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Semisupervised Classification of Hyperspectral
Images by SVMs Optimized in the Primal

Mingmin Chi, Member, IEEE, and Lorenzo Bruzzone, Senior Member, IEEE

Abstract—This paper addresses classification of hyperspectral
remote sensing images with kernel-based methods defined in the
framework of semisupervised support vector machines (SSVMS).
In particular, we analyzed the critical problem of the nonconvexity
of the cost function associated with the learning phase of S®VMs
by considering different (S>VMs) techniques that solve optimiza-
tion directly in the primal formulation of the objective function. As
the nonconvex cost function can be characterized by many local
minima, different optimization techniques may lead to different
classification results. Here, we present two implementations, which
are based on different rationales and optimization methods. The
presented techniques are compared with S*VMs implemented
in the dual formulation in the context of classification of real
hyperspectral remote sensing images. Experimental results point
out the effectiveness of the techniques based on the optimization
of the primal formulation, which provided higher accuracy and
better generalization ability than the S®>VMs optimized in the dual
formulation.

Index Terms—Hyperspectral images, remote sensing, semisu-
pervised classification, semisupervised learning, support vector
machines (SVMs).

I. INTRODUCTION

HE RECENT development of hyperspectral remote sens-

ing systems makes it possible to discriminate among land-
cover classes that are spectrally very similar. An example of
the potentials of hyperspectral sensor is given by the AVIRIS
system,! which acquires images in 220 different spectral bands
characterized by a high spectral resolution. One of the critical
issues involved by the hyperspectral sensors is related to the
problem of defining automatic classification systems based on
supervised techniques. This problem is due to two main factors.
The first factor is associated with the small ratio between the
number of training samples and the number of parameters to be
estimated in the learning of the classifier (which is proportional
to the size of the input feature vector). This problem related to
the quantity of available training data (which is intrinsic in the
high-dimensional nature of hyperspectral images) is known in
the literature as the Hughes Phenomenon [1] and results in a
decrease of both the accuracy and the generalization ability of
a classifier. The second factor is related to the quality of the
training data that often: 1) are made up of correlated samples
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taken from the neighboring areas in the same scene (this
violates the assumption of independent identically distributed
samples necessary for the definition of a proper training set) and
2) provide an incomplete description of the classification prob-
lem, as the spectral signature of classes over the spatial domain
of the scene is not stationary. These factors result in the defini-
tion of ill-posed classification problems, which are very critical
in the analysis of hyperspectral remote sensing images and
require the definition of proper classification systems. These
systems should be designed by defining proper modules of
feature extraction, feature selection, and classification. In this
paper, we focus the attention on the classification techniques.

In the literature, two main families of classification tech-
niques have been recently adopted for addressing the afore-
mentioned problems related to the analysis of hyperspectral
images: 1) the family of semisupervised statistical methods and
2) the family of kernel-based methods.

The first family of techniques is developed in the context
of statistical methods. According to the Gaussian modeling of
the statistical distributions of classes, Gaussian maximum like-
lihood classifiers are widely used for the analysis of hyperspec-
tral images. The mean vector and the covariance matrices of
classes are estimated on the basis of training samples. However,
the small ratio between the number of training samples and
the number of classifier parameters often results in unstable
covariance matrices (which, in some cases, can be singular).
This strongly affects the classification accuracy. In order to
overcome this problem, Hoffbeck and Langrebe [2] proposed to
estimate the covariance matrices by a mixture of the sample co-
variance matrix, common covariance matrix, diagonal sample
covariance matrix, and diagonal common covariance matrix.
The covariance estimation for each class in the mixture was reg-
ularized using the leave-one-out covariance (LOOC) estimate
[2]. For obtaining a classifier with improved generalization
capabilities, in [3], an LOOC-based regularized estimator was
presented in the Bayesian framework. This estimator reduces
the number of parameters to be computed, thus reducing the
variances of their estimates. Another interesting semisupervised
approach presented in the remote sensing literature exploits
both labeled and unlabeled samples for estimating the co-
variance matrices according to the expectation—maximization
(EM) algorithm [4]-[7]. In [5], Shahshahani and Landgrebe
considered multiple components for individual classes based
on Gaussian distributions. Then, additional unlabeled samples
were used for improving the estimates of the parameters (i.e.,
the mixture coefficients, the mean vectors, and the covariance
matrices) by maximizing the likelihood function given by both
the labeled and the unlabeled samples. However, the estimation
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method is very sensitive to the presence of statistical outliers
[6]. In [6] and [7], Landgrebe et al. proposed to use a robust
parameter estimation method in an iterative framework. To
limit the negative influence of semilabeled samples on the
estimate of the parameters of a Gaussian Maximum Likelihood
classifier, a weighting strategy is proposed. Here, full weights
are assigned to the training samples while the reduced weights
are given to the unlabeled samples for reducing their effects in
the estimation phase of the EM algorithm.

The second family of promising algorithms for the classifi-
cation of hyperspectral remote sensing data exploits machine
learning kernel-based methods in supervised [8], [9] and semi-
supervised settings [10], [11]. One of the most effective classi-
fiers for addressing the ill-posed classification problems is the
support vector machine (SVM). SVM is one kind of large mar-
gin classifier that exploits the kernel trick, which can implicitly
overcome high-dimensional classification problems [12]. This
property can be used to solve part of the problems induced by
the Hughes Phenomenon. However, the generalization proper-
ties of SVMs with very limited labeled samples remain poor.

