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In areas with complex three-dimensional features, slope and aspect interact with

light conditions and significantly affect the spatial structure of images acquired

by remote sensing instruments (for example, by changing the distribution of

shadows and affecting the texture of high resolution imagery). In this scenario,

this paper analyses the potential and the effectiveness of an automatic

classification system to identify three fundamental vegetation classes (forest,

grassland and crops) in the complex topography of the Italian Alps

(Autonomous Province of Trento, Italy). This classification system is based on

the fusion of spectral information provided by the SPOT-5 multi-spectral

channels (Ground Instantaneous Field of View, GIFOV, equal to 10 m) and

textural information extracted from airborne digital orthophotos (GIFOV equal

to 1 m) and is designed to be user-friendly. The texture of the digital orthophotos

was modelled using defined bidirectional variograms, thereby extracting

additional information unavailable in first-order texture analyses. Using

SPOT-5 multi-spectral information alone, the classification accuracy in the

investigated alpine area was equal to 87.5%, but increased to 92.1% when texture

information was included. In particular, the texture information significantly

increased the classification accuracy for crops (from 68.9% to 87.9%), especially

orchards that tend to be classified as lowland deciduous forests, and herbaceous

crops (such as maize) that are often misclassified as grasslands. A further simple

majority analysis increased the ability of detecting grassland, crops and urban

zones. The combination of the majority analysis and the proposed automatic

classification system seems an effective approach to classifying vegetation types

in highly fragmented and complex Alpine landscapes on a regional scale.

1. Introduction

Remote sensing is used widely for land-use classification and forest inventory maps,

as it is a relatively rapid, accurate and cost-effective method when applied to large

areas, especially if integrated with automatic processing techniques. Several previous

studies have investigated the potential of different remote sensors for estimating

land cover and classifying vegetation, including passive multi-spectral and

hyperspectral sensors, as well as active Light Detection and Ranging (LIDAR)

and Synthetic Aperture Radar (SAR) systems (Hyde et al. 2006).

*Corresponding author. Email: gianelle@cealp.it

International Journal of Remote Sensing

Vol. 30, No. 11, 10 June 2009, 2859–2873

International Journal of Remote Sensing
ISSN 0143-1161 print/ISSN 1366-5901 online # 2009 Taylor & Francis

http://www.tandf.co.uk/journals
DOI: 10.1080/01431160802558600

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
a
 
d
i
 
T
r
e
n
t
o
]
 
A
t
:
 
1
1
:
2
0
 
2
7
 
J
u
n
e
 
2
0
0
9



Depending on the spectral and geometrical characteristics of the available multi-

spectral sensors, classification can be achieved at different levels of detail. If low

resolution multi-spectral data are available, analysis generally is limited to

discriminating between forested and non-forested areas (Sedano et al. 2005).

Instead, medium resolution sensors can increase the level of detail significantly and

analysis can be focused on more specific vegetation classes, as shown by Goodenough

et al. (2003), who used Landsat Enhanced Thematic Mapper Plus (ETM + ) images to

analyse eight different classes. High resolution orbital sensors, such as Quickbird,

Ikonos and SPOT-5, allow the generation of geometrically detailed land-cover maps.

However, due to technological limitations, the high spatial resolution of the images

results in a decreased spectral resolution, which affects the classification accuracy

(Zhang 2001). Consequently, in order to obtain thematic maps characterized by high

accuracy, the development of novel algorithms is essential for allowing the available

texture information to be incorporated into the classification process. In addition, in

order to exploit all the information contained in high resolution images, it is necessary

to consider both spectral reflectance and the three-dimensional spatial organization of

the image (St-Onge and Cavayas 1995). In particular, texture contains important

structural information that should be used in the classification process, since its

variations are related to changes in spatial distribution of the objects in the scene

(Wulder et al. 1998, Atkinson and Lewis 2000).

