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Abstract—This paper presents an automatic system for the
analysis and classification of atrial fibrillation (AF) patterns from
bipolar intracardiac signals. The system is made up of: 1) a feature-
extraction module that defines and extracts a set of measures
potentially useful for characterizing AF types on the basis of their
degree of organization; 2) a feature-selection module (based on the
Jeffries–Matusita distance and a branch and bound search algo-
rithm) identifying the best subset of features for discriminating dif-
ferent AF types; and 3) a support vector machine technique-based
classification module that automatically discriminates the AF types
according to the Wells’ criteria. The automatic system was applied
on 100 intracardiac AF signal strips and on a selection of 11 rep-
resentative features, demonstrating: a) the possibility to properly
identify the most significant features for the discrimination of AF
types; b) higher accuracy (97.7% using the seven most informative
features) than the traditional maximum likelihood classifier; and
c) effectiveness in AF classification also with few training samples
(accuracy = 88.3% with only five training signals). Finally, the
system identifies a combination of indices characterizing changes
of morphology of atrial activation waves and perturbation of the
isoelectric line as the most effective in separating the AF types.

Index Terms—Arrhythmia organization, automatic classifica-
tion, feature extraction and selection, human atrial fibrillation,
intracardiac electrograms, signal processing, support vector ma-
chines (SVMs).

I. INTRODUCTION

A TRIAL fibrillation (AF) is a very common cardiac disor-
der. It is associated with an increased risk for stroke and

embolic events and has an occurrence increasing with age [1].
Among the possible therapeutic approaches, the recently devel-
oped strategies based on catheter ablation targeted in the area
of the pulmonary veins have provided very encouraging results
in patients suffering from paroxysmal AF [2]. However, other
forms of AF do not benefit out of this specific approach, and
seem to require a complete evaluation of the dynamics of propa-
gation in both atria. On that basis, the analysis of the patterns of
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Fig. 1. Examples of bipolar intracardiac signals acquired during AF, classified
into Type I, Type II, and Type III AF according to the Wells’ criteria [5].

electrical activity in different regions of the heart has been indi-
cated as relevant to the successful ablative intervention [3], [4].
Hence, an objective and accurate characterization of the electri-
cal activation during AF might be important for the definition
of the optimal therapeutic approach.

In this context, the classification of the degree of organiza-
tion shown by intracardiac signals plays an important role for the
definition of the complexity of AF episodes. The classification
scheme currently adopted as clinical standard is that proposed
by Wells et al. [5]. It is based on classifying single bipolar elec-
trograms into three different types (see Fig. 1): Type I AF (AF1)
shows discrete atrial electrogram complexes of variable mor-
phology and cycle length separated by an isoelectric line free of
perturbation; in Type II AF (AF2), the electrogram complexes
present various perturbations and the baseline is not isoelectric;
Type III AF shows highly fragmented atrial electrograms with
no discrete complexes or isoelectric intervals. A major disadvan-
tage of this approach is that the classification is subjective and
time-consuming, as it is commonly executed by visual scoring
of the intracardiac electrograms. Nevertheless, an analysis look-
ing at the overall characteristics of AF electrograms such as the
one proposed by Wells may have a peculiar electrophysiological
relevance, as it may reflect the propagation patterns underlying
the maintenance of AF [6], [7]. In addition, the Wells approach
was used in several clinical and experimental studies to iden-
tify spatial organization patterns in paroxysmal and chronic AF
[8]–[10], and to support the ablative treatment of AF [8], [10].

Recently, it has been demonstrated that an automated classi-
fication of bipolar intracardiac signals in accordance with the
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Wells’ criteria is feasible [11], on the basis of methods quan-
tifying to a different extent the organization of such signals.
Indeed, several algorithms have been proposed to characterize
the complexity of AF episodes starting from single-site intracar-
diac recordings [12]–[15]. Despite this large body of research, at
present it is not clear which are the best descriptors of the com-
plex activation patterns present during AF, and which descriptors
should be integrated into an automatic classification system to
obtain the best discrimination of the different AF types.

