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Abstract

In this paper, artificial neural networks are considered as an emergent alternative to the classical ‘model-based
approach’ to the design of signal-processing algorithms. After briefly examining the pros and cons of the neural-network
approach, we propose the application of structured neural networks (SNNs) for the classification of signals characterized
by different ‘information sources’, such as multisensor signals or signals described by features computed in different
domains. The main purpose of such neural networks is to overcome the drawbacks of classical neural classifiers due to
the lack of general criteria for ‘architecture definition’ and to the difficulty with interpreting the ‘network behaviour’. Our
structured neural networks are based on multilayer perceptrons with hierarchical sparse architectures that take into
account explicitly the ‘multisource’ characteristics of input signals and make it possible to understand and validate the
operation of the implemented classification algorithm. In particular, the interpretation of the SNN operation can be used
to identify which information sources and which related components are negligible in the classification process. SNNs are
compared with both commonly used fully connected multilayer perceptrons and the k-nearest neighbour statistical
classifier. Experiments on two multisource data sets related to magnetic-resonance and remote-sensing images are
reported and discussed. {1998 Elsevier Science B.V. All rights reserved.

Zusammenfassung

Es werden kiinstliche neuronale Netzwerke als eine Alternative zur klassischen auf Modellen basierenden Vorgehens-
weise fur den Entwurf von Algorithmen der Signalverarbeitung untersucht. Nach einer kurzen Besprechung der Vor-
und Nachteile von Konzepten der neuronalen Netzwerke, wird die Anwendung strukturierter neuronaler Netzwerke
(SNNs) zur Klassifikation von Signalen vorgeschlagen, die aus unterschiedlichen Quellen kommen, beispielsweise
Multisensorsignale oder Signale, die durch Merkmale beschrieben werden, die in unterschiedlichen Bereichen berechnet
wurden. Der hauptsichliche Zweck der Einfithrung solcher Netzwerke besteht darin, die Nachteile klassischer neur-
onaler Klassifikatoren zu umgehen. Diese rithren davon her, daB kein allgemeines Kriterium zur Definition der
Architektur verfiigbar ist, und daf die Interpretation des Netzwerkverhaltens Schwierigkeiten bereitet. Unsere struk-
turierten neuronalen Netzwerke beruhen auf Mehrschichtperzeptren mit hierarchischen schwach besetzten Architek-
turen, bei denen explizit die Mehrquellen-Charakteristik der Eingangssignale beriicksichtigt wird und die es ermoglichen,
die Operation der implementierten Klassifikationsalgorithmen zu verstehen und zu validieren. Die Interpretation der
Funktionsweise der SNN kann insbesondere dazu verwendet werden festzustellen, welche Informationsquelle und welche
damit zusammenhidngenden Komponenten im Rahmen des Klassifikationsprozesses vernachldssigbar sind. Die SNNs
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werden verglichen sowohl mit den tiblichen voll vernetzten Mehrschichtperzeptren als auch mit dem statistischen k-ten
Nachbarklassifikator. Es wird tiber Experimente mit zwei Mehrquellen-Datensdtzen von Bildern aus dem Bereich der
Magnetresonanz und der Fernerkundung berichtet und diskutiert. ¢ 1998 Elsevier Science B.V. All rights reserved.

Résumeé

Dans cet article, les réseaux de neurones artificiels sont considérés comme étant une nouvelle alternative a 'approche
classique basée sur une modelisation pour la conception d’algorithmes de traitement du signal. Aprés un bref examen des
avantages et des inconvenients de 'approche basée sur les réseaux de neurones. nous proposons I'application de réseaux
de neurones structurés (SNNs) pour la classification de signaux caracterisés par différentes sources d'information’, tels
que les signaux multi-capteurs ou les signaux décrits par des paramétres calculés dans des domaines différents. Le but
principal de tels réseaux de neurones est de surmonter les désavantages des classificateurs neuronaux classiques diis & une
absence de critére général pour la “définition d’architecture’ et a la difficulté d'interpréter le ‘comportement du réseau’.
Nos réseaux de neurones structurés sont basés sur des perceptrons multi-couches avec des architectures hiérarchigues
clairsemées qui tiennent compte explicitement des caractéristiques ‘multi-sources’ des signaux d'entrée et rendent possible
la compréhension et la validation de la mise en oeuvre de P'algorithme de classification implementé. En particulier,
I'interprétation de la mise en oeuvre du SNN peut étre utilisée afin d’identifier quelles sources d’information et quels
composants associés sont négligeables dans le processus de classification. Les SNNs sont comparés avec les deux
perceptrons multi-couches enti¢rement connectés genéralement utilisés et avec le classificateur statistique des & plus
proches voisins. Les expériences sur deux ensembles de données multi-sources associées a la résonance magneétique et aux

images de téle-détection sont présentées et discutées.

1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

Signal processing (SP) has its theoretical back-
ground in quantitative sciences, like mathematics,
physics, and engineering, from which the classical
‘model-based approach’ (named ‘parametric ap-
proach’ [16]) to problem solving has been derived.
In particular, in the SP field. this problem solving
approach has been traditionally applied to the de-
sign of SP algorithms. Accordingly, the design of an
SP algorithm aimed at performing a given process-
ing task is usually carried out by using a two-stage
procedure. The first stage is devoted to the defini-
tion of a mathematical model for the physical sig-
nal-generating ‘system’. This model is then used to
derive a mathematical procedure (the algorithm)
that should constitute an optimal solution to the
processing problem faced. Unfortunately, the
model-based approach to the design of SP algo-
rithms 1s often hampered by the lack of a realistic
knowledge about the signal-generating system.
In addition, models that allow one to obtain
mathematically derived algorithms need simplified
assumptions about the system (e.g., linearity, sta-

tionarity, and Gaussianity assumptions that are
often not verified in real cases). Therefore, SP algo-
rithms designed according to the model-based ap-
proach may provide suboptimal solutions to pro-
cessing problems.

Artificial neural networks (ANNs) constitute an
emergent alternative to the above designing ap-
proach, as they allow one to strongly simplify the
two designing stages concerning the model defini-
tion and the mathematical derivation of the SP
algorithm [16,18,23]. In particular, these two
stages can be simultaneously performed by ANNGs.

