoted as support vectors.

2) Phase 2—Iterative Semisupervised Learning: At the ith
iteration, according to the current decision function f (i)(xn) =
w(i) · Φ(xn) + b(i), the estimated labels ŷ

′(i)
u = sgn[f (i)(x′

u)]
are given to all the originally unlabeled samples x′

u ∈ X ′(0).
Then, a subset of the remaining unlabeled samples is itera-
tively selected and moved (together with the corresponding
estimated labels) into the training set T (i+1). On the one
hand, the higher the distance from the separation hyperplane
h(i) : w(i) · Φ(xn) + b(i) = 0, the higher the chance for an
unlabeled sample to be correctly classified. On the other hand,
the current unlabeled samples falling into the margin band are
those with the highest probability to be associated with nonzero
Lagrange multipliers once inserted into the training set (and
thus can affect the position of h(i+1)). According to these two
observations, at each iteration, we consider from both sides of
the margin the ρ unlabeled patterns (where the parameter ρ ≥ 1
is defined a priori by the user) lying further from the decision
boundary h(i). Such samples are called semilabeled samples,
and the set of semilabeled patterns selected at the generic ith
iteration is denoted as H(i).

For i ≥ 1, the bound minimization problem can be written as⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min
w,b,ξ,ξ′

{
1
2‖w(i)‖2+C

N∑
l=1

ξl+
μ(i)∑
u=1

C∗
uξ′u

}

yl ·
[
w(i) · Φ(xl)+ b(i)

]
≥ 1 − ξl, ∀l= 1, . . . , N

ŷ
′(i−1)
u ·

[
w(i) · Φ(x′

u)+ b(i)
]
≥ 1 − ξ′u, ∀u= 1, . . . , μ(i)

ξl, ξ
′
u ≥ 0

(6)

where μ(i) represents the number of semilabeled samples into
the training set. The semilabeled samples (x′

u, ŷ
′(i−1)
u ) ∈ T (i)

are associated with a regularization parameter C∗
u ∈ R

+ that
grows, depending on the number of iterations for which they
have been assigned the same estimated label until iteration
i − 1. The longer a semilabeled samples is associated with the
same information class, the higher is expected to be the confi-
dence of the system on that pattern. In fact, on increasing the
value of C∗

u, the influence of the associated sample on the defi-
nition of the separation hyperplane increases. In order to avoid
instabilities, the regularization parameter for the semilabeled

patterns increases gradually in a quadratic way. In particular,
for the uth semilabeled sample, we have ∀k = 1, . . . , γ

C∗
u =

C∗max−C∗

(γ−1)2
(k−1)2+C∗⇔

(
x′

u, ŷ′(i−1)
u

)
∈J (i−1)

k (7)

where J (i−1)
k includes all the current semilabeled patterns in

the training set that have been assigned the same estimated label
for k successive iterations, C∗ is the initial regularization value
for semilabeled samples (this is a user-defined parameter), and
C∗max is the maximum regularization value of semilabeled
samples and is related to C (i.e., C∗max = τ · C, with 0 <
τ ≤ 1 being a constant). In (7), γ is defined as the maximum
number of iterations for which the user allows the regularization
parameter for semilabeled samples to increase.

In this case, the dual Lagrange functional becomes

L(α,α′)=
N∑

n=1

αn +
μ(i)∑
m=1

α′
m − 1

2

N∑
n,m=1

αnαmynymΦ(xn)

· Φ(xm) − 1
2

μ(i)∑
n,m=1

α′
nα′

mŷ′(i−1)
n ŷ′(i−1)

m Φ(x′
n)

· Φ(x′
m) −

N∑
n=1

μ(i)∑
m=1

αnα′
mynŷ′(i−1)

m Φ(xn) ·Φ(x′
m) .

(8)

We can notice that, as in (2), the Φ(·) mappings only occur as
inner products. Accordingly, the dual problem can be written as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
α,α′

{
N∑

n=1
αn +

μ(i)∑
m=1

α′
m − 1

2

N∑
n,m=1

αnαmynym

× [Kω (xω
n ,xω

m) + Ks (xs
n,xs

m)]

− 1
2

μ(i)∑
n,m=1

α′
nα′

mŷ
′(i−1)
n ŷ

′(i−1)
m

× [Kω (x′ω
n ,x′ω

m) + Ks (x′s
n ,x′s

m)]

−
N∑

n=1

μ(i)∑
m=1

αnα′
mynŷ

′(i−1)
m [Kω(xω

n ,x′ω
m)+Ks(xs

n,x′s
m)]

}

N∑
n=1

αnyn +
μ(i)∑
m=1

α′
mŷ

′(i−1)
m = 0

0 ≤ αn ≤ C, ∀n = 1, . . . , N
0 ≤ α′

m ≤ C∗
m, ∀m = 1, . . . , μ(i).