In the present study, a system for the automatic characteriza-
tion of short bipolar intracardiac signals measured during AF
is proposed. The system is made up of: 1) a feature-extraction
module, returning a set of indices that are effective in discrimi-
nating the AF types according to the Wells’ criteria; 2) a feature-
selection module based on the Jeffries–Matusita (JM) distance
and the branch and bound (BB) search strategy [16] aimed at
identifying the features that are more informative for the classi-
fication of the AF signals; and 3) a classification module based
on support vector machines (SVMs) [17]–[21] capable of pro-
viding high classification accuracy even in the presence of few
training patterns. The effectiveness of the system is tested by
checking the discrimination capability of each one of the ex-
tracted features, and by evaluating the classification accuracy
by varying the number of selected features and the number of
training patterns available for learning.

II. DATA COLLECTION AND PREPROCESSING

A. Data Collection

The study group consisted of 11 patients with idiopathic
AF, randomly chosen from among those undergoing electro-
physiological tests for radiofrequency catheter ablation. In
all patients, antiarrhythmic drugs were suspended for at least
five half lives, and no one had received Amiodarone within
the preceding six months. Electrophysiological studies were
carried out using a multipolar basket catheter (Constellation
catheter, Boston Scientific) placed in the right atrium via a right
femoral approach. Thirty-two bipolar intracardiac recordings
were acquired by coupling adjacent pairs of electrodes.
The surface ECG (lead II) was also acquired. Signals were
simultaneously recorded (CardioLab System, Prucka Eng.,
Inc.) and digitized at 1-kHz sampling rate and 12 bit precision.
The typical range for the acquired signals was between −5 mV
and 5 mV, corresponding to an amplitude resolution of 2.44
µV. Channels were discarded when the signal was absent or
below the amplitude threshold of 70 µV (e.g., due to bad
electrode–tissue contact and/or heart movement).

When not spontaneously present, AF was induced by atrial
extrastimuli or atrial bursts. The duration of each considered
AF episode was at least 5 min, and the first and last minutes
of AF were excluded from the analysis. Each recording was
carefully inspected by an experienced cardiologist and classified
as normal sinus rhythm or AF of type I, II, or III. Only segments
lasting at least 4 s of the same stable AF type (AF1, AF2, or
AF3) were considered for the analysis. The final labeled data set
consisted of 100 AF segments (35 AF1, 30 AF2, and 35 AF3),
each truncated to a duration of 4 s. Examples of AF1, AF2, and

AF3 signals are reported in Fig. 1. The 4 s duration was selected
in accordance with the literature [6], [11], [12], as a tradeoff
between the needs of favoring the consistency of organization
measures that prompt for long duration, and of allowing real-
time applications in the context of AF classification for clinical
purposes that prompt for short duration.

B. Data Preprocessing

To minimize the effects of the ventricular interference, an
adaptive template of the ventricular artifact was subtracted from
the atrial recording in correspondence with the detected ven-
tricular activation times [22]. The atrial activation times, i.e.,
the times representative of the passage of the propagating wave
in the area under the acquiring electrode, were estimated as
the local barycenters of the signal [12]. To do that, a specific
procedure for atrial wave recognition, based on a specific pass-
band filtering technique [12] was applied to obtain a signal with
amplitude proportional to the power content of the oscillatory
components typical of AF signals. The atrial waveforms were
then detected from the filtered signal by threshold crossing. The
barycenter of each detected wave was finally estimated as the
time dividing in two equal parts the local area of the signal, and
was taken as the activation time of the wave.

For a signal in which N atrial activations were detected, the
activation waves (AWs), xi , i = 1, . . . , N , were defined as sig-
nal windows lasting 90 ms (thus containing p = 90 points) and
centered on the atrial activation times [12]. To prevent factors
not related to the organization of the arrhythmia (e.g., quality
of electrode contact and direction of wave propagation) from
affecting the reliability of morphological indices, each AW was
normalized by x̂i = xi/‖x̂i‖, where ‖·‖ indicates the Euclidean
norm. As the AWs are points of the p-dimensional real space,
the normalized AWs belong to the surface of the p-dimensional
unitary sphere. Hence, a measure of the morphological dissimi-
larity between two normalized AWs xi and xj was taken as the
standard metric of the sphere, i.e. d(xi , xj ) = arcos(xi · xi),
where “·” denotes the dot product.

III. FEATURE EXTRACTION MODULE

The extraction of the features to be given as input to the selec-
tion module was performed after an exhaustive review of the cur-
rent literature, aimed first to categorize the different approaches
that can be followed to describe the complexity of single in-
tracardiac recordings from a signal processing point of view,
and then to select, within each considered approach, the mea-
sures that in previous studies were shown to better discriminate
the different AF types. With this extraction criteria, 11 indices
based on atrial rhythm analysis, time-domain signal processing,
Fourier analysis, signal quantization, and morphological evalua-
tion were selected as detailed next. Fig. 2 shows the distribution
within the three AF classes of the 11 indices estimated for the
100 labeled signals and normalized between 0 and 1.