With regard to the modei-definition stage, ANNs
allow one to completely avoid the definition of
a mathematical model based on a priori assump-
tions about the signal source. ANNs provide very
general models (called ‘nonparametric’ models)
that can be ‘adapted’ to the specific characteristics
of a signal-generating system. To this end, specific
‘training’ algorithms can be used to tune the free
parameters of a neural network model. In addition,
the same capability of ANNs to adapt the neural
network model to the system characteristics also
allows one ‘to train’ the neural network to perform
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the desired SP task. Examples of target SP tasks are
provided as inputs to the neural network. There-
fore, ANNs can learn SP tasks, while taking impli-
citly into account the possible nonlinearity, non-
stationarity and non-Gaussianity characteristics of
real systems. It is worth noting that no explicit
derivation of the SP algorithm from a mathemat-
ical model is therefore necessary.

However, the ANN approach to SP algorithm
design exhibits some important drawbacks:

(i) The ANN operation is fundamentally based
on a process of ‘non-parametric statistical infer-
ence’; consequently, ANNs suffer from the well-
known problems related to such a statistical pro-
cess [17]. In particular, the algorithms used by
ANNSs to learn the desired SP tasks need a large
number of training examples in order to provide
satisfactory performances. Unfortunately, in real
situations, available training sets are often small.
Therefore, the ANN training procedure sometimes
produces SP algorithms that perform well on train-
ing data but that are poorly effective when applied
to data not contained in the training set (in the
neural-networks literature, this is the so-called
‘generalization’ or ‘overfitting’ problem [17]);

(ii) The ANN learning capability allows one an
adaptive modelling of the signal-generating system
without any need for an exact knowledge of the
system characteristics (e.g., linearity, stationarity,
and Gaussianity). On the other hand. it is quite
difficult to incorporate into the training algorithm
the information about the system characteristics
that is available to the SP algorithm designer;

(iii) The solution to the SP task learned by an
ANN is actually embedded in the network para-
meters (i.e., the network ‘weights’). This makes it
very difficult to ‘understand’ and, consequently. to
‘validate’ the appropriateness of such a solution;
therefore, it can strongly reduce the reliability of the
SP algorithm used. Such an ‘opacity’ of neural-
based algorithms can seriously limit end-users’
confidence in these algorithms, in particular, when
algorithm performance cannot be assessed on large
data sets.

In this paper, a kind of structured neural net-
works (SNNs) is proposed that is mainly aimed at
overcoming drawbacks (ii) and (iii) within the con-
text of the classification of signals coming from

different ‘information sources’, like multisensor sig-
nals and signals described by features computed in
different domains [24,35]. Such SNNs are based on
hierarchical architectures that allow one to easily
incorporate the information available about the
multisource characteristics of the signal considered.
In addition. SNNs enable the SP expert to under-
stand and validate the operation of the neural clas-
sification algorithm. The proposed SNNs also
partially solve the above drawback related to the
generalization capability of the network, as they
allow a good compromise between architecture
complexity and number of ANN parameters [2].

2. A short overview of neural networks for
signal processing applications

In recent years, ANNs have been applied to
accomplish many different SP tasks. The rationale
of the use of ANNs has mainly been related to their
above-mentioned advantages over the model-based
approach to SP algorithm design. In addition,
ANNSs exhibit some other properties (e.g., massive-
ly parallel processing and fault tolerant character-
istics) that make their use very interesting for SP
applications. A lot of work has been reported on
the applications of ANNs to SP [8,21.27-29.41].
An extensive review of ANN applications to SP is
beyond the scope of this paper. We refer the inter-
ested reader to the Proceedings of the 1991--1996
IEEE Workshops on Neural Networks for Signal
Processing [29]. A good selection of papers dealing
with the applications of ANNGs to different SP tasks
is also given in the September 1990 and October
1996 issues of the Proceedings of the IEEE [27.28].
The latter also contains a paper by Rao and Proto-
popescu that provides a new theoretical insight into
the reasons for successful applications of ANNs
[31].

In the following, a short overview of ANN ap-
plications to SP is provided.

At the beginning, ANNs were applied to classical
SP problems related to the recovering of an analog
signal after transmission over a noisy or dispersive
communication channel (e.g., dispersion over tele-
phone channels, time-invariant or very slowly vary-
ing). Widrow's pioneering work dealt with channel
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equalization and adaptive signal filtering [42].
ANNs were also applied to many other SP tasks
involved in communication systems (e.g., design of
receivers, signal detection, signal parameter estima-
tion, error correction codes, etc. [6,26,407). All such
papers pointed out the advantages of the ANN
‘non-parametric nature’ and the drawbacks arising
when few training data are available.

ANNs were also applied to the processing of
many different kinds of one-dimensional signals.
Ukrainec and Haykin reported the use of ANNs for
the processing of radar signals and discussed the
related pros and cons [39]. Gorman and Sejnowski
applied ANNs to the task of classifying sonar re-
turns from undersea targets, and discussed the
ability of neural networks to correctly classify un-
known cases [14]. Many authors proposed neural-
based algorithms devoted to automatic speech pro-
cessing tasks. In particular, Haton’s paper pointed
out the potentialities of ANNs for automatic
speech recognition [15]. Chen pointed out the im-
portant role played by ANNs in improving the
accuracy of non-destructive evaluation (NDE) of
materials by processing ultrasonic signals [5].

More recently, ANNs were applied to various
image-processing tasks [8]. With regard to ‘low-
level’ image-processing tasks, Yin et al. proposed
the use of ANNSs to design adaptive image filters
[43]. Zhou et al. described a neural-network model
especially devoted to image restoration [44]. Some
authors reported experimental results on the use of
ANNs for automatic segmentation of images
[1,16]. Many papers dealt with the classification of
images by ANNs [10,19]. ANNs proved especially
useful for image classification tasks for which
a parametric approach 1s difficult to design due to
the lack of an exact knowledge about the statistics
of the ‘data classes’ to be recognized. Many papers
also dealt with the compression of images by using
ANNs [4]. Five papers on image-based applica-
tions of neural networks were published in the
October 1996 issue of the Proceedings of the IEEE
[28]: three deal with medical-imaging applications,
one with fingerprint classification and one with
image compression.