In fact, many studies have pointed out the usefulness of adding textural

information to the classification process (Nel et al. 1994, Coburn and Roberts 2004,

Ruiz et al. 2004, Zhang et al. 2004), and for the estimation of a number of

biophysical parameters, such as Leaf Area Index (LAI; Wulder et al. 1998), wood

volume and forest structure (St-Onge and Cavayas 1995), crown size and cover

stratification (Cohen et al. 1990), and stem density or mean tree height (St-Onge and

Cavayas 1995, Bruniquel-Pinet and Gastellu-Etchegorry 1998). Other studies have

evaluated the relationships between high-resolution image semivariance image

texture, and tree health (Lévesque and King 1999).

Several methods exist for extracting textural information from images, such as

simple local variance measurements (Hsu 1978), second-order spatial statistics

(Cohen et al. 1990) and neural network approaches (Dreyer 1993). These methods

can be divided into structural, model-based and frequency-based approaches (see

also Coburn and Roberts (2004) for greater details). One of the more widely used is

the extraction of second-order statistics using variograms (Cohen et al. 1990, St-

Onge and Cavayas 1997, Bruniquel-Pinet and Gastellu-Etchegorry 1998, Curran

1998, Lévesque and King 1999). In general, variograms provide information

unobtainable by first-order texture analysis (St-Onge and Cavayas 1995), although

recently Coburn and Roberts (2004) demonstrated that variance measured over

various window sizes can be considered to be equivalent to the semivariance

measure.

Wulder et al. (1998) suggested that homogeneous stands could be modelled with

first-order texture measures, while heterogeneous stands can be characterized

according to second-order texture measures and a semivariogram approach. These

geostatistical tools allow variation in spatial correlation of the reflectance to be

quantified. In particular, the use of variogram model parameters (such as range and

sill) permits the identification and the quantification of the spatial characteristics of

land surfaces (Chen and Gong 2004), species and cover type (Wulder et al. 1998).

Miranda and Fonseca (1998) used the variogram to define a semivariogram textural

2860 C. Mariz et al.
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algorithm (STC) for classifying flooded areas in the Amazon rainforest by using SAR

data.

Variograms have also been used to determine the appropriate spatial resolution

for studying ecological problems, or to evaluate the optimal sample plot size

(Butson and King 1999). Franklin et al. (1996) used semivariograms to generate

windows, which are customized to the scale of observations, in order to demonstrate

improvement in remote estimation of forest parameters and in land-cover

classification. Hese (2001) analysed the potential of directional variogram

parameters in stand forest structure differentiation. However, there is still some

uncertainty in the determination of texture measures, window size and other related

parameters, and more research is needed to develop new methods for selecting

texture parameters suitable for different biophysical environments (Lu and Weng

2007).

The importance of textural information for vegetation classification is particularly

evident in cases where the use of spectral analysis is limited. For example, accurate

estimates of biophysical parameters at full canopy cover have still not been fully

achieved from multi-spectral data, as broad-band spectral vegetation indices tend to

saturate and canopy biophysical characteristics ( e.g. LAI, biomass) have nonlinear

relationships with a number of vegetation indices (such as the Normalized

Difference Vegetation Index, NDVI) under these conditions (Lévesque and King

2003). Moreover, when tree canopy cover is low, the understorey component

influences the response measured by a spectral sensor introducing errors in the

computation of the biophysical parameters (Colombo et al. 2003). When these

spectral indices fail, the application of textural indices offers potential for measuring

and monitoring canopy structures (Hudak and Wessman 1998, 2001). In fact, the

combination of spatial and spectral analysis was used successfully to solve this

problem by Wulder et al. (1996, 1998) and Bruniquel-Pinet and Gastellu-Etchegorry

(1998), who showed that the introduction of semivariogram texture improved the

regression relationship between LAI and NDVI, especially at full canopy cover,

when LAI values are greater than three.

The aim of this study was to apply an approach that integrates textural analysis of

digital orthophotos (Ground Instantaneous Field of View (GIFOV) equal to 1 m)

with SPOT-5 multi-spectral imagery information (GIFOV equal to 10 m) to the

classification of vegetation in Alpine areas with a complex topography. The ultimate

goal was to define an automatic classification method that jointly exploits the non-

uniform and non-random spatial distribution of natural vegetation (modelled at

very high geometrical resolution in orthophotos) and spectral information (acquired

from SPOT-5 sensor) for the recognition of four fundamental land cover classes in

Alpine areas: forest, grassland, crops, and urban areas.

