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Abstract—This paper presents a split-based approach (SBA) to
automatic and unsupervised change detection in large-size mul-
titemporal remote-sensing images. Unlike standard methods that
are presented in the literature, the proposed approach can detect
in a consistent and reliable way changes in images of large size also
when the extension of the changed area is small (and, therefore,
the prior probability of the class of changed pixels is very small).
The method is based on the following: 1) a split of the large-size
image into subimages; 2) an adaptive analysis of each subimage;
and 3) an automatic split-based threshold-selection procedure.
This general approach is used for defining a system for dam-
age assessment in multitemporal synthetic aperture radar (SAR)
images. The proposed system has been developed to properly
identify different levels of damages that are induced by tsunamis
along coastal areas. Experimental results that are obtained on
multitemporal RADARSAT-1 SAR images of the Sumatra Island,
Indonesia, confirm the effectiveness of both the proposed SBA and
the presented system for tsunami-damage assessment.

Index Terms—Change detection, damage assessment, disaster
monitoring, image analysis, multitemporal images, remote sens-
ing, synthetic aperture radar (SAR) images, tsunami, unsuper-
vised techniques.

I. INTRODUCTION

IN RECENT years, the frequency of natural disasters has
shown rapid increase [1].1 Examples of this trend are related

to floods, earthquakes, avalanches, hurricanes, forest fires, and
tsunamis that recently occurred. These dramatic events in-
creased the interest of politic and scientific communities in the
definition of methodologies that are capable to prevent them,
mitigate their effects, and perform fast and accurate damage
assessment. Satellite remote-sensing images that are acquired
on the same area at different times are a valuable tool for
addressing the aforementioned problems. The information that
is present in these data can be useful for extracting important
indications for risk assessment, emergency management, and
damage inventory. In this paper, we focus the attention on the
problem of damage inventory.

In order to perform effective damage inventory, it is im-
portant to develop proper change-detection techniques for the
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automatic analysis of multitemporal remote-sensing images. In
the literature, many techniques have been proposed for change
detection in both optical and synthetic aperture radar (SAR)
remote-sensing data [2]–[21]. Often, changes are identified by
comparing pixel by pixel two images that are acquired on the
same geographical area at two different times. The comparison
can be carried out according to a difference operator (this is
the typical case of multispectral images) or a ratio/log-ratio
operator (as usually done in a SAR image), as well as with
more complex strategies based on context-sensitive dissimilar-
ity measures that are computed between statistical distributions
[14]. The resulting difference/ratio image is then analyzed
according to either automatic thresholding algorithms [6]–[10],
[19], [20] or complex context-sensitive [5], [21] and multiscale
algorithms [15] to generate the final change-detection map. For
simplicity, let us focus the attention on thresholding algorithms,
which are the most widely used in the applications (however,
the discussion can be easily generalized to context-sensitive and
multiscale procedures). Most of the thresholding algorithms
derive automatically the change-detection map under the as-
sumption that the prior probability of the class of changed
pixels is sufficient to properly model this class with a significant
statistical mode in the histogram of the difference/ratio image.
However, as the aforementioned kinds of damages typically
affect local portions of wide areas (e.g., regions or countries),
a proper damage-assessment procedure requires the analysis of
wide scenes and, thus, of large-size images. This results in a
small value of the prior probability of the class of changed
pixels, which may affect the capabilities of the thresholding
techniques to detect a proper threshold value if working on the
whole image.

In the image-processing literature, local adaptive threshold-
ing techniques have been proposed for characterizing the local
properties of images. In change-detection problems, these tech-
niques compute a threshold value for each pixel neighborhood
on the basis of local statistics and apply it to either the entire
neighborhood or only the central pixel [16], [22]. As these
methods result in many isolated change pixels and holes in
the middle of connected change components, postprocessing
steps are usually adopted for reducing noise in the final change-
detection map and making it consistent with the hypothesis that
changes are made up of a significant number of connected pix-
els [16]. Alternative approaches, which are mainly proposed for
threshold-based classification of large-size images, perform an
independent analysis of overlapping image blocks that results in
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Fig. 1. Block scheme of the proposed SBA for change detection in large-size multitemporal images.

different threshold values for each considered region [23]–[25].
However, in remote-sensing change-detection problems, a
pixel-based threshold selection in local neighborhoods or a sim-
ple split of a large-size image into several smaller subimages
and a successive separate analysis and thresholding of each split
can be critical because of three conditions: 1) The threshold
values should be consistent in all subimages/blocks to ob-
tain significant change-detection maps also from a quantitative
viewpoint (a single threshold value should be used in the entire
large-size image to obtain consistency with the radiometric
properties of the data). 2) Possible threshold-selection errors
on a split/block generate inaccurate change-detection results
for that subimage. 3) Changes might not be present in some
subimages (and several thresholding algorithms used in remote-
sensing applications implicitly assume the presence of two
distributions and are not able to detect situations of absence of
changes).