Outside the context of the SP field, ANNs were
proposed as a general approach to machine vision
[12.38].

3. The proposed approach to signal classification
3.1. Introduction

In this paper, we propose a signal classification
technique based on the pattern recognition ap-
proach. According to this approach, classification
is carried out after mapping an input signal into
a ‘feature space’. To this end, the signal is decom-
posed into ‘segments’ and a set of attributes (‘fea-
ture vector’) is computed to characterize the differ-
ent signal segments. Each segment is regarded as
a ‘pattern’ and the related feature vector corres-
ponds to a point (or vector) in the feature space.
A classifier is then utilized to assign each pattern to
one among a set of predefined classes (Fig. 1). Typi-
cally, this assignment is based on the estimation of
the probability density functions of the feature vec-
tors of each class in the feature space. A critical
point in the pattern recognition approach is the
definition of an appropriate set of features to ensure
a satisfactory separation of the patterns of the dif-
ferent classes in the feature space [36].

Let us consider, as a particular signal processing
task, the classification of ‘multisource signals’ into
a set of M predefined classes, denoted by
wi(i=1,..., M).

By ‘multisource signals’, we mean signals charac-
terized by different ‘information sources™ we define
an information source as a set of one or several
features utilized to characterize (a segment of)
a signal. Usually, such features are provided dir-
ectly by a sensor (e.g., the amplitude and phase of
a signal), or they are attributes computed by an
algorithm from a signal (such as, for example, a set
of frequency domain features). If an information
source 1s made up of several features, it can be
represented as a vector, where a single feature cor-
responds to a ‘component’ of the information
source. In general, we may adopt the following
notation:

X' = (X4 [Xh)

=(Xiu-,-~~,Xi1<‘,,---,X;11-~-«~X§1C..)> (

where X' is the feature vector utilized to character-
ize the ith segment of the multisource signal; X is
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Fig. I. Classification of a one-dimensional signal by using the pattern recognition approach: a simple example is shown where two
features, f; and f5, are computed for each segment of the signal x(r), and the classification into two classes, ; and @,. is performed by

linear separation in the feature space.

the projection of X' in the subspace related to the
features of the jth information source; X is the kth
component (i.e., the kth feature) of the jth informa-
tion source; H is the number of available informa-
tion sources; C; is the number of components of the
jth information source.

The kind of classifier we propose to adopt is
based on multilayer perceptron neural networks
[17] with particular architectures, which will be
described in the next subsection.

Multilayer perceptrons (Fig. 2) are among the
most widely used supervised non-parametric neural
classifiers. For the kind of signals we consider, it is
especially useful to adopt a non-parametric classi-
fier because, when dealing with signals from differ-
ent sensors or characterized by quite heterogeneous
features, it is often difficult to define a statistical
model of the distribution of the patterns to be
classified.

According to the supervised classification para-
digm, a ‘training set’ is required for which the
desired behaviour of the classifier is known: a set of
patterns, with the related feature vectors and the
information about the classes they belong to.
A learning algorithm is used to train the adopted
classifier to classify the training set correctly (to
some acceptable approximation). Afterwards,
such a classifier can be applied to the unknown

patterns derived from the signals that have to be
classified.

During the training phase, the learning algo-
rithm (in our case, the well-known error back-
propagation algorithm [34]) computes appropriate
values of the parameters the classifier depends on in
order to adapt to the characteristics of the training
set. The training phase can therefore be considered
as a process of parameter estimation from noisy
data: in order to obtain reliable estimates, the num-
ber of training patterns should be much larger than
the number of parameters to be estimated [2]. For
a multilayer perceptron, the number of parameters
to be estimated corresponds to the number of con-
nections plus the number of neurons in the net-
work, as a weight per connection and a bias per
neuron are to be estimated (Fig. 2).

An evaluation of the performances of a super-
vised classifier can be obtained as follows. The set
of known patterns is first subdivided into two dis-
tinct sets: a training set and a ‘test set’. After train-
ing with the training set, the supervised classifier is
applied to the test set (which should not be used
during the training phase) and the accuracy yielded
on such a set is used as an estimate of the classifier
performances. This process may be repeated several
times, with different training and test data, and the
average accuracy is taken as an estimate.
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output — 1

output - M

Fig. 2. A multilayer perceptron neural network. (w}; denotes the weight of the connection between the ith neuron of the /th layer and the
jth neuron of the (! + 1)th layer; b! denotes the bias of the jth neuron of the ith layer).

3.2. Structured neural networks and tree-like
networks

The classifier we propose is based on a set of
multilayer perceptron neural networks, one for
each class, and on a ‘winner-takes-all’ (WTA) block
that makes the final decision about classification
(Fig. 3). We use this global architecture (which, in
the following, is referred to as a ‘structured neural
network’ — SNN) to implement the Bayes rule for
the minimum classification error [11]. To this end,
we train each neural network to estimate the poste-
rior probability p(wi/X) of a class ,;, given the
feature vector X of a pattern [18]. The WTA block
assigns each pattern to the class whose posterior
probability estimate is the maximum one:

Hlog/X) = max (p(wi/X), = X € o (2)

The class-related networks in Fig. 3 are called
‘tree-like networks’ (TLNs) for their architectures,
which are defined below. Each TLN provides
a non-parametric model that can approximate the
posterior probability of a class in the feature space.
This approximation is computed as a non-linear
function of the feature vector X and depends on the
network architecture, on the input/output response
of neurons (the so-called “activation function’) and
on the network parameters (weights of connections
and biases of neurons).

X ——— TLN-I p,/x)
it
youd
<
p(@,/ x) 72]
X ———-f TLN2 : @ R
< 6]
&
| &
| =
| Z
: Z.
P/ X)
x — | TLN-M

Fig. 3. Architecture of an SNN for a number of data classes
equal to M: just as many TLNs are used (i.e.. multilayer percep-
trons with particular tree-like architectures) as the data classes.