2. Materials and methods

2.1 Study area

The study site (ca 52 km2) is located in northern Italy, approximately 10 km south-

east of Trento, in a typical alpine area. The lowest altitudes (300 m above sea level

(asl)) are occupied by crops of grapes, apples and maize and some deciduous forest.

Also included in the site is part of the Piana delle Viote, a wide plateau at 1550 m asl,

dominated by grasslands (meadows and pastures), while the rest of the site is

covered by mixed forest of beech and spruce. This location was selected in order to

Automatic classification of complex Alpine areas 2861
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analyse a range of vegetation types in a very complex topography. Slope and aspect

and their interactions with viewing direction and light conditions significantly affect

the appearance of spatial structures in the image. In fact, the solar zenith and

azimuth angles, in combination with slope and aspect, change the amount of the

shadow projected on the ground and thus the shape of the variogram (i.e. change the

value of range and sill).

2.2 Data sources

Two different data sources were considered in our study: a SPOT-5 image and a

digital orthophoto. The SPOT-5 image was acquired on 27 April 2004, with a clear

sky apart from a few small isolated clouds. It has four spectral bands and a spatial

resolution of 10 m. The geographical location of the scene was 46u 059 N (centre

latitude), 10u 439 E (centre longitude). The image was geometrically corrected, and

georeferenced in a Universal Transverse Mercator (UTM) grid.

The digital orthophoto, a very high resolution image (GIFOV equal to 1 m) was

acquired in the red, green and blue bands of the electromagnetic spectrum by a

sensor mounted on an aerial platform in the summer of 2003 and was georeferenced,

orthorectified and geometrically corrected.

One potential problem in integrating information from the two images used here

is that some small areas of the SPOT-5 and the orthophoto images were

incongruous, due to land-use changes that occurred on the ground between the

two acquisition dates. In order to avoid these spurious effects in our analysis, before

running the classification, multi-temporal images were compared and land-use

change areas were excluded from the analysis.

An image with a resolution of 10 m was extracted from the orthophoto to match

that of the SPOT-5 image using a nearest-neighbour resampling algorithm with a 0.1

factor band. The three spectral bands of the resulting orthophoto image, the textural

features (range–sill), and the four SPOT-5 satellite channels were co-registered and a

maximum root square registration error of 10 m was obtained. Figure 1 summarizes

the information sources considered in the classification process.

2.3 Texture analysis

A spatial statistical approach based on the variogram was used to extract the

structural information of the vegetation cover. This tool permits the characteriza-

tion of the spatial structure of the scene, while being easy to implement and

interpret.

The semivariance c can be defined as half the squared difference between the

variable Z (the variance, or in this case, the reflectance) calculated at two precise

locations, x and x + h.

c2~
1

2
Z xð Þ{Z xzhð Þ½ �2 ð1Þ

The variogram c(h) is calculated with the following equation:

c hð Þ~ 1

2m
:
Xm

i~1

Z xið Þ{Z xizhð Þ½ �2 ð2Þ

where m is the number of pairs of pixels separated by the same lag(h), and Z(xi) is

the digital value at the xi position. This variable represents a measure of the degree

2862 C. Mariz et al.
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of spatial dependence between samples and can be defined as the plot of

semivariance at different distances (Colombo et al. 2003).

The sill, nugget and range are the most important parameters that can be

extracted from a variogram. The sill represents the height of the variogram (or the

point at which the variogram tends to be horizontal), while the nugget is the

interception with the coordinate axis. The range can be defined as the distance value

at which the variogram reaches the sill and can be considered as the distance at

which the observation becomes independent from the distance between samples. An

important aspect of these spatial statistics is that the variogram is influenced by the

symmetry, structure and position of an object (e.g. a tree) within the scene

(Zawadzki et al. 2005). Some authors have suggested the use of bidirectional

variograms to take into account possible anisotropy.