A. Features Based on Atrial Activation Times

After detection of the AWs as described earlier, the atrial
cycle length series was calculated as the sequence of the time
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Fig. 2. Distribution of the 11 indices, extracted as features of the proposed classification system, on the three AF classes (AF1: filled circles, AF2: empty circles;
AF3: triangles). From left to right: regularity index (RI), mean atrial period (AP), number of baseline points (NO), Shannon entropy (EN), dominant frequency
(DF), signal bandwidth (BW), distance to a template (DT), average wave duration (WD), atrial period coefficient of variation (CV), principal component analysis
index (PI), and cluster analysis index (CI).

intervals occurring between each pair of consecutive detected
activation times. The mean atrial period (AP) and its coefficient
of variation (CV) were then obtained by taking the mean of
the time intervals and their standard deviation normalized to
the mean, respectively. These two indices are commonly used
as simple descriptors of AF dynamics as it was observed that
episodes of increasing complexity show atrial periods of shorter
duration and higher beat-to-beat variability [13].

B. Features Based on Time-Domain Analysis

The duration of each detected AW was defined as the length of
the window containing 90% of the total power of the wave. The
average of the wave durations (WD) contained in the analyzed
signal was then taken as a time-domain feature for the classi-
fication analysis. The WD values are expected to be inversely
related to the organization of AF, as signals with increasing com-
plexity class usually present longer AWs that are the result of the
interaction among a larger number of fibrillatory wavelets [6].

C. Features Based on Frequency-Domain Analysis

The power spectral density (PSD) of each signal was esti-
mated by means of the weighted autocovariance method, i.e.,
by Fourier transforming the truncated and windowed autocor-
relation function of the signal. The Hanning window, with a
spectral bandwidth of 0.02 Hz, was used to smooth the autocor-
relation during PSD estimation, and 1024 points were chosen for
PSD representation. The total power of the signal was computed
by integrating the PSD up to 200 Hz, and the signal bandwidth
(BW) was then defined as the frequency bin below which 95% of
the total power of the signal was contained. The index BW was
selected as the first frequency-domain feature, upon the con-
sideration that more complex AF signals exhibit more spread
frequency spectra [11]. Another feature based on power spec-
trum calculation is the dominant frequency (DF) of the signal.
This parameter is gaining importance for the characterization of
AF organization from single intracardiac recordings, based upon
the consideration that the degree of organization is related to the

presence of well-defined oscillatory components in the intracar-
diac signals [14]. In this study, the DF was obtained as the peak
frequency of the Fourier transform of the signal obtained after
applying the Hanning window and bandpass filtering (3–15 Hz)
the original signal.

D. Features Based on Signal Quantization

Based on the rationale that perturbations of the isoelectric line
of AF signals are associated with their complexity class [5], two
features resulting from the quantization of the signal amplitude
were considered. Quantization was performed by normalizing
the data within the analyzed signal to the average amplitude of
the detected AWs, and then by dividing the amplitude range
into 33 levels [11]. The first feature was the relative number
of baseline points (NO), calculated as the number of points
falling into the central quantization level divided by the total
number of points in the signal [15]. The second feature was
the estimate of the Shannon entropy (EN) of the basis of the
proposed quantization

EN =
33∑

i=1

pi ln pi (1)

where pi is the probability density of the ith quantization level,
estimated as the relative number of points falling into that level.
With these definitions, NO is expected to decrease, and EN to
increase, while increasing the complexity class of the analyzed
signal.

E. Features Based on Morphological Analysis

Four different features measuring the morphological similar-
ity among the AWs detected in each AF signal were extracted.
The relevance of these features to the classification analysis
relies on the consideration that AF signals of increasing
complexity class exhibit a lower degree of similarity among
their AWs [23]. Correlation waveform analysis [11] was
performed using the average of the normalized AWs as a
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template representing the mean wave, and calculating the
average distance to the template (DT) as the mean of the
distances of each normalized AW to the template.

For a signal with N AWs, the regularity index (RI) was de-
fined as the relative number of similar pairs of AWs [12]

RI =
2

N(N − 1)

N∑
i=1

N∑
j=i+1

Θ (ε − d (xi ,xj )) (2)

where θ is the Heaviside function and the distance threshold
defining the similarity between two AWs (i.e., xi and xj are
similar if d(xi ,xj )) was set to ε = π/3 rad [12]. This feature is
an estimate of the probability of finding two similar AWs in the
considered signal.