As 1s usually done for MLPs, as a neuron activa-
tion function. we use a sigmoid function:
Sx)=(1+e N1, (3)

which is a nonlinear function that takes on values
over the range 0 to 1. The output o} of the ith
neuron of the /th layer is then

/7
of =Sy wii ol + hf). 4)
N
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Fig. 4. TLN architecture based on source-rclated subnets (SRSs) and component-related subnets (CRSs).

where we have adopted the notation given in Fig. 2,
that is, b! stands for the bias of the ith neuron of the
Ith layer, and w}; stands for the weight of the con-
nection between such a neuron and the jth neuron
of the (/ + 1)-th layer. The output of a TLN can be
computed by propagating. from the input layer up
to the output layer, the contributions of the neur-
ons of a layer toward the neurons of the next layer.

All the TLNs in Fig. 3 have the same architec-
ture, which is tailored to the classification task
considered. Such an architecture is not fully con-
nected and includes an input layer. two hidden
layers. and an output layer (Fig. 4). A TLN archi-
tecture may be hierarchically decomposed into an
output neuron and a set of just as many subnets as

the information sources available to describe a sig-
nal. In turn, each source-related subnet (SRS) may
be decomposed into an output neuron and just as
many component-related subnets (CRSs) as the
components included in the related information
source. Finally, the CRSs we consider in this paper
include an input neuron (corresponding to a source
component) and two neurons in the first hidden
layer (Figs. 4 and 5(a)).

The neuron activation function and the architec-
ture are a priori fixed characteristics that determine
the generality of the non-parametric mode! pro-
vided by each TLN. On the contrary, the network
weights are free parameters that are tuned during
the training phase to adapt the non-parametric
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Fig. 5. TLNs used for the recognition of the magnetic-reson-
ance images: (a) architecture based on the organization of fea-
tures into three information sources; (b) simplified representa-
tion of the skin class-related TLN obtained by training with
images 1, 2, 3, 4 and 5. Voting powers are shown on top of
connections, whereas voting thresholds and delta votes arc
shown on top of neurons.

model to perform the classification task on the
specific kind of signal considered.

TLN architectures appear to be interesting from
several viewpoints, as specified in the following
discussion.

They can be easily defined once the kinds of
information sources used to characterize signals are
knowrn. This makes it possible to avoid the classical
trial-and-error process for architecture definition
[17].

The information derived from a component of an
information source is first processed separately
from all the other components, then the result ob-
tained i1s merged with the results related to the
other components of the same information source,
at the level of the SRS output neuron. Similarly. we
can observe that all the information derived from
an information source is first processed separately
from the other information sources inside an SRS,
then the results obtained by all the SRSs are
merged at the level of the TLN output neuron. This
peculiarity of TLNs makes it possible to interpret
the network behaviour, after appropriate trans-
formations, as we explain in the next subsection. By
contrast, in fully connected multilayer perceptrons,
each neuron of a layer contributes to the inputs of
all the neurons of the next layer. This hinders the
efforts to interpret the network behaviour.

The above-mentioned separate processing of the
information coming from different sources and
from their components enhances the feature-selec-
tion capability of multilayer perceptrons. In addi-
tion, it makes it easier to evaluate the importance of
the sources and the related components. Both these
aspects will be reconsidered in Section 3.4.

The fact that the architecture is not fully connec-
ted limits the generality of the model provided by
our SNNs but, on the other hand, it allows a signifi-
cant reduction in the number of network para-
meters. In addition, in typical situations, the
components of different information sources are
quite independent. This reduces the importance of
the loss of model generality due to the separate
processing of such components inside each SRS
because of the absence of connections towards
the other SRSs. In conclusion. thanks to the
use of a priori knowledge about the multisource
characteristics of a signal. TLNs may provide an
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interesting compromise between the two require-
ments for the generality of the non-parametric
model and a limited number of network para-
meters. This is useful, in particular, when dealing
with small training sets.

3.3. Interpretation of the network behaviour

Each TLN is trained separately by the back-
propagation algorithm, then it is combined with all
the other TLNs by the WTA block to classify data.
For the purpose of interpreting the network behav-
iour, a transformation is applied to each TLN in
order to obtain a ‘simplified representation’ of the
network [35]. This transformation consists of the
following five steps, which are applied in sequence
to each TLN:

(1) Each TLN is transformed into an equivalent
network with positive weights. This procedure is
not applied to the weights of the connections be-
tween the neurons of the input layer and those of
the first hidden layer, as our method does not
require that these weights be positive.

(11) Inside the CRSs, each pair of neurons of the
first hidden layer is replaced with an ‘equivalent
neuron’ whose activation function is approximated
by a piecewise-linear function. This function is made
up of five (or fewer) linear pieces and is normalized
so as to take on values over the range O to 1.

(i) For all possible values of the inputs to
a TLN, the outputs of some neurons of the second
hidden layer may exhibit variations over a narrow
subrange ([0.17 in our case) of the full output dy-
namics of these neurons. This step i1s aimed at
avoiding an overestimation of the importance of
the contributions of such neurons to the inputs to
the neuron of the output layer. To this end, each
TLN 1s transformed into an equivalent network in
which the output of each neuron of the second
hidden layer is expanded to the whole range of the
neuron activation function (i.e. [0.1]), and the
weights of the output connections from each of
these neurons are reduced to compensate for the
expansion.

(iv) A normalization procedure is applied to the
weights of the input connections and to the biases
of the neurons of the second hidden layer and of the
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Fig. 6. The activation functions of the ncurons of the second
hidden layer and of the output neuron are interpreted as ‘major-
ity rules’ of *vote-taking units” and approximated by piecewise-
linear functions. AV are the ‘delta votes® and VT is the “voting
threshold™.

output layer. As a result, an equivalent network is
obtained in which the weights of all the connections
entering such neurons are normalized by a multi-
plicative factor such that their sum may be equal to
a prefixed positive value N (N = 1000, in our case);
the biases of the above neurons are also normalized
by using the same multiplicative factor as for the
input weights to the neurons.