In order to extract the spatial statistics, it is necessary to define the size of the

moving window applied to the orthophoto image, obtained according to a trade-off

between accurate statistical modelling of the texture properties (which requires

relatively large window sizes) and undesired boundary effects (which increase by

increasing the window size). More specifically, if too small a number of samples is

considered, it may be insufficient for the generation of a statistically significant

variogram, thus affecting the classification accuracy (Zawadzki et al. 2005). On the

other hand, if too large a window is considered, the resulting border effects may

decrease the classification accuracy significantly (Coburn and Roberts 2004).

Figure 1. Information sources considered in the classification process: spectral information
(SPOT-5 and orthophoto images) and texture information (extracted from the orthophoto).
The image size is 161 km.

Automatic classification of complex Alpine areas 2863
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Figure 2 shows the scheme adopted for the extraction of the texture parameters from

a window centred on a generic pixel of the image from which a matrix of digital

numbers was extracted. Several simulations were carried out with different window

sizes (from 13613 to 55655), and the resulting texture features were analysed (see

figure 3). On the basis of this analysis, a window size equal to 23623 pixels was

selected in order to satisfy the above-mentioned trade-off. This is in agreement with

the results obtained by Chen and Gong (2004). Multidirectional (horizontal, vertical

and diagonal directions) variograms were evaluated from each matrix according to

the previous equation, using a lag value of 17. The samples obtained were then

interpolated with an exponential function (Bruniquel-Pinet and Gastellu-Etchegorry

1998). For the interpolation process, the convergence was evaluated using the

nonlinear optimization algorithm proposed by Hooke and Jeeves (1961), which is

based on the minimization of the mean-squared error. In this study the sill is

associated with the horizontal asymptote value and the range corresponds to the

distance at which 99.9% of the sill is reached. The average range and sill of the

resulting omnidirectional variogram were then calculated to obtain a one-

dimensional conventional structure. The extracted semivariogram parameters were

assigned to each pixel (the central pixel of the window) and organized into

additional layers.

Figure 4 shows the overall data-processing protocol. Starting from the ortho-

photo, the maps of sill and range were generated using a moving window for texture

computation. For each matrix, a sill and range value was extracted. The mobile

window size was then varied, using a step of five pixels to create the texture maps,

Figure 2. Scheme of the texture extraction process of the sill and range parameters from a
matrix.

Figure 3. Examples of range maps obtained by using different sizes of the moving window.
The image size is 0.2560.25 km.

2864 C. Mariz et al.
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scaling by a factor of two to the 10 m resolution of the SPOT-5 images. A median

filter with a window size of 565 pixels was applied to reduce noise in the images and

a morphological filter in the modality ‘erode’ was used to smooth and reduce the

small bright regions corresponding to the areas with maximum values of range (e.g.

streets, buildings and rocks). A visual analysis confirms that the filtering approach

increases the accuracy of details and, in particular, reduces the so-called ‘edge

effects’, which can lead to the misclassification of border areas or to an

overestimation of classification accuracy for some features (Coburn and Roberts

2004). This is especially true when the boundary of the feature tends to dilate and to

encompass the ground data, as in the case of streets and rocks. All the data

processing was performed automatically by a C + + specifically developed program.

3. Experimental results

3.1 Experimental design

For all experiments, a standard maximum likelihood classification technique was

used. The land-cover classes considered in the trials were forest, crops, grassland or

pasture, open space (e.g. artificial structures, streets or rocks), water (e.g. rivers and

mountain lakes) and shadow (small areas without illumination and a small

reflectance value). Samples belonging to each class were selected visually from the

orthophotos using the original 1 m resolution image for the definition of their labels.

In order to limit the effect of possible mis-registration errors, the samples were

collected from areas made up of clusters of pixels belonging to the same land-cover

class. According to this strategy, 60–80 samples for each class for classifier training

were selected, while an additional 200 samples were used to validate the accuracy of

the classifier. To distinguish between the urban zone and the other non-vegetation

classes, two filter masks were tested; the first one based on the red band of the

orthophoto, and the second one based on the NDVI calculated from the second and

third bands of the SPOT-5 images (figure 5). The first mask was chosen, as the

second tended to eliminate rocky zones, which were misinterpreted as grassland.