Principal component analysis was exploited to find the data
representation such that the variability in morphology among
the AWs was minimal [24]. Briefly, the eigenvectors of the co-
variance matrix of the AWs were found and sorted in decreasing
order of the corresponding eigenvalues. Since the eigenvalues
account for the fraction of variability among AWs, the principal
components were defined as the sorted eigenvectors such that
their corresponding eigenvalues encompassed at least 95% of
the variability. The number of principal components (PI) was
finally taken as an organization measure.

Cluster analysis was implemented to measure the tendency
of the AWs to be assigned to few groups having similar char-
acteristics [24]. The algorithm implemented was based on hi-
erarchical agglomerative clustering, by which the AWs were
grouped iteratively on the basis of the dissimilarity measure
taken as the standard metric of the p-dimensional unitary sphere
to which normalized AWs belong. The index based on cluster
analysis (CI) measured the level of grouping of the AWs, and
was inversely related to the minimum distances found during
the iteration of the clustering process. Details of the algorithm
are given in [24].

IV. FEATURE SELECTION MODULE

Given n available features obtained by feature extraction, the
aim of feature selection is to identify the subset of m < n fea-
tures that, among all the possible subsets of m features, is more
effective in discriminating the considered information classes.
The optimal approach to perform feature selection would be
using the same algorithm (i.e., the SVM) adopted for the subse-
quent classification phase. This approach needs to evaluate the
classification accuracy versus all the possible combinations of
features given as input to the classifier and this would require
a very high computational time, particularly with the adopted
SVM classifier that for each possible combination of features
would require an intensive model selection phase. For this rea-
son, we use a feature selection technique based on a simpler, but
yet effective criterion function (which measures the effective-
ness of each considered subset of features) and on an efficient
search algorithm (which explores the solution space by eval-
uating explicitly only a subset of feature combinations). This
choice assures a low computational load in the training phase
thus improving the operational utility of the overall system.

A. Criterion Function

Feature selection identifies from the set F of the n =11 avail-
able features the subset F ∗

m ⊂ F maximizing an appropriate
criterion function, J(·), evaluating the separability of the infor-
mation classes for a given subset of features. Based on theoret-
ical properties and experimental evidences we considered the
JM distance as a criterion function [25]. The JM distance repre-
sents a measure of the average statistical distance between the
conditional probability density functions p(x |ωi) and p(x |ωj )
related to the information classes ωi and ωj . This establishes
an explicit relationship between the behaviors of the feature-
selection criterion and the Bayesian error probability of the clas-
sifier, providing important indications on the number of features
necessary for properly discriminating classes. We calculated the
JM distance by

Jij (F ∗
m ) =

√
2
(
1 − e−Bi j (F ∗

m )
)

(3)

where Bij is the Bhattacharyya distance. Under the assumption
that ωi and ωj can be modeled by a Gaussian distribution, the
Bhattacharyya distance can be expressed as

Bij (F ∗
m ) =

1
8

(mi − mj )
T

(
Σi + Σj

2

)−1

(mi − mj )

+
1
2

ln

∣∣∣Σ i +Σ j

2

∣∣∣√
|Σi | |Σj |

(4)

where mi and mj are the mean values of the distributions of
ωi and ωj , respectively, and Σi and Σj are the corresponding
covariance matrices.

The addressed multiclass problem is defined by a set
Ω = {ω1 , ω2 , ω3} of three information classes, associated with
the three investigated types of AF (i.e., AF1, AF2, and AF3). In
order to use the JM distance as a criterion function in the prob-
lem of discriminating among ω1 , ω2 , and ω3 , we exploited its
multiclass extension [26], [27]

JM =
3∑

i=1

3∑
j>1

√
P (ωi) P (ωj ) · JM2

ij (5)

where P (ωi) represents the prior probability of the generic ith
class.