(v) Finally, the expanded activation functions of
the neurons of the second hidden layer and the
activation function of the output neuron are ap-
proximated by piecewise-linear functions (Fig. 6).
In particular, we utilize the straight lines tangent to
the (expanded) activation functions at the point
where these functions are equal to (0.5. Then, we
flatten these straight lines so as to obtain the same
dynamics as the activation functions they approx-
imate. This dynamics ranges from 0 to 1 for the
neurons of the second hidden layer; a lower dynam-
ics. corresponding to a subrange of 0 to 1, can be
found for the output neuron. It is worth noting that
the activation function of the output neuron is not
expanded to avoid introducing modifications to the
probability estimate it provides.

After this transformation, all the weights from
the first hidden layer up to the output are made
positive, normalized in a given range (ie. 0 to
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1000), and are such that the importance of the
contribution of a neuron to the input to a neuron of
the next layer corresponds directly to the weight of
the connection between the two neurons. In addi-
tion, the activation functions of all the neurons
(including the above-mentioned equivalent neur-
ons) are approximated by piecewise-linear func-
tions. Within the limits of the piecewise-linear
approximations, the above transformation saves
the input-output response of the TLN.

The simplified representation of a TLN (see. for
example, Fig. 5(b)) makes it possible to interpret
the network as a hierarchical arrangement of com-
mittees that judge the hypothesis that a pattern
belongs to a given class.

The input neurons provide the information
about all the source components to the next layers
of the network. Each equivalent neuron of the first
hidden layer expresses its judgment on the basis of
a constraint on the values of an information-source
component. This equivalent neuron is a member of
a ‘source-related committee’ (SRC) that corres-
ponds, from the viewpoint of the network architec-
ture, to a source-related subnet. Each neuron of the
second hidden layer is a ‘vote-taking unit’ (VTU) of
an SRC, that is, it combines the votes of the mem-
bers of its SRC. In addition, the neurons of the
second hidden layer are members of the ‘global
committee’ whose votes are taken by the neuron of
the output layer to compute the final decision
about the probability that a pattern belongs to
a given class. The global committee corresponds to
the whole TLN.

The importance of both information sources and
of their components for the output of each TLN
depends on their ‘voting powers’ in the committees
they belong to, ie., on the positive normalized
weights of the connections between the VTUs of
the SRCs and the output neuron, and between the
equivalent neurons and the VTUs of the SRCs,
respectively (Fig. 5(b)). The decision is made by
each VTU on the basis of majority rules applied to
the sums of the votes of all the members of the
related committee. These rules are defined by piece-
wise-linear functions in the simplified representa-
tion (Fig. 6).

The representation described above allows a user
to understand if the network operation is in agree-

ment with his a priori knowledge and with the
visual analysis of the input signal. If there is no
agreement, the network may be trained again with
different random starting weights. An example of
network interpretation is given in Section 4.

3.4. Selection of information sources and
their components

In this section, we consider the feature-selection
capability of the proposed neural networks. This
aspect is quite important. since, in general, the
reduction in the number of features also reduces the
number of free parameters of the classifier to be
estimated. In addition, the variability of some fea-
tures may not only provide no useful information
for classification, but it may also affect classifica-
tion accuracy by acting as noise.

The global ‘one-net-one-class’ scheme (Fig. 3) we
adopted makes it possible to enhance the intrinsic
capability of neural networks to select features by
operating on various classes independently of one
another. This makes a class-specific rejection of
features possible. which can be very effective, espe-
cially when both classes and information sources
are very heterogeneous.

The separate processing of the information
coming from different sources and their compo-
nents (see Section 3.2) enhances the feature-selec-
tion capability of multilayer perceptrons. Ina TLN,
the contribution of a source component may be
selectively reduced not only by lowering the
weights of the connections between the input and
the first hidden layer. but also by lowering the
weights of the layer of connections between the first
and second hidden layers. Moreover, the reduction
in the weight of a connection between a neuron of
the second hidden layer and the output neuron may
allow the contributions of all the components in an
information source to be rejected altogether. In this
case, the information source itself (a feature set or
a sensor) may be disregarded.

It is worth noting that, for the purpose of decid-
ing if an information source or a component may
be removed, the behaviour of the majority rules
must also be taken into account. In particular, the
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ith source of a TLN can be disregarded, for classi-
fication purposes, if its votes do not change the
output of the TLN appreciably. To this end, it is
easy to show that the maximum change induced by
the ith information source is about equal to

SCi = min{(VPA/24V1),4J1}. (5)

where VP4 is the voting power of the ith informa-
tion source; AJ? is the width ( < 1) of the output
range of the VTU of the global committee; AV7 are
the ‘delta votes’ of such a VTU. If one considers, for
simplicity, 4J3 to be equal to 1, then, according to
the piecewise-linear approximation, 24V} corres-
ponds to the minimum number of votes to make
the output of the VTU vary from 0 to 1 (Fig. 6), and
Eq. (5) can be interpreted as follows: the maximum
effect of the votes available to an information
source can be observed in the central steepest part
of the activation function of the output neuron
(Fig. 6). According to the piecewise-linear approxi-
mation, the maximum induced change is equal to
about the ratio between the number of votes avail-
able to an information source (i.e., VP#) and the
minimum number of votes necessary to make the
output of the VTU vary from 0 to 1 (i.e., 24V3). If
this ratio exceeds the output range of the VTU (i.e,,
AJ3), the maximum change is equal to the output
range itself.

Analogously, the maximum change in a TLN
output due to the votes of the jth component of the
ith information source is about equal to

CC; = min{(VPL/24V31} - SC.. 6)

where VPJ; is the voting power of the jth compon-
ent of the ith information source and AV} are the
delta votes of the VTU of the ith SRC.

The two parameters SC and CC can be used to
select information sources and the related compo-
nents, respectively.

4. Experimental results

In order to assess the performances of the pro-
posed SNNs, we considered two data sets related to
different applications: one data set was composed
of magnetic-resonance images, the other was com-

posed of remote-sensing images. The choice of these
two applications was suggested by the different
types of signals involved that allow one to test the
proposed SNNs under different conditions. For the
magnetic-resonance data set, we defined three in-
formation sources, which corresponded to three
different sets of features extracted from the images;
in the case of the remote-sensing data set, we con-
sidered two information sources, which correspon-
ded to the optical and radar sensors utilized for the
image acquisition. In both cases, the performances
provided by the proposed SNNs were compared
with those of multilayer perceptron (MLP) neural
networks and with those of one of the most widely
used nonparametric statistical classifiers, i.e., the
k-nearest neighbour (k-nn) classifier [9].