Pixel-based classification maps are not homogeneous since the classification

technique only partially includes the spatial context information in which the pixel is

Figure 4. Overall data-processing chain.
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located. A correct regularization of the maps can be obtained by applying a simple

majority analysis, which allows replacement of spurious pixels with the class label
for the majority of the pixels in the kernel. The effect of majority analysis (which

replaces spurious pixels with the value of the closest class in the post-processing

analysis) and its potential to increase the automatic integrated classification

accuracy was analysed.

3.2 Results: texture features

Different behaviours of a mono-directional variogram for the four different classes

were observed (figure 6). The shape of the variogram provides information about the

structure on the ground. For example, in the crops variogram, a strong cyclical

trend caused by the periodicity of the elements is evident, due to the regular

disposition of the rows in the analysed crops. In addition, the height of the

sinusoidal curve is correlated with the distance between the rows. The curve changes

Figure 5. Original image and mask obtained from (a) orthophoto and (b) NDVI index. The
image size is 1.561.5 km.

Figure 6. Semivariograms of training sites evaluated in a single direction and in a
logarithmic scale. The spatial variability is visible for four different cover-types: forest,
crops, grassland and urban areas.

2866 C. Mariz et al.
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its periodicity depending on the angle between the row direction and the direction at

which the variogram is calculated. As mentioned previously, an exponential

function for the interpolation of samples was used; however, in this particular

situation, a periodic model using a trigonometric function was more appropriate.

The variogram associated with the urban zone has a large variance, and the shape is

irregular. This behaviour is caused by the presence of several objects (trees, streets

and buildings) with different patterns within the same region of interest. In contrast,

the forest presented a unique pattern and generated a variogram where the

semivariance value increases regularly with the increase of the lag, tending to a

horizontal asymptote, probably as a result of isotropy. In fact, the structural

disposition of forest parameters, such as the mean, variance, sill, range and, thus,

the autocorrelation, are the same in all directions. The semivariogram shape

associated with grassland is characterized by a linear horizontal plane and is

associated with very small semivariance values (figure 6).

The C + + program was used for semivariogram extraction in order to build

complete maps at a 5 m resolution for each parameter. Figure 7(a) shows that the

range values were very small for crops due to the highly regular pattern that

characterizes these zones. The range values associated with forest (figure 7(b)) were

higher than those for crops, and are represented on the map by different grey scales.

The values increased when forest cover is low (due to reduced stem density) and

when the mean dimension of the trees increased. These values are influenced by the

light conditions, as demonstrated by many studies based on the use of simulated

vegetation models (Bruniquel-Pinet and Gastellu-Etchegorry 1998). In the case of

grassland, the range value increased, and was sometimes influenced by the presence

Figure 7. Original orthophoto and range maps before and after morphological correction
for two different land-cover classes: (a) crops and (b) forest. The image size is 1 km6km.

Automatic classification of complex Alpine areas 2867
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of rocky areas (which are typical of a mountain landscape). The range value

corresponding to all the other classes tended to saturate and, consequently, all the

artificial structures, such as streets and towns, appear white (figure 7). Figure 7 also

shows the reduction of the edge effect obtained with the application of

morphological filtering and indicates that this method provides a reasonable

reconstruction of the original area. Similar results were obtained when correcting for

edge effects between forests and urban zones (figure 7(b)).

3.3 Results: classification maps

In figure 8, a visual comparison of the map obtained with conventional multi-

spectral classification and that generated with the method proposed in this study is

given. Although the training set used in the supervised classification procedure was

identical for all maps, standard classification techniques incorrectly classified many

pixels belonging to forest and grassland as crops. The use of textural information

reduced the errors, leading to a better detection of large grassland areas (figure 8(a)).

