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A novel technique is presented for the automatic discrimination
between networks of ‘resting states’ of the human brain and physiologi-
cal fluctuations in functional magnetic resonance imaging (fMRI). The
method is based on features identified via a statistical approach to
group independent component analysis time courses, which may be
extracted from fMRI data. This technique is entirely automatic and,
unlike other approaches, uses temporal rather than spatial information.
The method achieves 83% accuracy in the identification of resting state
networks.

Introduction: In functional magnetic resonance imaging (fMRI), a
series of images of the brain are acquired at short intervals (1–4 s)
exploiting the dephasing effect that paramagnetic deoxyhaemoglobin
in blood has on the MR signal. Activaton of groups of neurons in pro-
cessing stimuli, implies increase in oxygen consumption, blood flow and
volume, resulting in a net decrease in deoxyhaemoglobin concentration
close to the activated region. This leads to an increase in the intensity
of the MR signal relative to the baseline state, and provides a source
of endogenous contrast, which has been used to study a vast range of
sensory, cognitive and emotional brain functions over the past two
decades. In addition to signal changes related to task processing, the
brain also undergoes slow fluctuations in functionally-related groups
of regions when subjects are at rest (not engaged in organised
thought) [1]. These resting state networks (RSNs) are of interest in
neuroscience because, although their role has yet to be understood,
they dominate temporal fluctuations in fMRI signals and because they
have been shown to differ between the normal and diseased brain in
some pathologies (e.g. Alzheimer’s disease). The study of RSNs in
fMRI data is a typical blind source separation problem, which may be
addressed with data-driven algorithms such as ICA. An extension of
this technique is Group ICA (GICA) [2], in which inferences are
drawn about sources that are common to all subjects considered.
These may be related to RSNs, physiological noise of cardiac or respir-
atory origin, or other sources such as technical artefacts. The procedure
yields regions of the brain showing particular signal fluctuations and
associated time courses. In the literature, the detection of RSNs has
mainly been based on the visual assessment of spatial maps carried
out by experts, with obvious problems of subjectivity, accuracy and pro-
cessing time. Although the co-localisation of RSNs and regions affected
by physiological (PHY) artefacts has been reported, there have been
relatively few attempts to automate the discrimination between RSNs
and PHY signals, and we are not aware of any study that has tried to
perform discrimination using fMRI time courses only. This Letter pre-
sents a novel automatic and unsupervised classification system that
uses fMRI time courses to differentiate RSNs from PHY signals.

Proposed system: The architecture of the proposed system is shown in
Fig. 1. It is made up of a preprocessing module, a feature-extraction
module and a classification module. The preprocessing module exploits
a GICA algorithm [2] to extract ICs from fMRI data. ICs are made up of
both spatial maps (used only for validation), and time courses. For each
subject j we can represent an fMRI image time-series as a spatiotemporal
matrix Y of dimensions M � N, where M is the number of time samples
and N is the number of voxels. For the generic voxel i, which represents
a location in the brain, we have the associated time course of neuronal
activity yi(nT ), i ¼ 1, . . . , N, where n (n ¼ 1, . . . , M ) represents a
generic time sample and T is the sampling period. The time course i
can be modelled as a linear combination of m unknown sources, i.e.

yiðnT Þ ¼
Xm

k¼1

¼ aikxk ðnT Þ ð1Þ

where aik is the ith element of the kth column of the mixing matrix A,
and xk(nT ) is the time course of the kth source (k ¼ 1, . . . , m). The
task of ICA is to estimate both the unmixing matrix A21 and the
sources x(nT ) from the observed data y(nT ). This is done via adaptive
numerical methods (e.g. Infomax [2]) based on non-Gaussianity maxi-
misation of the source statistical distribution. One approach to GICA
is to concatenate data from all subjects in a single long time series
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before performing ICA (after data co-registration and normalisation to
a single volume space). Each ICk obtained (i.e. source xk(nT )) may be
due to either RSNs or PHY. Thus each ICk can be associated with
one of two classes, vRSN and vPHY via the adoption of suitable features
and a classification method. We used the Welch’s method to determine
frequency power spectra from the IC time courses prior to features
extraction. In an exploratory step, we analysed the power spectra associ-
ated with vRSN and vPHY. ICs were manually labelled by visual inspec-
tion of the associated spatial maps. The power spectra of the ICs due to
RSNs and PHY were investigated with a statistical approach, to identify
whether the shapes of the spectra of the two classes were statistically
different. Feature extraction was then applied to these spectra. Let
zkl( f ) be the Welch’s frequency spectrum of the kth IC associated
with the kth source of the lth subject (l ¼ 1, . . . , L). For each ICk