4.1. Magnetic-resonance image classification

A data set consisting of six magnetic resonance
images was considered (Fig. 7). These images
(256 x 256-pixel size) represented axial sections of
the human head at eye level. We applied the classi-
fication process to the elementary regions obtained
by segmenting the images. Therefore, we were able
to exploit some useful features related to the posi-
tion, the size and the shape of each elementary
region. The images were preprocessed in order to
reduce the influence of noise by applying an edge-
preserving smoothing filter; then, they were seg-
mented by using a region-growing algorithm [25]
(Fig. 8). The segmentation threshold was automati-
cally adjusted in order to have about 90 elementary
regions for each image. An expert checked on the
segmentation correctness and provided the correct
recognition for each elementary region obtained by
the segmentation. We considered three information
sources to describe the elementary regions: the
intensity, position, and size-and-shape sources. The
components of each information source are given
in Table 1.

Our experiments were aimed at recognizing thir-
teen classes: twelve classes associated with different
organs (ie., the nose, the left eye, the right eye,
the left ocular fat, the right ocular fat, the skin,
the chiasma, the left ear, the right ear, the
mesencephalon, bone. and the brain) plus the
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Fig. 7. The six magnetic-resonance images used in our experi-
ments: (a) image 1, (b} image 2, (c) image 3, (d) image 4, (e) image
5, (f) image 6.

background. The feature vectors of the elementary
regions were the inputs to the classifiers.

To plan the performance evaluation process, we
took into account that, in medical applications,
when a new image is to be classified, it is desirable
not to ask for new training data from the new
image. Consequently, we decided to separate the
images into training and test images (including all
the regions of an image either in the training set or
in the test set, during the same experiment). In
addition, we considered that, when few known pat-
terns are available, rather than consider a single
partitioning of known patterns into training and

test sets, it 1s more reliable to repeat partitioning
several times, then to average error rates [9]. Every
time a different partitioning should be considered,
including as many patterns in the training set as
possible. According to these two observations, we
decided to perform the training and test processes
by adopting the k-fold cross validation method
[37], with k equal to the number of images (i.e.,
k = 6). We performed the training process on the
elementary regions of one of the possible image
quintuples (about 450 patterns); then, we estimated
the accuracies on the elementary regions of the
left-out image (about 90 patterns). This procedure
was applied to all possible & combinations. The
average accuracy over the k testing processes was
taken as a global accuracy estimate.

The SNN applied to the magnetic-resonance im-
ages had an architecture composed of thirteen
TLNs (i.e., one for each class) and the WTA block.
The TLNs had not fully connected architectures
organized into three SRSs. The architecture of each
TLN was of the ‘8-16-3-1" type, ie. it was com-
posed of 8 input units, 16 units in the first hidden
layer. 3 units in the second hidden layer, and 1 out-
put unit, as shown in Fig. 5(a).

The TLNs were initialized with random weights
and trained by the error backpropagation learning
procedure. As a convergence criterion, we required
a mean square error (MSE) smaller than 0.0005.
Learning was carried out at a learning rate n = 0.01
and was stopped when the convergence was reach-
ed or after 10.000 epochs. The learned TLNs were
used to classify the test set data. To this end, the
WTA rule was adopted in order to combine the
outputs of the thirteen TLNs. The classification
accuracies provided by the SNN on the six test sets
considered in our experiments and the average ac-
curacy are given in Table 2. Results are expressed
in terms of percentage of correctly classified image
area (this percentage was computed with respect to
the pixels belonging to the head only, excluding the
background, which is very easy to recognize and
covers a large part of the image).

In order to compare the performances of the
above SNN with those of fully connected MLPs,
we carried out experiments by using four different
MLP architectures. Also in this case, we applied the
backpropagation learning procedure. The best
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Fig. 8. Examples of: (a) original image: (b) segmented image (contours surround elementary regions); (c) recognized image (contours
surround the groups of elementary regions that correspond to organs).

average accuracy, given in Table 3, was obtained
by using an 8-6-13 architecture.

With regard to the k-nn classifier, we performed
several trials to select the optimal value of k. Given
the small number of samples available for some
organs (e.g., the brain and the mesencephalon were
segmented into a single region in all the images
considered), the best average classification accu-
racies were obtained by small k values. In particu-
lar, the best average accuracy was obtained by

k =3 (see Table 3). We used k =5 only for tie
situations where there was no majority class in the
set of 3-nearest neighbours of a pattern.

The classification accuracy provided by the SNN
is much higher than those provided by both MLPs
and the k-nn. This is due to the intrinsic feature-
selection capability of SNNs (see Section 3.4) which
makes them less sensitive to noisy information-
source components, as compared with MLPs and
the k-nn.
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Table |

Definitions of the information sources and the related components considered in the magnetic-resonance data set (MBR stands for

‘minimum bounding rectangle’)

Information source Component Definition
Intensity Average gray Mean gray-level value of the pixels belonging to the region
Position cmx, cmy Region centroid coordinates
Centr Polar distance between the region centroid and the slice centroid
Direc Orientation of the longest side of the MBR
Size-and-shape Region size Number of pixels belonging to the region
Fit Ratio between the region size and the size of its MBR
Elony Ratio between the longest and the shortest sides of the MBR
Table 2 Table 3

Classification accuracies provided by the SNN classifier for the
six test sets considered in our experiments on the magnetic-
resonance image data set

Average classification accuracies provided by the SNN. MLP
(architecture 8-6-13) and k-nn (with k = 3) classifiers for the
magnetic-resonance image data set

Training set Test set Correctly classified Classifier Average value of correctly classified
images image image area image area