Texture information was particularly helpful for distinguishing grasslands and

forests from crops. Using the SPOT-5 information alone, 255 pixels of crops were

misclassified as grassland; however, when texture information was added, the

number of misclassified pixels decreased to 110. Similarly, by integrating texture

information, the number of pixels of crops classified as forest decreased from 233 to

38. This misclassification is due to the fact that orchards (belonging to the crop

class) tend to be mismatched as deciduous forests, because of their rather analogous

spectral characteristics and canopy structure. For the same reason, herbaceous crops

(such as maize) tend to be misclassified as grassland. Also, due to the high

percentage of grass coverage typical of local vineyards, these crops can be

Figure 8. Portion of the original SPOT-5 image referring to (a) grassland and (b) crops.
Comparison between classification maps obtained by using (1) standard multi-spectral
features and (2) textural features. The image size is 262 km.

2868 C. Mariz et al.
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misclassified easily as grassland. Considering the obvious spatial patterns typical of

vineyards, orchards and herbaceous crops, it is possible to understand the

importance of texture, especially in a complex environment where topography

and fragmented landscapes can affect the reflectance response heavily.

Figure 8(b) shows a specific subset of the SPOT-5 image related to an agricultural

zone. Here, the texture information introduced as input to the classifier increased

the detection of agricultural classes. In this case, it is clear that many pixels

belonging to the forest class were classified correctly only in the second map, which

was integrated with texture data.

In order to quantitatively analyse the generated classification maps, the class

statistics and the confusion matrix of each classification result were analysed on the

200 test samples (see table 1). A general increase in accuracy was achieved when

texture information was included in the analysis. Using the SPOT-5 multi-spectral

features, the user’s accuracy was equal to 87.5%. This value increased to 92.1% when

the texture information was integrated with the SPOT-5 images. No increase in the

accuracy values was observed when orthophoto spectral information (blue, green,

red bands) was added to the above-mentioned set.

Tables 2 and 3 show the values of user accuracies (in percent) for each land-cover

class, considering both the spectral information alone and the spectral features

integrated with the texture data extracted from the orthophoto. For crops, the

accuracy increased from 68.9% to 87.9%, indicating that recognition of spatial

patterns plays a fundamental role in crop classification. In fact, when spectral

information alone was used, many pixels belonging to forest and grassland were

classified incorrectly as crops, especially in the transition zones (figure 8). In

Table 1. Classification accuracy using spectral and texture features.

Information sources Classification approach Kappa coefficient User accuracy (%)

Orthophoto Multi-spectral
classification

0.670 76.3

Orthophoto + Texture Texture integrated
classification

0.733 80.4

SPOT Multi-spectral
classification

0.822 87.5

SPOT + Texture Texture integrated
classification

0.887 92.1

Orthophoto + SPOT
+ Texture

Texture integrated
classification

0.889 92.2

Table 2. Error matrix using the multi-spectral information.

Forest Crops Grassland Urban zone User’s accuracy (%)

Forest 2382 2 0 0 99.5
Crops 233 1183 255 20 68.9
Grassland 3 93 691 3 86.8
Urban zone 0 46 0 489 91.1
Producer’s

accuracy (%)
91.0 89.4 73.0 93.3

Overall accuracy (4967/5679) 87.5%
Kappa coefficient 0.822

Automatic classification of complex Alpine areas 2869
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contrast, the grassland class showed a slight decrease in accuracy (from 86.9% to

83.5%). The forest accuracy values were very high in both cases (99.5% vs. 99. 7%),

while the urban zone showed a slight decrease in accuracy (from 91.1% to 87.9%).

The accuracies obtained before and after the use of simple majority analysis are

shown in table 4. When simple majority analysis was used in the SPOT-5 image

alone, it produced a slight increase in accuracy for both the grassland class (from

86.8% to 91.4%) and the crop class (from 68.9% to 72.2%). For grassland

classification, the use of simple majority analysis was more effective than the

integration of textural information. In such ecosystems, in fact, the spatial

information related to natural heterogeneity, landscape fragmentation and extreme

morphological complexity is not as relevant as in crops.