In order to overcome the aforementioned problems, in this
paper, we propose an unsupervised split-based approach (SBA)
for change detection in large-size multitemporal images, which
is suitable for handling both multispectral images that are
acquired by passive sensors and SAR images that are acquired
by active sensors. The proposed method automatically splits the
computed difference (or ratio) image in a set of nonoverlap-
ping subimages of user-defined size. Then, the subimages are
sorted out according to their probability to contain a significant
amount of changed pixels. Afterward, a subset of splits having
high probability to contain changes is selected and analyzed.
Under the assumption that these splits represent reliable ob-
servations of the same phenomenon of change, it is expected
that the threshold-selection procedure is reliable on them, as
they are characterized by the highest prior probabilities of the
change class among all splits. In order to properly extract
the change information by thresholding the whole scene, two
different strategies can be used for combining information that
is present in different subimages. The first strategy is based on
an independent split analysis that consists in applying threshold
selection separately to each split for deriving a set of threshold
values (one for each subimage). Hence, simple combination
techniques can be applied to the obtained set of thresholds to

select a robust, unique, and consistent threshold value to be
applied to the entire image. The second strategy exploits a joint
split analysis that consists in applying thresholding to the joint
distribution of pixels that is obtained by merging all the splits
having high probability to contain changes.

The proposed general method is used for defining a system
based on multitemporal SAR images for damage assessment in
areas that are affected by a tsunami. The proposed system is
tested on two images that are acquired by the SAR sensor of
the RADARSAT-1 satellite over Sumatra Island, Indonesia, in
April 1998 and in January 2005. Between the two acquisitions,
a tsunami destroyed large parts of the coast. Experimental
results show that the proposed technique produces accurate
change-detection maps that are capable of identifying major
damages that are caused by the tsunami on the coast.

This paper is organized into five sections. Section II de-
scribes the proposed general SBA for change detection in large-
size multitemporal images. Section III presents a system for
tsunami-damage assessment, which exploits the proposed SBA
and multitemporal SAR images. Section IV reports experimen-
tal results that are obtained on multitemporal SAR images of
the Sumatra Island. Finally, Section V draws the conclusions of
this paper.

II. PROPOSED SBA FOR CHANGE DETECTION

IN LARGE-SIZE MULTITEMPORAL IMAGES

Let us consider two coregistered remote-sensing images X1

and X2, of size P · Q, that are acquired over the same area
at different times t1 and t2.2 Let Ω = {ωn, ωc} be the set of
classes of unchanged and changed pixels to be identified. As
shown in Fig. 1, the architecture of the proposed SBA is based
on three main blocks aimed at the following: 1) image com-
parison; 2) split of the large-size image into N subimages and
selection of the L (L ≤ N) splits having the highest probabil-
ities to include changes; and 3) split-based threshold selection.
In the following, these blocks are described in greater detail.

2In this paper, only the case of pairs of images is discussed. However, the
proposed approach can be applied to a multitemporal sequence that is made up
of more than two images by analyzing separately couples of images.
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A. Image Comparison

The first step of the most widely used change-detection
techniques that are presented in the literature is based on a
pixel-by-pixel (or parcel-by-parcel [5]) comparison between
the two considered images, which is carried out according to
a proper operator [11]–[15], [17], [18].

When dealing with multispectral images, each spatial posi-
tion in X1 and X2 can be represented by an n-dimensional
vector, whose components are associated with the radiances
that are measured in different spectral channels. The most
widely used comparison operator with this kind of images is the
difference that is applied to the n-dimensional feature vectors,
which allows to consider in the change-detection process all the
available spectral information. Generally, difference image XD

is computed as the magnitude of the difference vectors. This
technique is known as change vector analysis [2], [6] and has
been successfully used in many different application domains.

When dealing with SAR images, either the difference or the
ratio operator can be used [9]–[13]. However, the difference
operator leads to an image that has a statistical distribution that
depends on both the relative change of backscattering between
the two acquisition dates and the reference intensity value.
This results in different statistical behaviors of changed pixels
in image portions that show different absolute backscattering
values. To avoid this problem, comparison in SAR images
is typically carried out by a ratio operator, which reduces
the multiplicative distortion effects of noise that are common
to the two considered images due to speckle and makes the
statistical distribution of the resulting image dependent only on
the relative changes between the two acquisitions. Usually, the
ratio image is expressed in a logarithmic scale to enhance low-
intensity pixels [11]–[13], [15] (and to obtain a more symmetri-
cal distribution of the classes of changed and unchanged pixels),
resulting in the log-ratio image XLR.

Instead of comparing the values of each single pixel, one
may compare the probability density functions (pdfs) that are
evaluated in a neighborhood of the considered spatial position
in the two multitemporal images, according to proper dissimi-
larity measures [14]. As an alternative, it is possible to derive
multitemporal parcels [5] and apply the comparison at a parcel
level (after the extraction of proper parcel-based features).

B. Image Split and Adaptive Split Selection

Let XC be the image (of size P · Q) that is obtained after
comparison of multitemporal data. The most widely used unsu-
pervised approach for change detection is to apply a threshold-
selection algorithm to XC and to generate the change-detection
map accordingly to the derived threshold value. Usually, the
threshold-selection algorithms assume that the class of changed
pixels can be associated with a reliable statistical mode in
the histogram of XC . This assumption is critical in large-size
images, as typically the phenomenon that involves changes
only affects a small portion of the scene. This results in a
very small prior probability of the class of change and, thus,
in an almost indistinct mode in the histogram, which may
involve a failure of the threshold-selection algorithms. In order
to overcome this problem, we propose to split the image XC

Fig. 2. Example of splitting a large image of size P · Q into N splits of
size p · q.

in a set of subimages. The image-splitting procedure takes as
input the large-size image XC and subdivides it into a set of
N subimages XCi