23456 1 86.9% SNN 89.6%

13456 2 88.6% MLP 82.2%

12456 3 95.3% k-nn 83.6%

12356 4 83.7%

12346 5 86.1%

12345 6 96.7%

Average value 89.6%

In order to understand the roles of each compon-
ent and of each information source in the classifica-
tion process, after the training phase, we applied
the transformations described in Section 3.3 to the
obtained TLNs. As an example, let us consider the
TLNs trained on the quintuple composed of images
1, 2, 3, 4 and 5. Fig. 5(b) shows the simplified
representation of the TLN related to the skin class.
In order to distinguish between the regions belong-
ing to the skin class and the other regions, our
network gives the greatest importance to the source
related to position (i.e., VP = 431), whereas both the
intensity and size-and-shape sources give smaller

but non-negligible contributions (i.e, VP = 285
and VP =284, respectively). Considering the
voting threshold for the global committee (i.e.,
VT = 533), it is easy to observe that at least two
information sources out of three should vote in
favour of the ‘skin’ hypothesis in order to get a high
output from this TLN. It is also interesting to
observe the behaviours of the single information-
source components in their source-related commit-
tees. As an example, in the position-related commit-
tee, the centr component has the highest voting
power (1.e., VP = 749); the cmx component is small-
er but not negligible (i.e., VP = 152), whereas the
direc and cmy components give only small contri-
butions (i.e, VP = 51 and VP = 48, respectively).
By analyzing, for example, the constraint imposed
by the equivalent neuron related to the centr
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SC and CC values computed for the magnetic-resonance data set. Stars indicate the source and components that may be disregarded

{a) SC values

Left Right Left Right Left Right Mesen-  Back-
TLN source Chiasma ocfat ocfat Bone eye eye Skin ear ear Nose  Brain ceph. ground
[ntensity 0.879 1.000  1.000 0.731 0.753 1.000 1.000 0.000* 0.074* 1000 0953 0.653 .009*
Position 1.000 1.000  1.000 0731 1000 1000 1000 1.000 1000 1000 0953 0999 0.003*
Size and shape 1.000 1.000 0.047* 0.731 1.000 1.000 1.000 1.000 1000 1000 0.953 0073* 0989
(b) CC values
TLN Left Right Left Right Left Right Mesen-  Back-
component Chiasma ocfat ocfat Bone eye eye Skin ear ear Nose  Brain ceph. ground
Averaye gray — 1.000 1000 1000 0731 0753 1000 1.000 0.000* 0.074* 1.000 0953 0.653 0.009*
¢mx 1.000 1.000  1.000 0731 1.000 1000 0725 1000 1.000 1.000 0.011* 0.155 0.000*
cmy 1.000 1.000 1.000 0731 1.000 1000 0229 0673 1.000 1.000 0243 0999 0.000*
Centr 1.000 1.000 1.000 0731 1000 0.784 1.000 0.185 1000 1000 0953 0.999 0.003*
Direc 0.296 0656 0.632 0465 1000 0606 0243 0329 1000 029 0.133* 0.163 0.000*
Region size 0.015%  0.036* 0.002* 0.089* 0.015* 0.020* 0005* 0.007* 0.034* 0.015% 0953 0070* 0989
Fii 1.000 0.731 0.044* 0.706 1.000 1000 1000 0.185 1.000 1000 0.029% 0.001*  0.006*
Elony 1.000 1.000  0.002* 0.731 1000 1.000 1.000 1000 1000 1.000 0953 0.002* 0.047

Note: *Indicate the source and components that may be disregarded.

component, it is easy to observe that it shows
a high activation only at the peripheral positions in
the images. This constraint is in agreement with the
typical position of the skin. Regarding the size-
and-shape-related source, it is easy to see that the
elong and fit components have high degrees of
importance (1.e., VP = 533 and VP = 464, respec-
tively), whereas the size is really negligible (i.e.,
VP = 2). Also in this case, the constraints of the
equivalent neurons of the first hidden layer agree
with the a priori knowledge on the application.
Elementary regions belonging to the skin class usu-
ally have a high elong and a small fit, while the size
is not useful to distinguish between the regions of
the skin class and the other ones. The conclusions
for the skin class are that all three information
sources considered are important. However, two
information-source components {cmy and direc)
have low degrees of importance, whereas the size,
having a negligible impact on the classification
provided by the skin-related network. can be ne-
glected at all.

Table 4 gives the SC and CC values computed
for all the classes considered, as described in
Section 3.4. These values can be compared to a
threshold fixed on the basis of training data to
decide which sources and which components can
be disregarded for each class. In our experiments,
we chose a threshold equal to 0.15. In Table 4,
negligible sources and components are marked
with stars. As can be seen, the intensity source is
negligible for the left-ear, right-ear, and back-
ground classes; the position source is negligible for
the background class; the size-and-shape source 1s
negligible for the right-ocular-fat and mesen-
cephalon classes. With regard to the source compo-
nents, for example, Table 4 shows that, in order to
identify the background class, only the region size
component is sufficient. The region size component
is also very useful to recognize the brain class,
whereas it can be disregarded for all the other
classes. This is in agreement with the medical
knowledge on the segmented magnetic-resonance
images.
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Fig. 9. Examples of images of the remote-sensing data set: (a) a band of the ATM sensor; (b) a channel of the SAR sensor.

4.2. Remote-sensing image classification

A set of multisensor remote-sensing images re-
lated to an agricultural area were considered [30].
Images were acquired with two sensors: a multi-
band optical sensor (an airborne thematic mapper
(ATM)) with eleven bands [32], and a synthetic
aperture radar (SAR) sensor with three bands and
four polarizations for each band [30]. For our
experiments, we selected six bands for the ATM
sensor and nine channels for the SAR sensor. Fig, 9
shows an example of both the ATM and SAR
images. The two sensors considered were asso-
ciated with two information sources and each im-
age was described as an information-source com-
ponent.

In order to prepare a reference map aimed at
assessing the classification accuracies provided by
the classifiers, we digitized the available ground
truth. For our experiments, we selected the five
numerically most representative agricultural
classes, i.e., sugar beets, carrots, potatoes, bare soil
and stubble. The image classification process was
carried out by considering each single pixel as an
input pattern: the fifteen components described

above were associated with each pixel to form
a ‘feature vector’ to be used as input to the classi-
fiers considered.