B. Search Algorithm

As the number of considered features is not too large, we
adopt the branch and bound (BB) algorithm, which is very ef-
ficient as it avoids exhaustive enumeration by rejecting subop-
timal combinations of features without a direct evaluation of
the criterion function [16], [28]. Assuming a criterion function
that satisfies monotonicity, the BB algorithm selects the subset
of features that optimize the criterion function (i.e., maximize
the JM). The BB algorithm is independent from the ordering
of the features, does not enumerate any sequence more than
once (even as permutation), and considers, either explicitly or
implicitly, all possible sequences. The reader is referred to [29]
for more details about the algorithm.
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V. CLASSIFICATION MODULE: SVM TECHNIQUE

We based our classification module on SVMs [17]–[21].
SVMs perform linear separation of the patterns belonging to two
information classes selecting the hyperplane that maximizes its
distance from the closest training pattern of both classes (i.e.,
the margin) in the space where the samples are mapped.

Let Z = {zl}M
l=1 , zl ∈ �m be a set of M training samples,

made up of m features chosen by the feature selection module
from the 11 available features. As SVMs are binary classifiers,
the strategy adopted to solve the addressed multiclass problem
defined by the set Ω = {ω1 , ω2 , ω3} was the one-against-all
strategy, which involves a parallel architecture of three different
SVMs (one for each class). The sth SVM, s = 1, . . .3, solves the
binary problem defined by the information class {ωs} against
all the others, Ω − {ωs}. The “winner-takes-all” rule is used
to make the final decision: given a pattern z, the winning class
is the one corresponding to the SVM with the highest output,
i.e. z ∈ ωi ⇔ ωi = arg max{fs(z)}, s = 1, 2, 3, where fs(z)
represents the output of the sth SVM.

For the generic sth SVM, let us define Ys = {ysl}M
l=1 the set

of labels associated with the training samples {zl}M
l=1 , where

ysl = +1 if zl ∈ ωs and ysl = −1 otherwise. To simplify the
notation, in the following we will omit the subscript s. SVMs
aim at linearly separating data by means of the hyperplane:
h: f(z) = w · z + b = 0, where z is a generic sample, w is a vec-
tor normal to the hyperplane, b is a constant such that b/||w||2
represents the distance of the hyperplane from the origin, and
d(h1 :w · z + b = −1, h2 :w · z + b = +1) = 2/||w||2 repre-
sents the margin. The concept of margin is central in the SVM
algorithm as it is a measure of the generalization capability: the
larger the margin is, the higher the expected generalization will
be. Accordingly, maximizing the margin is equivalent to mini-
mize ||w||; thus, SVMs solve a quadratic optimization problem
with proper inequality constraints


min
w ,b,ξ

{
1
2
‖w‖2 + C

M∑
l=1

ξl

}

yl (w · zl + b) ≥ 1 − ξl ∀l = 1, . . . ,M

ξl > 0.

(6)

To allow the possibility for some training samples to fall
within the margin band, R = {z | z ∈ �m ,−1 ≤ f (z) ≤ 1},
for increasing the generalization ability of the classifier, the
slack variables ξl and the associated penalization parameter C
are introduced. The constraints imply a penalty of cost Cξl for
each data point that falls within the margin on the correct side
of the separation hyperplane (i.e., 0 < ξl ≤ 1), or on its wrong
side (i.e., ξl > 1). In this way, the penalty is proportional to the
amount by which a given pattern is misclassified. The parameter
C controls the relative weighting between the goals of making
the margin large and that of minimizing the number of misclas-
sified samples. Larger values of C involve a larger penalty for
classification errors; hence, each misclassified pattern can exert
a stronger influence on the boundary.

As direct handling of inequality constraints is difficult,
Lagrange multipliers αM

l=1 are introduced for obtaining the

equivalent dual representation


max
α

{
M∑
l=1

αl −
1
2

M∑
l=1

M∑
i=1

ylyiαlαizl · zi

}

0 ≤ αl ≤ C, 1 ≤ l ≤ M

M∑
l=1

ylαl = 0.

(7)

According to the Karush–Kuhn–Tucker conditions [19], [20],
the solution is a linear combination of either mislabeled training
samples or correctly labeled training samples falling into the
margin band. These samples are called support vectors (SVs)
and are the only patterns associated with nonzero Lagrangian
multipliers. To make the constrained minimization process (7)
efficient, quadratic optimization techniques are employed [30].
Hence, once the dual variables αl are obtained, it is possible
to determine w and to predict the label for a given sample
z according to ŷ = sgn [f (z)]. If the data in the input space
cannot be linearly separated, they can be projected into a higher
dimensional feature space (e.g., a Hilbert space) with a nonlinear
mapping function Φ(·) defined in accordance with the Cover’s
theorem [31]. As a consequence, the inner product between the
two mapped feature vectors zl and zi becomes Φ(zl) · Φ(zi).
In this case, due to the Mercer’s theorem [32], by replacing the
inner product in (7) with a kernel function k(zl , zi) = Φ(zl) ·
Φ(zi), it is possible to avoid representing the feature vectors
explicitly. Thus, the dual representation with the constraint 0 ≤
αl ≤ C can be expressed in terms of the inner product with a
kernel function as follows:



max
α

{
M∑
l=1

αl −
1
2

M∑
l=1

M∑
i=1

ylyiαlαiKli

}

0 ≤ αl ≤ C, 1 ≤ l ≤ M

M∑
l=1

ylαl = 0

(8)

where Kli = k(zl , zi) is the generic element of the M -squared
positive definite matrix K that is called kernel matrix. K is
symmetric and satisfies the following condition:

M∑
l=1

M∑
i=1

αlαiKli > 0. (9)

Unlike other classification techniques, the kernel k(·,·) ensures
that the objective function is convex and accordingly, there are
no local maxima in the cost function in (12). Due to their well-
proved very good performances in several different frameworks,
we employed Gaussian radial basis function (RBF) kernels

k (zl , zi) = exp

(
−‖zl − zi‖2

2σ2

)

where σ represents the spread parameter and tunes the general-
ization ability of the SVM.
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TABLE I
AVERAGE PERCENTAGE OVERALL ACCURACY ± STANDARD DEVIATION

(COMPUTED OVER 1000 REALIZATIONS) OBTAINED CONSIDERING EACH OF

THE AVAILABLE EXTRACTED FEATURES INDIVIDUALLY

VI. RESULTS AND DISCUSSION

To assess the effectiveness of the proposed system, we
carried out different experiments focusing the attention on:
1) the discrimination capability of each extracted feature; 2)
the accuracy of the system at varying the number of features
selected; and 3) the behavior of the system at changing the num-
ber of training patterns. In all experiments, we characterized
the classification performances in terms of percentage overall
accuracy (OA%). The learning of the SVMs was performed by
the sequential minimal optimization (SMO) algorithm [33].

A. Discrimination Capability of Each Single Feature

To obtain a robust evaluation of the discrimination capability
of each single feature, we carried out 1000 sets of experiments.
In each experiment, 50 out of the 100 labeled patterns were
randomly selected as training set, and the remaining 50 patterns
defined the test set. The classification performances of each of
the 11 extracted features were assessed individually for each
experiment, and then averaged over the 1000 experiments. The
model selection of the classifier (i.e., identification of the most
suitable free parameters C and σ) was carried out for each
experiment according to a grid search strategy.

In Table I, the mean and dispersion values of OA% are re-
ported for the 3-class problem and the specific 2-class problems
(i.e., AF1 vs. AF2, AF1 vs. AF3, and AF2 vs. AF3). The features
are ranked on the basis of the measured accuracy for the 3-class
problems. RI outperformed all the other features, providing very
good individual results. The remaining features can be grouped
in four different sets according to their performances: 1) DT and
CV proved quite good discrimination capabilities (OA% >78);
2) WD, CI, and PI had average performances, (OA% ∼ 75);
3) EN, AP, and NO did not provide satisfactory results (OA%
<70); and 4) DF and BW exhibited poor performances (OA%
<50). From the analysis of the results obtained for the 2-class
problems we note that, with few exceptions, the behavior of the

TABLE II
FEATURES SELECTED BY THE BB ALGORITHM FOR DIFFERENT VALUES OF m

single feature is similar to the one exhibited with the 3-class
problem. Moreover, as expected, the subproblem AF1 versus
AF3 proved to be less critical than the others.

These results have a data mining value with respect to the
problem of classifying AF signals. In fact, the experiments as-
sess the intrinsic capability of each parameter to describe the
considered problem, and thus, from a physiological viewpoint,
help relating the salient characteristics of the atrial signal to the
organization of AF evaluated in accordance with the clinical
practice. In particular, we observed that the most discriminating
parameters (i.e., RI and DT) are those quantifying the variability
in the morphology of the atrial activations. This finding is ex-
pected as the reference Wells’ classification is mainly based on
observing the variability over time of the signals’ morphology.
The good performance provided by measuring the dispersion of
the atrial intervals (by CV computation) and the duration of the
atrial waves (by WD computation) can be explained again on the
basis of the Wells’ definition of AF organization. Indeed, more
disorganized AF is manifested by wave fragmentation, which
is visually observed by the expert cardiology and automatically
quantified by CV and WD, as fragmentation results in increased
activation times variability and activation waves duration. On
the contrary, parameters based on signal quantization (EN, NO)
and frequency analysis (DF, BW), though indicated as good
descriptors of the complexity of AF [14], [15], [34], resulted
less related to Wells’ classification, as they exhibited the worse
individual performance in classifying the AF types.