, i = 1, . . . , N , of user-defined size (p · q)
(see Fig. 2). The choice of the values of p and q depends on
the geometric resolution of the sensor and on the expected
extension of change that occurred in the investigated area.
The basic requirement is that the amount of changes in a
subset of splits should be statistically significant for making the
threshold-selection procedure reliable and precise (empirically,
we can assume that 10% of the changed pixels is sufficient
for guaranteeing high accuracy with proper threshold-selection
algorithms [18]). An estimation of the split size (and, thus, of
N ) can be obtained by relating the aforementioned concepts
with the size of the whole image. According to the hypothesis
that changed pixels have very small prior probability with
respect to unchanged pixels, most of the generated subimages
(splits) XCi

have high probability to contain either no changes
or a nonsignificant amount of changed pixels. We expect that
only a few of them contain a number of changed pixels that
are sufficient for characterizing this class in a statistically
significant way. Under this realistic assumption, in most of
the subimages, standard threshold-selection techniques may not
identify proper threshold values because of two conditions:
1) Most of them implicitly assume the presence of changes;
thus, when there are no changes, they identify meaningless
threshold values. 2) They assume that the change class has a
sufficiently high prior probability to yield a statistically sig-
nificant mode in the histogram. In order to avoid such kind of
problems, the set of subimages with the highest probability to
contain changes is identified. This task is carried out by analyz-
ing the global statistical behaviors of the computed subimages.
Let PCi

be the probability that the subimage XCi
includes

changed pixels. We reasonably expect that, when considering
a difference (or ratio) operator in the comparison, PCi

is a
function of the standard deviation σi of subimage XCi

(which
is used as an index for changes in [16], [23], and [24]),3 i.e.,

PCi
= f(σi) (1)

3An alternative measure to the standard deviation is the coefficient of
variation, which becomes useful when the noise of subimages can be modeled
as multiplicative or a residual multiplicative component is present in the
splits [15].
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where f(.) is a monotonic function that increases by increasing
the value of σi. According to this definition, irrespectively of
the analytical form of f(.), the set PC of subimages that are
ordered according to the probability of including changes can
be derived as

PC = {XCi
|σi ≥ σi+1, i = 1, . . . , N}. (2)

The desired set P′
C ⊆ PC of splits with the highest probabilities

to contain changes is defined by selecting the first L elements
of PC , i.e.,

P′
C = {XC1 ,XC2 , . . . ,XCL

|σ1 ≥ σ2 ≥ · · · ≥ σL, L ≤ N}.
(3)

C. Split-Based Threshold Selection

Subimages in P′
C can be analyzed according to different

strategies in order to identify a threshold value that is reliable
for the whole large-size image and consistent with the radio-
metric properties of the data. Two main approaches can be
distinguished: 1) an independent split analysis strategy based
on the combination of reliable split-based threshold values and
2) a joint split analysis strategy based on the combination of
splits distributions and threshold selection.

The independent split analysis strategy is based on a sep-
arate analysis of the L subimages that are included in P′

C

and on a combination of decisions that are taken on each
subimage. The first step of this approach is to compute a set
T = {T1, . . . , TL} of threshold values (one for each considered
split in P′

C) according to any of the thresholding procedures
that are proposed in the literature (e.g., generalized Kittler
and Illingworth (KI) algorithm [7], [9], [10] and generalized
Expectation–Maximization-based algorithm [8], [17], [18]). In
order to compute the final threshold value T̂ to be applied to the
whole image, different combination strategies can be adopted:
1) Compute the mean of the threshold values in T (Mean-
SBA), and 2) compute the median of the threshold values in T
(Med-SBA). The mean is the simplest mathematical operator
that can be adopted for estimating threshold value T̂ . Although
from a statistical point of view the mean operator produces
a reliable result, it has the drawback that, in the presence
of a few samples, it is slightly sensitive to outliers and may
find an inconsistent threshold value if, for a few subimages in
P′

C , unreliable threshold values are computed. This may be a
critical problem, as in real applications, it may happen that the
threshold-selection algorithm does not provide reliable results
on a split.4 This problem can be overcome by adopting the
median operator instead of the mean one.

The joint split analysis strategy to threshold selection is an
alternative to the independent one. It performs simultaneous
analysis of the selected splits (J-SBA) and then directly derives
the final value of the decision threshold. The main idea that
is exploited in this procedure is to jointly characterize the

4Even if robust threshold-selection procedures are used (i.e., procedures for
which the probability to detect a wrong threshold value is very small if the prior
probability of changed pixels is not too small), it may happen that an imprecise
value is selected on a split.

populations of changed and unchanged pixels using all the splits
in P′

C and to apply threshold selection to this joint distribution.
The first step of this procedure is to define a new random
variable that is given by the union of the radiances of all the
L selected subimages candidate to contain changes, i.e.,

X′
C =

L⋃

i=1

XCi
, XCi

∈ P′
C . (4)

In this way, the distribution of X′
C properly represents the

change-detection problems that are modeled in all the L splits,
guaranteeing a reasonable prior probability for the class of
changed pixels. Therefore, threshold value T̂ can be derived
by applying threshold selection to X′

C . On the one hand, this
allows one the selection of a reliable threshold value without
any combination of the split-based threshold values. On the
other hand, possible nonstationarity of the distributions of
classes of changed and unchanged pixels in different splits
may affect the reliability of the statistical models that are used
for representing class distributions in thresholding algorithms.
This may decrease the accuracy of the threshold-selection
procedure.