(9)

Note that since the position of the separation hyperplane may
change at each iteration, a proper dynamical adjustment is nec-
essary. Accordingly, the semilabeled samples whose estimated
labels at iteration i are different than those at iteration i − 1
(i.e., S(i) = {(x′

u, ŷ
′(i−1)
u ) ∈ T (i)|ŷ′(i)

u = ŷ
′(i−1)
u }) are reset to

the unlabeled state and moved back to X ′(i+1) in order to be
reconsidered at the following iterations.

3) Phase 3—Convergence: The algorithm stops when the
following empirical criterion is satisfied:{ ∣∣H(i)

∣∣ ≤ �β · M�∣∣S(i)
∣∣ ≤ �β · M� (10)

where M is the original number of unlabeled samples and β is
a constant fixed a priori that tunes the sensitivity of the learning
process. This means that convergence is reached if both the
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TABLE I
NUMBER OF TRAINING AND TEST PATTERNS

number of mislabeled patterns and the number of remaining
unlabeled patterns lying into the margin band at the current
iteration are lower than or equal to �β · M�.

At the end of the learning process, for any given input pattern
xn = {xω

n ,xs
n} ∈ Iωs, the corresponding predicted label is

ŷn = sgn[f(xn)].
Given a kernel function K(·, ·) : X × X → R and a scalar

δ ∈ R
+
0 , it holds that Kδ(·, ·) = δK(·, ·) is a valid kernel, as

αT Kδα = αT δKα = δαT Kα ≥ 0. This important property
lets us also define another kernel composition rule that permits
one to balance the spatial and spectral contents of the image. In
particular, in place of a direct summation of kernel functions,
we can consider also a weighted concatenation of nonlinear
transformations of xω

n and xs
m:

Kδ(xn,xm)=μ·Kω (xω
n ,xω

m)+(1−μ)·Ks (xs
n,xs

m) (11)

where 0 < μ < 1 tunes spectral and spatial information.

III. EXPERIMENTAL RESULTS

The data set considered in the experimental phase consists
of a 460 × 512 hyperspectral image acquired by the AVIRIS
sensor over the KSC area (Florida, USA) on March 1996 [16],
[17]. The data, have a spatial resolution of 18 m. After removing
water absorption and low SNR bands, 176 of the original
224 bands were used for the experimental analysis.

The investigated site represents a series of impounded estu-
arine wetlands of the northern Indian River Lagoon [16]. For
classification purposes, 13 land-cover classes were defined (see
Table I). On the basis of in situ observations, a training and a
test set (drawn from different homogenous areas) made up of
621 and 4590 patterns, respectively, were defined (see Table I).

In all the experiments, we took into account spatial informa-
tion by simply computing the mean in a 5 × 5 window for each
spectral channel (i.e., xs

n is the vector of mean values computed
for a 5 × 5 neighborhood of xω

n in each spectral band), so
Bs = Bω = 176.

For comparisons, we analyzed the accuracies obtained by
supervised SVMs and PS3VMs with single kernels, as well
as by SVMs with composite kernels. Moreover, we compared
the results with the ones obtained by employing the stacked
approach for both SVMs and PS3VMs. This approach repre-
sents the simplest (and widely used) way for integrating spectral
and spatial information by building feature vectors from the
concatenation of spectral and spatial features while employing
a single basic kernel function.

In general, RBF Gaussian KRBF and polynomial Kp kernels
proved to be particularly effective in addressing classification

of hyperspectral images [4]. Thus, in the experimental phase,
we used such types of functions also when defining composite
kernels. All the classifiers were trained according to a fivefold
cross-validation (CV) strategy [18]. However, while, for
training supervised SVMs, we used only labeled training
samples, for training both the PS3VM and the proposed com-
posite PS3VM, we also considered test samples (modeled as
unlabeled). In the model selection phase, a grid search strategy
was used for both “supervised” parameters (i.e., the spread σ of
the Gaussian function, the degree d of the polynomial, and the
regularization parameter C) and “semisupervised” parameters
(i.e., ρ, γ, and C∗). As concerns the weighted summation
kernel, we evaluated combinations with both μ = 0.25 and
μ = 0.75. Taking into account that 0 < μ < 1 and that fixing
μ = 0.5 is equivalent to considering the direct summation case,
these two values make it possible to understand if the weighted
approach can lead to a further improvement.

The sequential minimal optimization algorithm [19] was
employed for training supervised SVMs as well as, with proper
modifications, both the PS3VM and the proposed composite
PS3VM classifiers. The maximum possible value for the reg-
ularization parameter associated with semilabeled samples was
fixed to (C/2) (i.e., τ = 0.5). A reasonable empirical choice
for the convergence criterion proved to be β = 3 · 10−2.