Using a simple majority analysis of the SPOT-5 image integrated with texture

information, more accurate results were obtained for crops (accuracy increased from

87.9% to 98.2%), while grassland areas showed a slight decrease in accuracy (from

91.4% to 87.0%) when compared to the majority analysis alone.

The overall accuracy deriving from the majority analysis applied to the SPOT-5

image integrated with texture information was equal to 94.6%, with a kappa

coefficient of 0.923.

4. Conclusion

The results obtained in the experimental analysis presented in this paper suggest that

the combination of the majority analysis and the proposed automatic classification

strategy is an effective approach when dealing with highly fragmented and complex

Alpine landscapes.

Table 3. Error matrix using both multi-spectral and texture features.

Forest Crops Grassland Urban zone
User’s accuracy

(%)

Forest 2539 6 3 0 99.2
Crops 38 1145 110 1 87.9
Grassland 13 120 828 12 83.5
Urban zone 13 53 0 492 87.9
Producer’s

accuracy (%)
97.0 86.5 87.5 93.9

Overall accuracy (5229/5679) 92.1%
Kappa coefficient 0.887

Table 4. Classification accuracy before and after the use of a post-processing technique based
on a majority analysis.

Classification procedure

Pixel based Majority analysis

Kappa
coefficient

User
accuracy (%)

Kappa
coefficient

User
accuracy (%)

SPOT multi-spectral
classification

0.822 87.5 0.850 89.5

Texture integrated
classification

0.887 92.1 0.923 94.6

2870 C. Mariz et al.
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Error matrices for the different land uses obtained by using the multi-spectral

information alone or both spectral and textural information (after the use of

majority analysis) are shown in tables 5 and 6. Spatial information extracted by

semivariogram texture analysis increased the capability of detection of the different

vegetation classes, particularly for crops, which often have a regular spatial pattern.

On the contrary, the results indicate that for grassland ecosystems, the spatial

information related to natural heterogeneity and extreme morphological complexity

is not as useful for classification as in crops. Overall, using multi-spectral

classification alone the classification accuracy was equal to 87.5%, but it increased

to 92.1% when texture information was included in the analysis. In addition, by

using a simple majority analysis, even more accurate results could be obtained (up to

94.6%, with a kappa coefficient of 0.923). In this case, also the accuracy on

grassland, crops and urban zones increased.

It should be noted that the increase in accuracy related to the texture analysis is

achieved by using a parametric maximum likelihood approach, which can exploit

the information present in texture features only partially due to the approximation

with a Gaussian model of the distribution of texture measures (Bruzzone et al.

1997). Therefore, more studies are needed in order both to explore the effect of

transforming the distribution of the texture features to normality (Chen and Gong

2004), and to use other non-parametric classifiers (e.g. neural networks, support

vector machines) to increase the total information obtained with texture features

extracted from orthophotos.

According to the results, it is possible to conclude that our integrated approach

increased the accuracy of the classification process of the considered complex

Table 5. Error matrix obtained by using only the multi-spectral information after the use of
majority analysis.

Forest Crops Grassland Urban zone User’s accuracy (%)

Forest 2457 0 0 0 99.7
Crops 161 1209 245 20 72.2
Grassland 0 65 701 0 91.4
Urban zone 0 50 0 500 90.6
Producer’s

accuracy (%)
93.9 91.3 74.1 95.4

Overall accuracy (5082/5679) 89.5%
Kappa coefficient 0.850

Table 6. Error matrix obtained by using both the multi-spectral and the texture features after
the use of majority analysis.

Forest Crops Grassland Urban zone User’s accuracy (%)

Forest 2604 0 0 0 99.58
Crops 2 1165 67 0 93.20
Grassland 5 109 879 2 87.03
Urban zone 2 50 0 502 90.29
Producer’s

accuracy (%)
99.5 88.0 92.9 95.8

Overall accuracy (5373/5679) 94.6%
Kappa coefficient 0.923

Automatic classification of complex Alpine areas 2871
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topography areas, leading to a reduction of costs and encouraging frequent

updating of data.
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