Irrespectively of the threshold-selection strategy considered,
the final change-detection map XM is computed by applying
the estimated threshold T̂ to the large-size image XC .

III. NOVEL SPLIT-BASED SYSTEM FOR

TSUNAMI-DAMAGE ASSESSMENT

In this section, the general technique that is presented pre-
viously for unsupervised change detection in large-size multi-
temporal images is exploited for designing an automatic system
for tsunami-damage assessment in multitemporal SAR images.
Additional blocks with respect to the base scheme of Fig. 1
are necessary to handle this complex problem. In the following,
after proper problem description, we present the architecture of
the proposed system.

A. Data Set and Problem Description

The problem of damage assessment after a tsunami was
studied and addressed by using two intensity images that are
acquired by the SAR sensor of the RADARSAT-1 satellite over
the north part of the Sumatra Island, Indonesia. The available
data have a pixel spacing of 25 m in both the azimuth and
range directions. A tsunami strongly affected this area on
December 26, 2004. After this date, different kinds of sensors
acquired many images over the site that is interested by the
natural disaster [26]. For this reason, it was possible to have
an image acquired after a few days from the tsunami (January
2005). Unfortunately, the image in the archive that was acquired
by RADARSAT-1 before December 2004 was taken on April
1998. The time distance between the two multitemporal images
is due to the need, given the acquisition after the tsunami,
to find in the archives an image before the tsunami event
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Fig. 3. Block scheme of the proposed system for tsunami-damage assessment.

with the same acquisition parameters, i.e., incidence angle,
ascending/descending orbit, and polarization [27].

In order to properly study and characterize the considered
problem, a preliminary analysis of the investigated area has
been carried out by the following: 1) a visual comparison of
high-resolution optical images that were acquired before and
after the tsunami and 2) an analysis of the literature. From this
analysis, it appears that the tsunami impact varied according
to the shape and slope of the ocean floor; the presence or ab-
sence of reefs, mangroves, and onshore forests; the orientation
and the slope of the coastline; and the underlying rock and
soil types. Image analysis shows that some areas have been
highly modified by the tsunami. Estuary and wetland sites have
apparently been scoured out, and drainage patterns have been
changed. Other sites show evidence of subsidence or drainage
changes, leading to potential new wetland areas [28]. As stated
in [27], with the considered SAR images, it is possible to map
eroded coasts, reefs, and foreshores that have become exposed,
areas where vegetation has disappeared or has been severely
damaged, destroyed piers, quaysides and embankments, and
instantaneous extend of inundated areas.

In accordance with the preliminary analysis, in this paper, we
decided to investigate the change-detection problem according
to two different objectives: 1) to identify only changes that are
associated with deep modifications of the environment (such
as coast erosion, beach removal, estuary destruction, and areas
still flooded at acquisition date after tsunami; we refer to these
damages as changes of level 1) and 2) to identify, in a separate
way, changes of level 1 and changes that are associated to less
severe modification of the environment (such as areas in which
vegetation was swept away and buildings were destroyed; we
refer to these damages as changes of level 2).

B. Proposed System for Tsunami-Damage Assessment

The architecture of the proposed system (see Fig. 3) is made
up of three main parts: 1) image preprocessing and comparison;
2) sea identification and masking; and 3) generation of the
change-detection map according to the proposed adaptive SBA.

First, the multitemporal images should be registered in order
to obtain alignment between pixels corresponding to the same
area on the ground. This process was carried out according to
a standard coregistration algorithm for SAR images, which is
based on the maximization of cross correlation between images
in a given number of selected windows. After coregistration,
the part that is common to both the acquisitions is selected to
define a multitemporal pair of images having a size of 8662 ×
8192 pixels. Observe that we are clearly in presence of a large-
size pair of SAR images.

Due to the active and coherent nature of the SAR signal, both
intensity images are affected by multiplicative speckle noise,
which may degrade the performances of change-detection tech-
niques. In order to reduce noisy speckle components in the
considered images, while preserving sufficient spatial details,
adaptive despeckling filters can be used. Many filtering tech-
niques have been published in the literature (e.g., the Frost
[29], Lee [30], Kuan [31], and Gamma Map [32], [33] tech-
niques). These filters can be applied with different window sizes
(or iteratively) in order to obtain the desired tradeoff between
the signal-to-noise ratio and detail preservation.

After preprocessing, the multitemporal images are compared
pixel by pixel by means of a log-ratio operator [9], [15].

As expected, according to the considered application, both
multitemporal images include large portions of sea. The log-
ratio image on the sea has an undesirable behavior that depends
on the variability of the conditions during the two acquisi-
tion dates (e.g., different weather conditions and presence or
absence of waves), which strongly affect the values of the
backscattering coefficient. This instability may induce many
false alarms. It is worth noting that the use of the difference
operator instead of the log-ratio operator could reduce the
component to the instability in the sea area due to the small
values of the backscattering coefficient. Nevertheless, it has
been demonstrated theoretically and experimentally [9]–[13]
that the log-ratio operator results in both better statistical
properties of the changed and unchanged pixels and in more
accurate change-detection maps. In order to solve this problem,
in the proposed system, we introduce a block that is aimed at
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Fig. 4. Log-ratio image after sea masking. The squares that are outlined by white dashed lines identify all the computed splits, while those that are outlined by
white continuous lines are the six splits with the highest probabilities of containing changed pixels (in the grayscale black corresponds to the minimum of the
log-ratio image, whereas white corresponds to the maximum).