B. Accuracy of the System Versus the Number
of Selected Features

Feature selection, performed through the BB algorithm, al-
lowed us to analyze the performances of the proposed system
by varying the number of selected features. To this end, we used
the same training and test sets generated for the experiments
of Section VI-A and adopted the same grid search strategy for
determining the best values for the SVM parameters. Table II
reports the subsets of features selected by the BB algorithm for
different values of m. The distribution of the features selected
for m = 1 (RI), for m = 2 (RI and NO), and for m = 3 (RI, NO,
and CV) are depicted in Fig. 3, where the better discriminative
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Fig. 3. Distribution of the features in a feature space of dimension (a) m = 1,
(b) m = 2, and (c) m = 3. The optimal m features selected by the BB algorithm
were represented: regularity index (RI), number of baseline points (NO), and
atrial period coefficient of variation (CV).

capability by employing an increasing number of features can
be easily appreciated looking at the separation of symbols cor-
responding to the three classes.

When, as in our case, an optimal search algorithm is adopted,
the subset of features selected for a generic m = i is indepen-
dent from the one selected for m = i + 1. This means that
a feature belonging to the former subset does not necessarily
belong to the latter. However, we obtained that, as soon as a
feature is inserted into the eligible subset for a given value of m,
it is always selected also for greater values of m. This aspect is
very interesting as it allows us to perform a new ranking of the
features based on the value of m corresponding to the selected
subset with the lowest cardinality they belong to. Such analysis
provides more detailed information about the usefulness of the
features when considered together. As an example, even if NO
proved poorly effective in the individual classification, it gave
an important contribution to class separation if associated with
RI. In fact, these two indexes provide complementary informa-
tion, as they automatically quantify the two major aspects that
are accounted for during manual Wells’ classification, i.e., the
changes in morphology of the activation waves and the pertur-
bations of the isoelectric line of the atrial signals, respectively.
Also BW and DF proved to be relatively effective when em-
ployed together with other features, although they exhibited the
worst discrimination capabilities when considered singularly.

Fig. 4. Performances of the system versus number of selected features. (a) Av-
erage JM distance computed on the subsets of features selected by the BB
algorithm. (b) Percentage overall accuracy (statistics over 1000 realizations)
obtained with the features selected by the BB algorithm with 50% of labeled
patterns considered in the learning of the classifier.

Once again, this result can be explained considering that they
provide frequency-domain information which is mostly uncor-
related with that coming from morphological analysis (by RI)
and signal quantization (by NO). On the contrary, even if CI
and WD proved individually rather effective, their information
contribution seem redundant as they were inserted in the eligible
subset only for high values of m. Also EN has a similar behavior
and does not seem to be useful at all, as it is considered only
when m = 11.

The JM distance as a function of the number of selected fea-
tures is reported in Fig. 4(a). As m increases, the JM distance
increases and saturates around 0.94, which corresponds to good
separability among the information classes (theoretical com-
plete separability is given by the upper bound

√
2). Even though

the behavior of JM distance monotonically increases with m,
its improvement is weak for a large number of considered fea-
tures (e.g., it increased from 0.932 to 0.936 while m ranged
from 7 to 11). Hence, one may expect to obtain nearly optimal
classification results by considering only a subset of features.
This observation is confirmed by looking at the average OA%
obtained versus the number of selected features [Fig. 4(b)]. The
results indicate that the classification performances improved
as the number of selected features increased up to seven, while
the addition of further features did not improve accuracy. This
behavior is explained by the poor generalization ability of the
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Fig. 5. Percentage overall accuracy (statistics over 1000 realizations) versus
different percentages of training and test patterns exhibited by: (a) the SVM
classifier, (b) the ML classifier (the seven features selected by the BB algorithm
were employed).

classifier that, given the small number of training samples avail-
able, overfitted the training data when more than seven features
were considered (Hughes phenomenon [35]). Overall, the re-
sults of the classification analysis are highly satisfactory, since
with the optimal subset of features (i.e., RI, NO, CV, DT, PI,
BW, and DF) the median accuracy is equal to 97.65%. These
results document the high performance of SVM classifiers com-
bined with the feature selection performed by the BB algorithm.
The classification accuracies are sharply higher than those re-
ported by the classification schemes previously proposed for the
automatic discrimination among different AF types [11], [12],
and, as we will show in the next subsection, improved that of
the traditional maximum likelihood classifier.