(and so zk( f )) and each quantised frequency we have a set of L
sample values. Thus it is possible to apply a non-parametric statistical
test (the Wilcoxon test) to evaluate the effectiveness of each quantised
frequency interval in discriminating between RSNs and PHY. The
Wilcoxon rank-sum test [3] is applied to each pair ICi [ vRSN and
ICj [ vPHY (i,j ¼ 1, . . . , m), at each quantised frequency range Dfs so
that the test[zi(Dfs), zj(Dfs)] gives a value (0,1) corresponding to the
failure to reject or the rejection, respectively, of the null hypothesis
that the two distributions have the same medians, along with a
p-value of its significance. This analysis yielded regions of significant
differences between spectra. In particular, differences were established
between IC [ vRSN and IC [ vPHY, but also vRSN and vPHY can be
divided into two subgroups, each with different characteristics (see
Fig. 2). ICs [ vRSN spectra have less outlier values than those of
other subgroups. This result confirms that the Welch’s spectra can be
used for discriminating between IC [ vRSN and IC [ vPHY in a reliable
statistical way. From this observation, according to an empirical analy-
sis, kurtosis applied to the spectra has been chosen as a discriminative
feature. Given the ith IC, the kurtosis can be computed as:

ki ¼ E½Zið f Þ � �zið f Þ�
4=s4

i ð2Þ

where E[.] denotes the expected value, zī( f ) is the mean value of zi( f )
across all ranges of frequencies, and si is the standard deviation of zi( f ).
The computation of the kurtosis feature on the m ICs results in a bimodal
distribution, where ICs [ vRSN have lower values than ICs [ vPHY.
This permits the use of a linear thresholding classifier to automatically
separate vRSN from vPHY. The threshold value u was derived according
to a simple yet effective iterative algorithm [4], which initialises the
threshold to the mean value of the kurtosis of the m ICs and then iterates
as follows:

uk ¼ mf ;k�1 þ mb;k�1

� �
=2 ð3Þ

where maf,k-1, mb,k-1 are mean values of the two obtained subgroups
(inferior and superior) after the thresholding. The algorithm converges
when uk ¼ uk-1.
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Fig. 1 Architecture of proposed classification system

Experimental results: Magnetic resonance images of 15 subjects (8
males), mean age 36 + 12 years, were acquired with a 4 T Bruker
Medspec scanner. Subjects were asked to close their eyes during runs
and not engage in organised thought or sleep. Two runs of RS data
were acquired for each subject, with whole-brain EPI with 3 � 3 �
3 mm voxels, TE/TR ¼ 33/2200 ms and 273 time points (10 min per
run). Distortion correction of EPI was performed online using the
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point-spread function method. Preprocessing was carried out with FSL
(www.fmrib.ox.ac.uk/fsl), performing motion correction, image regis-
tration to a common (MNI) space, and no spatial or temporal smoothing.
The classification system was applied to a group including 30 RS data-
sets (15 subjects, two repetitions per subject). The number of ICs to be
computed with GICA was set to 30. Fig. 2 presents the four main spec-
tral shapes, with classes being identified via statistical test analysis.
Results of the classification task are presented in Table 1. The accuracy
of the classification system was estimated using labelled test data
obtained by manually identifying the spatial map corresponding to
each IC by correspondence with its appearance in the literature.
Table 1 shows the overall accuracy obtained, as well as the distribution
of errors between missed RSNs (false negative), which were 0 and false
RSNs (false positive), which were 5. This distribution is convincing, as
in this study false negatives were considered more important than false
positive as the main aim of the analysis was to perform a pre-screening
for identifying possible RSNs present in the data. Results from this auto-
matic analysis were exploited for studying the properties of information
sources associated with RSNs in a systematic and specific way. This has
allowed temporal relationships (which imply causal relationships)
between known RSNs to be identified and has contributed to the classi-
fication of an interesting IC as being an RSN, which was undocumented
at the time [5].
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Fig. 2 Mean spectra of four subgroups identified

It is visible that spectra of RSN subgroups have closer metrics with respect to
PHY subgroups

Table 1: Classification accuracy over all subjects (number of
ICs 30)

Number
of datasets

Identified
RSNs

False
positive

False
negative

Overall
accuracy (%)

30 13 5 0 83
ELECTRON
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Conclusions: A novel classification system has been proposed for the
detection of RSNs in fMRI data that: (i) exploits only the information
present in component time courses; (ii) is completely automatic and
unsupervised; (iii) gives an 83% accuracy in the identification of
RSNs when applied to 30 RS datasets; and (iv) is easy to implement
and use. Results confirm both the effectiveness of the proposed
system and its utility in the identification of resting state networks.
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