sea identification. A simple automatic unsupervised approach
is adopted for detecting sea pixels and filtering them from the
change-detection process. Sea or coastline detection in SAR
images is a widely investigated topic in the literature [34]–[36].
As we are interested in removing the seaside from the change-
detection process, we focus the attention on sea identification
rather than coastline detection. In [35], a simple approach is
proposed for supervised seaside identification, which is based
on two steps: 1) texture feature extraction and 2) supervised
classification. The method is based on the observation that the
coherent nature of the SAR signal makes the behavior of the
texture, due to the speckle on the sea, strongly different from
that of the texture on land. In particular, the sea shows a more
homogeneous speckle texture than land areas [35] (which are
characterized by the presence of various types of land covers)
[34]. We propose a similar yet unsupervised approach. As in
[35], a texture measure is computed based on the analysis of the
cooccurrence matrix; then, an automatic thresholding algorithm
is used for separating the sea from the land. Here, the KI
thresholding technique that is proposed in [9] has been adopted,
which is based on the minimization of a biased estimation of
the error probability, under the assumption that the histogram
can be modeled according to a mixture of two generalized
Gaussian distributions. The described procedure is applied to
the image that is acquired before the tsunami in order to produce
a conservative sea map and to allow proper identification of the
coast erosion due to the tsunami. For taking into account the

effects of the window size that is used for computing the texture
feature, a margin between the computed mask and the adopted
one was imposed. This is not critical because the behavior of
the sea along the coast is stable and does not affect the log-ratio
image.

Once the log-ratio image has been masked (Fig. 4), it is
analyzed according to the SBA that is proposed in Section III.
Concerning the threshold-selection algorithm, we also adopted
in this step the KI technique that is extended to the generalized
Gaussian model that is proposed in [10]. This choice has
been done because this algorithm proved to be accurate on
change detection in intensity SAR images [10] and, unlike
other algorithms that are presented in the literature, it can
automatically detect single or double threshold values and can
also identify situations in which there are no changes in the
analyzed images [10].

IV. EXPERIMENTAL RESULT

In this section, experimental results that are obtained on the
Sumatra Island data set that is presented in Section III-A are
shown and analyzed.

A. Design of Experiments

In order to reduce speckle noise components, we applied dif-
ferent despeckling filters (i.e., refined Lee, Frost, and Gamma
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Fig. 5. Diagram of the standard-deviation values σi of the considered N splits
XCi

∈ PC sorted in descending order.

Map) to the considered images. We obtained the best results
with the Gamma Map filter. Fig. 4 shows the log-ratio image
that is obtained by comparing the two intensity images that are
filtered with a Gamma Map filter (the window size is 5 × 5,
with three iterations).5 This image has been used for all the
experiments that are described in this section.

As expected, after comparison, the seaside is strongly unsta-
ble due to the high variability of backscattering coefficient in
extended water surfaces. Thus, the image that was acquired in
April 1998 was analyzed for extracting the mask of sea pixels.
In this particular case, we thresholded the entropy measure that
was computed from the cooccurrence matrix (the size of the
moving window is 7 × 7 pixels, with interpixel distance 1
in the 45◦ direction) after requantization on 32 levels. After
removing sea pixels from the log-ratio image, unmasked pixels
were quantized to integers in the range of [0, 255]. Fig. 4 shows
the log-ratio image with masked sea pixels (which are shown in
dark gray). This full image was subdivided into 272 splits, each
having a size of 509 × 512 pixels (see dashed lines in Fig. 4).
Among them, 123 splits were considered to be unreliable from
a statistical point of view, as they include more than 85%
of masked pixels (i.e., sea pixels), and thus were removed
from the split-based threshold-selection process. The remaining
149 subimages were further analyzed to identify splits with the
highest probability to contain changed pixels (see Section II-B).
Fig. 5 shows the behavior of the standard-deviation values
of the considered subimages sorted in descending order. It is
possible to see that, between the first six subimages and all
the others, there is a significant difference in the standard-
deviation values. Thus, these subimages (see Fig. 6) were
selected to perform threshold selection. As expected, all the se-
lected subimages are located along the coast (see splits pointed
out with white squares in Fig. 4), where the highest amount of
changes occurred. It is worth noting that a preliminary visual
analysis of the histogram of the log-ratio image (and of a subset
of splits) points out that, on the one hand, the classes of no
change and change of level 1 are associated with two modes
that are reasonably well separated; on the other hand, the mode
of the change of level 2 is strongly overlapped to the other two
distributions.

5The optimal window size and the number of iterations of the filter were
selected according to the procedure that is presented in [13].

Different trials were carried out to assess quantitatively and
qualitatively the effectiveness of the proposed system. Two
different setups were considered according to the objectives
that are described in Section III-A. The two sets of experi-
ments are treated separately in order to properly point out the
effectiveness of the proposed system to problems with different
complexities.

For both experimental setups, the results that are obtained
with the proposed split-based change-detection approach are
compared with those that are obtained by applying: 1) the
automatic thresholding algorithm to the whole large-size log-
ratio image; 2) the automatic thresholding algorithm to each
split independently; and 3) the optimal Manual Trial-and-Error
thresholding Procedure (MTEP) to each split.6 The proposed
SBA may lead to a noninteger threshold value. In the following,
as values in the log-ratio image for simplicity are quantized
with integers in the range of [0, 255], all identified threshold
values are approximated with the nearest integer.