In the present case, a very large number of
known patterns was available. Therefore, it was
possible to estimate the accuracies provided by the
classifiers by considering a single partitioning of the
known patterns into a training set and a test set [9].
In particular, the agricultural fields were randomly
subdivided into two sets: 5124 training pixels were
taken from the fields of one set and 5820 test pixels
from the fields of the other set.

The SNN used in our experiments on the re-
mote-sensing data set was based on five TLNSs, each
with a 15-30-2-1 architecture (Fig. 10(a)). The
TLNs were initialized with random weights and
then trained by the backpropagation learning pro-
cedure. As a convergence criterion, we required
a mean square error (MSE) smaller than 0.005.
Learning was carried out at a learning rate # = 0.01
and was stopped when the convergence was reach-
ed or after 400 epochs. The class-by-class classifi-
cation accuracies and the overall classification
accuracy obtained by the SNN on the test set are
given in Table 5.
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Fig. 10. TLNs used for the recognition of the remote-sensing images: (a} architecture based on the organization of features into two
information sources; (b) simplified representation of the sugar beets class-related TLN.

With regard to the fully connected MLPs, we
carried out experiments by using six different archi-
tectures. Table 6 gives the value of the best accu-
racy on the test set, which was obtained by the
15-8-5 architecture and n = 0.01.

Concerning the k-nn classifier, we performed sev-
eral experiments to identify the best value for k. The
best classification accuracy (see Table 6) was ob-
tained by k = 25.

By comparing the three classifiers considered, it
is easy to verify that the SNN provided a little
lower accuracy than those achieved by both the
MLP with the best architecture and the k-nn classi-

fier (i.e., there were differences of 3.1% and 3.3%,
respectively). However, unlike fully connected
MLPs, SNNs allow one to interpret the network
behaviour and to avoid the problem of architecture
definition.

Also in this case, we carried out the transforma-
tions described in Section 3.3 on the trained TLNs
in order to understand the network behaviour. As
an example, Fig. 10(b) depicts the TLN obtained
for the class ‘sugar beets’. For an interpretation of
the behaviour of such a TLN and, in general. for
a more accurate description of the results obtained
on this data set, we refer the reader to [35].
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Table 5
Class-by-class classification accuracies provided by the SNNs
for the remote-sensing image data set

Class Clasification accuracy
Sugar beets 99.5%

Stubble 85.9%

Bare soil 79.3%

Potatoes 74.2%

Carrots 752%

Overall accuracy 86.5%

Table 6

Overall classification accuracies provided by the SNN. MLP
(architecture 15-8-5) and k-nn (with k = 25) classifiers for the
remote-sensing image data set

Classifier Overall classification accuracy
SNN 86.5%
MLP 89.6%
k-nn 89.8%

5. Discussion and conclusions

In this paper, we have presented a kind of struc-
tured neural networks (SNNs) for the non-para-
metric supervised classification of multisource sig-
nals. These neural networks are characterized by
hierarchical architectures that allow one to easily
incorporate the information available about the
multisource characteristics of the signal considered.
In addition, they make it possibie to understand the
network behaviour and, consequently, to validate
the appropriateness of the signal classification per-
formed. The proposed SNNs have been compared
with standard fully connected MLPs and with the
statistical non-parametric k-nn classifier on both
magnetic-resonance and remote-sensing data sets.
It 1s worth noting that other neural models can also
be used for a non-parametric signal classification,
such as ‘radial basis functions’ and ‘probabilistic
neural networks’ (a comparison between these clas-
sifiers and SNNs is made in [33]).

The main advantage of the proposed SNNs is the
possibility of interpreting the network behaviour.
In the literature, this problem has been usually

addressed by developing new neural-network mod-
els [7.13,20,22]. Only very few works dealt with the
interpretation of MLPs. In particular, Bishof et al.
[3] proposed the ‘weight-visualization’ technique.
However, due to the use of a fully connected archi-
tecture, this technique cannot separate the contri-
bution of each component to each network output.
By implementing a not fully connected neural net-
work, our approach overcomes this difficulty and
provides a clearer interpretation of the network
behaviour.

The proposed technique can also be used to
perform feature selection on the information sour-
ces and their components. As shown in Section 4. it
is possible to quantify the contributions of features
to the classification process as well as to identify
features that provide no contributions at all.

In [35], SNNs were proposed for the more speci-
fic problem of the classification of remote-sensing
images acquired with multiple sensors. In this pa-
per, we have extended the SNN approach to the
more general case of multisource signals. This case
includes very common situations in the SP field,
such as time signals and 2 D images for which the
sources are obtained by computing various sets of
features from the same signal (e.g., features from
time and frequency domains). As an example, we
carried out experiments on magnetic-resonance im-
ages for which three kinds of features (i.e., intensity,
position and size-and-shape features) were con-
sidered as information sources. These experiments
confirmed that the SNNs utilized reasonable cri-
teria for classifying the input data. This may, in
general, increase the confidence of the user in the
classifier. Furthermore, the SNNs provided a much
higher classification accuracy than MLPs and the
k-nn. This may be ascribed to the fact that, for this
data set, some information-source components ex-
hibit, for some classes, a completely random behav-
iour that may be misleading in the classification
process. The large number of classes (i.e., thirteen)
and the presence of such misleading components
favour the use of SNNs, which show a better
capability of class-dependent feature selection.
On the contrary, the k-nn classifier gives the same
importance to all the features considered; there-
fore, 1t is necessarily influenced by misleading
components.
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The results obtained on the remote-sensing data
set show a slight superiority of both MLP and k-nn
classifiers over SNNs. These results can be ex-
plained by the different characteristics of such data.
In particular, the smaller number of classes and
the absence of the kind of misleading components
described above do not allow SNNs to utilize all
their feature-selection potential. However, also in
this case, SNNs have the important advantage of
allowing the network behaviour to be interpreted.
Concerning the k-nn classifier, the availability of
a large number of training patterns for all classes
makes it possible to use larger k values, thus in-
creasing the robustness of the classifier to noisy
patterns.

Finally, SNNs are a good compromise between
a model-based approach and a non-parametric ap-
proach. Although they are non-parametric classi-
fiers that are capable of adaptively learning their
parameters from a training set, they exploit the
a priori knowledge on a multisource problem in
order to define the network architecture and to
validate the network operation.
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