C. Robustness of the System Versus the Number
of Available Training Samples

To assess the reliability of the proposed system in critical,
but commonly encountered, operative conditions in which only
a few labeled patterns are available, in the third set of experi-
ments we tested the robustness of the system versus the size of
the training set. In this test, we randomly chose 5, 25, 50, 75, and
90 samples for SVM training, and exploited the remaining test
samples according to a grid search method. According to the re-
sults reported in the previous section, we considered the optimal
subset of features identified by the BB algorithm for m = 7.

Fig. 5(a) reports the overall accuracy obtained by increasing
the number of available training patterns from 5 to 90 and
expressed as median and dispersion over 1000 different realiza-

Fig. 6. Percentage overall accuracy (statistics over 1000 realizations) exhib-
ited by the SVM classifier versus different percentages of training and test
patterns: (a) AF1 versus AF2, (b) AF1 versus AF3, (c) AF2 versus AF3 (the
seven features selected by the BB algorithm were employed).

tions of the training set. It is worth noting that the consistency
of the reported values should be influenced by the decreasing
number of available test patterns. However, the corresponding
increase of the number of training patterns should counteract
this effect, as the classifier is expected to work better with a
larger training set. In fact, the accuracy on the test set improved
by increasing the number of training samples, reaching 100%
(i.e., the proposed SVM classifier never made any mistake over
the ten realizations) when 75 training patterns were employed.
In comparison with the technique described in [12], where the
same subdivision between training and test sets was exploited
reporting an accuracy of 85.5%, a sharp increase in the perfor-
mance can be observed. To further prove the effectiveness of the
proposed SVM classifier, we compared its results with those ob-
tained for the same set of experiments by a Gaussian maximum
likelihood (ML) classifier. By comparing Fig. 5(a) and (b), we
note that SVM outperforms ML, particularly when few training
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samples are used. Even in such critical conditions, the SVM
system exhibited high stability (e.g., median OA% was 88.3%
with only five training samples), thus proving particularly
attractive for solving practical application problems. As shown
in Fig. 6, this good behavior is observed also for the individual
2-class problems. Even though limit cases on the number of
training samples should be carefully evaluated, the develop-
ment of systems capable to model the classification problem
efficiently (with good generalization ability) also with small
training sets is recommended for practical applications, such as
in our problem where manual classification of AF types can be
limited to short data sets as it is subjective and time-consuming.

VII. CONCLUSION

In this paper, we considered the problem of characterizing
the degree of organization of human AF from the analysis of
intracardiac electrograms, and proposed an advanced system
for the automatic classification of AF types in accordance with
traditional clinical criteria [5]. To properly define the automatic
classification system, we first studied the individual behavior
of the indices commonly adopted in the literature for the auto-
matic quantification of AF organization. This analysis pointed
out the complexity of the problem, suggesting implementation
of a multivariate approach. Multivariate analysis was carried
out by a feature-selection technique identifying the subset of
features that better discriminated the investigated AF types. We
found that classification accuracy was optimized using a subset
of seven features, including indices quantifying morphological
variations of the atrial activations and indices detecting pertur-
bations of the isoelectric line of the atrial signals. The selected
features were given as input to an automatic classifier based on
the SVM technique, which merges important properties such
as high generalization capability, easy architecture definition,
and learning associated with a convex cost function, with high
classification rates.

The main advantages of using the proposed system are: 1) the
applicability to short-time windows (4 s) that fits well the needs
of clinical applications; 2) the very high accuracy provided by
the automatic classification system that allows a precise iden-
tification of AF types; and 3) the robustness to small numbers
of training samples that encourages the implementation with-
out the need of long training times. These peculiarities suggest
the proposed system as a very promising tool for the automatic
evaluation of the organization of AF in the clinical practice. In-
deed, it fosters the implementation of an automatic, real-time,
approach to the classification of AF electrograms that, when ex-
ploited as an alternative to the subjective and time-consuming
manual analysis, should be far more effective in supporting the
catheter-based ablation treatment of paroxysmal AF.
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