In order to perform quantitative accuracy assessment, two
test sites were selected among the 149 splits having less than
85% of sea pixels. The two test sites were accurately identified
for modeling regions of the image with different properties:
1) Split “A” shows a high prior probability of changed pixels.
2) Split “B” shows a small prior probability of changed pixels.
According to the properties that are required for split A, it is
one of the subimages that are also used for threshold selection
(i.e., XC5 ). However, we expect that this does not introduce a
significant bias in the validation procedure.

For both subimages, a reference map was defined manu-
ally according to an accurate visual inspection of both the
considered SAR images and a pair of very high geometrical
resolution images that are available for the study area. The
reference map of split A contains 98 487 unchanged pixels,
14 802 pixels that are associated with the change of level 1,
and 20 826 pixels that are associated with the change of
level 2. The reference map for split B contains 82 958 un-
changed pixels, 1043 pixels that are associated with the change
of level 1, and 1554 pixels that are associated with the change
of level 2. Figs. 7 and 8 show the log-ratio images and the
reference maps (where changes of level 1 are depicted in dark
color and changes of level 2 are shown in light gray) of splits
A and B, respectively. In all experiments, our goal is to obtain
a change-detection map as similar as possible to the reference
maps that are yielded according to the aforementioned time-
consuming manual process.

B. Change-Detection Results: Single-Change Identification

The first set of trials is aimed at identifying only the change
of level 1. In this setup, we neglect the presence of the class of
changes of level 2. This assumption does significantly affect the
reliability of the thresholding algorithm, which can be applied
with a reasonable approximation as the distribution of changes
of level 2 is strongly overlapped to others.

6The MTEP identifies the threshold by analyzing all possible threshold
values and selecting the one resulting in the minimum overall change-detection
error compared to the reference map.
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Fig. 6. Masked log-ratio images of the six splits with the highest standard deviation selected according to the proposed split-based change-detection procedure.
(a) XC1 ; (b) XC2 ; (c) XC3 ; (d) XC4 ; (e) XC5 ; (f) XC6 .

Fig. 7. Test-site associated with split “A” (sea pixels are masked). (a) Log-
ratio image, and (b) reference map (the narrow strip of unchanged pixels
between the area of change and the sea mask is due to the unchanged sea pixels
in the margin).

Table I shows the threshold values that are obtained by
applying the KI algorithm independently to the considered
splits. As one can see, due to the nonstationarity of the statistical
properties of the classes of interest in the spatial domain of
the image and to different approximations of the thresholding
algorithm in different splits, slightly different threshold values
(in the range of 147–166) were obtained.

The results that were obtained on each split were used for
computing the final threshold value with the proposed Med-
SBA and Mean-SBA strategies. As shown in Table II, both
strategies resulted in a threshold value (i.e., 155) that is close
to the optimal threshold that was obtained manually (153 for
split A and 157 for split B). Thus, the overall error on split A
(i.e., 3459) and B (i.e., 553) for both the Med-SBA and the
Mean-SBA shows small differences with the overall error that

Fig. 8. Test-site associated with split “B” (sea pixels are masked). (a) Log-
ratio image, and (b) reference map (the narrow strip of unchanged pixels
between the area of change and the sea mask is due to the unchanged sea pixels
in the margin).

TABLE I
THRESHOLD VALUES FOR THE SIX SPLITS HAVING THE HIGHEST

PROBABILITIES TO CONTAIN CHANGED PIXELS

(SINGLE-THRESHOLD EXPERIMENT)

is obtained by the MTEP on the two splits, respectively. The
results that are obtained with the J-SBA are slightly better than
those that were obtained with the Med-SBA and the Mean-SBA
on both splits, as the threshold value (i.e., 154) is closer to the
optimal one (i.e., 153).

From Table II, it can also be concluded that all the proposed
SBAs performed better than the change-detection analysis that
is applied separately to splits A and B. In greater detail, one can
observe that, on split A, despite the relative high ratio between
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TABLE II
THRESHOLD VALUES T̂ , FALSE ALARMS, MISSED ALARMS, AND

OVERALL ERRORS THAT ARE OBTAINED WITH THE SPLIT-BASED

APPROACH AND THE THREE PROPOSED COMBINATION STRATEGIES;
THE THRESHOLDING ALGORITHM THAT IS APPLIED TO THE WHOLE

IMAGE; THE THRESHOLDING ALGORITHM THAT IS APPLIED TO

SPLITS “A” AND “B”; AND THE OPTIMAL MANUAL

TRIAL-AND-ERROR PROCEDURE

the prior probability of the change and no-change classes, the
computed threshold value (i.e., 160) resulted in a higher overall
error (i.e., 4371) than the proposed approach. The situation
is more critical when considering split B. Depending on the
very small ratio between the prior probability of the classes
of changed and unchanged pixels, in this split, the threshold-
selection algorithm did not identify any threshold value (it
recognized a situation where there are no changes).

The proposed SBA also performed better than a direct analy-
sis of the whole large-size log-ratio image, which produces the
worst results, due to the small prior probability of changed
pixels with respect to the unchanged ones. It is worth noting
that, in other experiments (not reported in this paper for space
constraints) with different despeckling filters that are applied
for the preprocessing of original images, the procedure of
threshold selection that is applied to the whole image was not
able to identify any decision threshold, while the proposed
approach still provided satisfactory results.