Table II(a) reports the percentage of overall accuracy (OA%)
and kappa coefficient of accuracy obtained on the available
test samples by both SVMs and PS3VMs with single kernels.
Table II(b) compares the accuracies exhibited by the proposed
composite PS3VMs with those obtained by supervised SVMs
with composite kernels. The results confirm the effectiveness
of the proposed technique, which outperformed both super-
vised SVMs and PS3VMs with single kernels, as well as
SVMs with composite kernels. On the one hand, this means
that, also when composite kernels are considered, the use of
semisupervised SVMs involves higher accuracies than standard
supervised SVMs. On the other hand, it comes out that, besides
supervised SVMs, also the presented approach largely benefit
from the employment of kernel composition.

The proposed composite PS3VMs resulted in a sharp in-
crease of accuracy with respect to supervised SVMs (i.e., on
average of approximately 6.5% in terms of kappa). In the best
case (i.e., for the weighted summation kernel 0.75 · KRBF

ω +
0.25 · Kp

s ), the kappa coefficient increased by more than 9%.
However, even when SVMs exhibited their best performances,
composite PS3VMs provided a gain in kappa higher than 3%.

Despite the fact that the stacked approach only allowed
PS3VMs to slightly improve the performances with respect
to the single kernel case, the employment of kernel com-
position with semisupervised SVMs resulted in a sharp in-
crease of accuracy. In particular, when the summation of RBF
Gaussian kernels for spectral features and polynomial kernels
for spatial features was considered, the kappa improvement was
around 10%.

As expected, supervised SVMs exhibited fair performances
when only spectral information was employed. With the stacked
approach, better accuracies could be obtained; nevertheless,
the best results occurred when composite kernels were con-
sidered. In particular, the highest accuracies have been ob-
tained with combinations involving polynomial kernels both
for spectral and spatial features (the increase with respect to
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TABLE II
PERCENTAGE OF OVERALL ACCURACY (OA%) AND KAPPA COEFFICIENT

OF ACCURACY OBTAINED ON TEST DATA BY THE FOLLOWING:
(a) SUPERVISED SVMS AND PS3VMs WITH SINGLE KERNEL FUNCTIONS

TRAINED ACCORDING TO A FIVEFOLD CV STRATEGY AND

(b) SUPERVISED SVMS WITH COMPOSITE KERNELS AND THE PROPOSED

COMPOSITE PS3VMs TRAINED ACCORDING TO A FIVEFOLD CV
STRATEGY. SUPERSCRIPTS REFER TO THE TYPE OF KERNEL [I.E., RBF
GAUSSIAN (RBF) OR POLYNOMIAL (p)]. SUBSCRIPTS REFER TO THE

TYPE OF COMPONENTS CONSIDERED [I.E., SPECTRAL COMPONENTS

ALONE (ω), SPATIAL COMPONENTS ALONE (s), OR CONCATENATION OF

SPECTRAL AND SPATIAL COMPONENTS ({ω, s})]

SVMs with single kernels is slightly lower than 10% in terms
of kappa).

A qualitative analysis of the classification maps (not reported
due to space constraints) confirmed the improvement given by
the proposed composite PS3VMs technique, which resulted in
a better discrimination among different information classes,
especially in the most critical regions of the study area.

IV. CONCLUSION

In this letter, we defined a novel composite semisupervised
classifier based on SVMs specifically designed for addressing
spectral–spatial categorization of hyperspectral images. In par-
ticular, the proposed technique exploits the following: 1) unla-
beled data for better constraining the learning of the classifier
when only few labeled samples are available in the training
phase and 2) composite kernel functions for taking into account
effectively the spectral information and the local spatial content
of the considered image. In this way, we can handle the small
ratio between the number of available training patterns and
the number of features, as well as the presence of different
information sources.

Experiments carried out on an AVIRIS data set confirmed
the effectiveness of the proposed technique, which resulted in
a very high classification accuracy. In particular, the proposed
method outperformed both SVMs and PS3VMs with single
kernels, as well as supervised SVMs with composite kernels.

It should be pointed out that when different kernels are
associated with spectral and spatial components, the model
selection takes a longer time since the optimization of ker-
nel parameter values specific for both functions should be
considered, as well as the definition of weights associated
with kernels. Nevertheless, taking into account the very good
performances exhibited in the experimental phase, this seems a
minor drawback for the presented technique.

As a future development of the proposed work, we are
planning to extend the experimental analysis to other data sets,
using also texture metrics for extracting spatial components.
Moreover, we are also investigating the possibility of employ-
ing other rules for the kernel combination.
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