Aside from the numerical evaluation that is carried out on
the selected test sites (splits A and B), qualitative evaluation
of the change-detection maps that were obtained on both splits
with the proposed system was also performed (see Figs. 9
and 10). Furthermore, a qualitative analysis of the global
change-detection map that was obtained with the SBA was
performed (this map is not reported as too large). Both analy-
ses confirmed the effectiveness of the proposed SBA, which
produced satisfactory change-detection maps. In order to com-
pletely exploit prior information that is available on this specific
application, the global change-detection map can be obtained
by applying thresholding only to splits along the coast (i.e.,
splits that contain sea pixels), as, in tsunami-damage assess-
ment, we expect that changes are concentrated only along
the coast.

The aforementioned quantitative and qualitative results prove
the effectiveness of the proposed approach and its validity at
an operational level for the automatic detection of changes of
level 1.

Fig. 9. Change-detection maps obtained on split “A” with (a) the MTEP and
(b) the proposed J-SBA (the narrow strip of unchanged pixels between the area
of change and the sea mask is due to the unchanged sea pixels in the margin).

Fig. 10. Change-detection maps obtained on split “B” with (a) the MTEP and
(b) the proposed Mean- or Med-SBA (the narrow strip of unchanged pixels
between the area of change and the sea mask is due to the unchanged sea pixels
in the margin).

C. Change-Detection Results: Double-Change Identification

The second experimental setup is aimed at assessing the
effectiveness of the proposed approach in identifying both
changes of level 1 and level 2. The detection of changes of
level 2 is much more difficult than only the detection of changes
of level 1 because of two conditions: 1) The statistical distribu-
tion of the related class is highly overlapped to that of the class
of no change and partially overlapped to that of the class of
change of level 1 (see Fig. 11). 2) Not all the splits in the image
(also among the six subimages that are selected for deriving the
threshold value according to the proposed SBA) include areas
that are associated to change of level 2. This makes much more
critical the task of the automatic threshold-selection algorithm,
which in the case of double-threshold selection, is intrinsically
less robust than in the case of single-threshold selection. This
last consideration is confirmed from the results that are reported
in Table III, which show the values of the two thresholds that
are detected for the six selected splits. As one can observe, the
KI algorithm can identify the presence of two threshold values
(and, therefore, of two kinds of changes) only in three splits,
while for the remaining subimages, only one threshold value is
detected. It follows that the proposed combination strategies for
estimating the final threshold values were applied to: 1) all the
six selected splits when estimating the threshold value that is
associated with changes of level 1 (T1,i) and 2) only the three
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Fig. 11. Probability density function (PDF) of split “A” (black dashed line);
and distributions of classes of no-change (light gray line on the left side),
change of level 1 (dark gray distribution in the middle) and change of level 2
(light gray line on the right side) evaluated according to the reference map.

TABLE III
THRESHOLD VALUES FOR THE SIX SPLITS HAVING THE HIGHEST

PROBABILITIES TO CONTAIN CHANGED PIXELS

(DOUBLE-THRESHOLD EXPERIMENT)

TABLE IV
THRESHOLD VALUES T̂1 AND T̂2 AND OVERALL ERRORS THAT ARE

OBTAINED WITH THE PROPOSED SPLIT-BASED APPROACH; THE

THRESHOLDING ALGORITHM THAT IS APPLIED TO THE WHOLE

IMAGE; THE THRESHOLDING ALGORITHM THAT IS APPLIED

TO SPLITS “A” AND “B”; AND THE OPTIMAL MANUAL

TRIAL-AND-ERROR PROCEDURE

splits when estimating the threshold value separating changes
of level 2 (T2,i).

As shown in Table IV, all the three proposed SBAs are
able to properly identify the two threshold values, which are
very close to the threshold values that are obtained with the
optimal MTEP for both splits A and B. In particular, for
split A, the lowest overall error was obtained with the Med-
SBA, which resulted in 10 846 errors with threshold values of
155 and 133. These values are the closest one (among those
that were derived by the proposed combination strategies) to the
optimal result that was obtained with the MTEP, which identi-
fied the pair of threshold values 152 and 133, involving 10 631
errors. Considering split B, the best results were achieved with
the Mean-SBA, which identified threshold values 155 and 136,
resulting in 3012 overall errors. This error is very close to the
one that was yielded by the MTEP (see Table IV).

Since we have three classes, a more detailed analysis of
results can be performed by considering the confusion matrices.
Here, for space constraints, only the confusion matrices that are
associated with the change-detection maps that are obtained
with the MTEP for both splits A and B and with the Med-
SBA for split A and the Mean-SBA for split B are reported
(see Tables V and VI). All the other confusion matrices show a
similar trend. By analyzing Tables V and VI, one can observe
that, for both splits, the highest number of errors is associated
with the class of changes of level 2, which is significantly
confused with the other classes. This behavior was expected on
the basis of the complexity of the problem as information on the
changes of level 2 that are present in the original SAR images
is intrinsically ambiguous. However, these results are common
to both the proposed SBA and the optimal MTEP; therefore, we
can conclude that, in the second setup, the proposed approach
also produced satisfactory results.

In addition, in this case, all the proposed SBAs performed
better than analysis of either the whole large-size log-ratio
image or the single splits A and B independently. In greater
detail, as expected, the small prior probability of the change of
level 2 and the overlapping between its distribution and those
of the other classes resulted in the impossibility of detecting the
value of T̂2 by applying the threshold-selection algorithm to
the whole large-size log-ratio image. Concerning the change-
detection analysis performed independently on split A, the
obtained error is significantly higher than the overall errors
that were obtained with the proposed approach. Independent
threshold selection performed on split B completely failed to
identify any threshold value, while the proposed Med-SBA,
Mean-SBA, and J-SBA resulted in threshold values that are
close to the optimal ones.

In addition, for this setup, a qualitative evaluation of the
change-detection maps that were obtained with the proposed
system on splits A and B (see Figs. 12 and 13) and on the whole
large-size image was carried out. This assessment confirmed
the effectiveness of the proposed approach, which despite the
complexity of the change-detection problem associated with
changes of level 2, produced good-quality change-detection
maps. In addition, in this case, we exploited the available prior
information in the change-detection process, i.e., we applied the
proposed approach only to splits that are along the coast.

V. CONCLUSION

In this paper, an unsupervised and automatic approach for
change detection in large-size multitemporal images has been
proposed. The proposed approach automatically splits the con-
sidered difference (or ratio) image in a set of subimages (splits)
of user-defined size, which are sorted out according to their
probability to contain a significant amount of changed pixels.
The subimages that have the highest probabilities to contain
changed pixels are analyzed in order to derive the decision
threshold for generating the change-detection map. To this
purpose, two different techniques have been proposed: 1) an
independent split analysis strategy and 2) a joint split analysis
strategy. On the one hand, the joint split analysis strategy has
the advantage of jointly modeling the distributions of changed
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TABLE V
CONFUSION MATRICES FOR THE CHANGE-DETECTION MAPS THAT ARE OBTAINED ON SPLIT “A” WITH (a) THE PAIR OF THRESHOLD VALUES THAT

ARE DERIVED USING THE MTEP PROCEDURE AND (b) THE PAIR OF THRESHOLD VALUES THAT ARE OBTAINED WITH THE PROPOSED MED-SBA

TABLE VI
CONFUSION MATRICES FOR THE CHANGE-DETECTION MAPS THAT ARE OBTAINED ON SPLIT “B” WITH (a) THE PAIR OF THRESHOLD VALUES THAT

ARE DERIVED USING THE MTEP PROCEDURE AND (b) THE PAIR OF THRESHOLD VALUES THAT ARE OBTAINED WITH THE PROPOSED MEAN-SBA

Fig. 12. Change-detection maps obtained on split “A” with (a) the MTEP and
(b) the proposed Med-SBA (the narrow strip of unchanged pixels between the
area of change and the sea mask is due to the unchanged sea pixels in the
margin).

and unchanged classes by considering different portions of the
images. On the other hand, it has the disadvantage that if, the
distributions of classes are slightly different in different splits
that are extracted from the large-size image (i.e., the distri-
butions are nonstationary in the scene), the decision thresh-
old that was derived according to model-based thresholding
approaches may not be accurate (due to a poor fitting of the
joint distribution of classes to the model that is adopted for
threshold selection). The independent split analysis strategy
overcomes this disadvantage by properly applying the thresh-
olding algorithm separately to each split. It is worth noting
that possible nonstationarity in the class distributions results
in different values of the thresholds (and thus also affects
the results that are provided by the independent split analysis
strategy). However, this does not invalidate the models that are
adopted for identifying the threshold values but involves the
need to fuse the results that are obtained on different splits.

Fig. 13. Change-detection maps obtained on split “B” with (a) the MTEP and
(b) the proposed Mean-SBA (the narrow strip of unchanged pixels between
the area of change and the sea mask is due to the unchanged sea pixels in the
margin).

The proposed approach has been used to design a system for
damage assessment in relation to the tsunami that occurred in
December 2004 in Indonesia. To this purpose, proper architec-
ture that exploits the split-based change-detection system has
been defined. Experimental results confirmed the effectiveness
of the proposed approach, which detected in an automatic way
the main damaged areas. In greater detail, all the three proposed
change-detection strategies (i.e., the Mean-SBA, the Med-SBA,
and the J-SBA) identified in an automatic way the threshold
values for the detection of both changes of levels 1 and 2 that are
very close to the optimal values that can be obtained manually.
In addition, these strategies revealed to be significantly more
accurate and robust than the approaches based on both the
independent analysis of each split and the direct analysis of the
whole large-size image.
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The detection of changes of level 1 is easier due to the
good separability between the distribution of such class and that
of the no-change class, whereas the strong overlapping between
the distribution of the class of changes of level 2 and that of
the unchanged pixels makes the identification of such kind of
damages less reliable and accurate.

The experimental analysis pointed out that the proposed
method requires a computational time that is comparable or
smaller than traditional thresholding techniques. This is due
to the fact that we split the analysis in subimages, but the
additional time that is introduced by the proposed method (split
and combination) is negligible with respect to the reduction
of the time that we obtain by focusing the threshold-selection
algorithm only on a reduced number of pixels (those in the
high-standard-deviation splits) instead of on all the pixels of
the large-size image.

As a final remark, it is important to observe that, although
the proposed SBA has been used to design a system for the
detection of damages that are caused by a tsunami by using
multitemporal SAR images, potentially, it is general and can
be considered for change detection in any pair of large-size
multitemporal images. For this reason, as future developments
of this work, we plan to extend the experimental investigation to
other data sets and change-detection problems to better assess
the robustness of the approach in different scenarios.
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