In order to further alleviate the Hughes phenomenon, a
semisupervised algorithm based on SVMs [under the name
transductive SVM (TSVM)] was proposed in [13]. The idea
behind the TSVM is to find the hyperplane that separates both
the labeled and unlabeled data with maximum margin. In the
most cases, TSVMs conduct inductive learning. For this reason,
in the following, we adopt the term semisupervised SVMs
(S*VMs) for pointing out a classifier that exploits in the learn-
ing phase both labeled and unlabeled samples. Since the unla-
beled samples convey some structural information related to the
whole dataset, semisupervised methods also partially mitigate
the problem of the spatial variability of the signatures of classes.
However, with the additional penalization term of the unlabeled
samples integrated in the objective function of SVMs, the
resulting cost function of SVMs becomes nonconvex. Thus,
the presence of many local minima makes it complex to define
a proper solution to the learning problem. It is worth noting that
the S*VM:s are implemented under the cluster assumption (i.e.,
under the hypothesis that the samples in the same cluster belong
to a single class); thus, the decision boundary is properly set
in low-density regions of the feature space, owing to a well-
designed objective function. Nonetheless, different optimiza-
tion procedures can yield different results [14]. In the literature,
the SVMs are usually implemented according to the optimiza-
tion in a dual formulation (obtained by applying the Lagrange
theory to the constrained minimization problem associated with
the primal formulation) [12], [15], [16]. The same strategy is
followed for the implementation of the S3VMs, for example,
in the combinatorial optimization proposed by Joachims [17]
(which will be denoted by S>VMU &bt in this paper). It consists
of an iterative self-labeling algorithm with increasing penalty
value C* for unlabeled patterns. This algorithm has been opti-
mized and further developed to apply to the remote sensing data
in [18] and [19]. Recently, few papers published in the machine-
learning literature proposed to optimize the objective function
of SVMs directly in the primal formulation [20]-[22]. From the
analysis of the experimental results, Keerthi and DeCoste [21]
and Chapelle [22] stated that the computation complexity of
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the primal optimization is similar to that of the dual one in both
linear and nonlinear SVMs [21], [22].

In this paper, we introduce two different S*VM algorithms
for the classification of hyperspectral remote sensing data,
which are implemented and optimized in the primal formula-
tion. To achieve this objective, we include the constraints of the
labeled and unlabeled samples in the cost function, thus obtain-
ing an unconstrained optimization problem. The first presented
primal S>VM optimizes the unconstrained objective function
by the gradient descent technique, leading to the VS*VMs.
The second algorithm presented combines the VS*VMs with
a graph-based kernel matrix. This matrix (obtained by rep-
resenting data on a graph) is designed to enforce the cluster
assumption, i.e., to define the decision boundary in low-density
areas of the kernel space. Thus, this algorithm is called low-
density separation VS3VMs (LDS-VS?’VMS) [14]. Numeri-
cal experiments on real ill-posed hyperspectral classification
problems confirm the effectiveness of the presented S*VMs
implemented in the primal formulation by pointing out the
effects of the nonconvexity of the objective function on the
different techniques.

The rest of this paper is organized as follows. To make
this paper self-contained, the next section introduces the basis
of dual and primal formulations of the learning problems of
the SVMs and S*VMs. The presented implementations of the
S3VMs in the primal, i.e., VS?*VM and LDS-VS®*VMs, are
described in Section III. Section IV illustrates the data used in
the experiments and reports and discusses the results provided
by the different algorithms. Finally, Section V draws the con-
clusions of this paper.

II. SUPERVISED AND SEMISUPERVISED
SVMs: BACKGROUND

A. Problem Formulation

Let us consider a binary classification problem (for the gen-
eralization to the multiclass case, the reader can refer to [8] and
[23]). Let the given training dataset X = (x;);, X € R¥™,
be made up of n labeled samples in a d-dimensional feature
space and the associated labels y = (y;),, v; = {+1,—1}.
Let the unlabeled dataset X* = (Xz)ZgL X* € R¥*™_ con-
sist of m unlabeled samples.

The notation adopted in this paper is as follows: Bold-
faced variables (e.g., x, w) are used to represent row vectors.
Matrices are represented by calligraphic uppercase alphabets
(e.g., K). Random variables are represented by low-case alpha-
bets (e.g., ¥). The symbols 7 and R? denote the Hilbert space
and the d-dimensional feature vector space, respectively. The
symbol " denotes the transpose of a vector, || - || denotes the L2
norm, and “s.t.” represents “subject to.”

B. Linear SVMs

The standard supervised SVMs are linear inductive learning
classifiers where data in the input space are separated by the
hyperplane:

f(x)=w'x+b (1)
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with maximal geometric margin 2/||w||?, where w is a vector
normal to the hyperplane and |b|/||w||? is the perpendicular
distance from the hyperplane to the origin [15]. The objective
of the learning phase of standard SVMs is to maximize the
geometrical margin between classes in the feature space. This
is equivalent to minimizing the following objective function:

1
min {||w||2}
w 2

st VI yi(wx; +b) > 1. )

If training errors are allowed, (2) becomes as follows:

mln {|W||2 + CZ{L}

=1

S.t. V?:1 : yi(WTXi + b) >1-¢&, & >0 3)
where &; is a slack variable for the training pattern x; and
C is the penalty parameter of the loss (that plays the role of
tuning the regularization of the problem). For simplicity, we
will ignore the offset b in the following.

1) Dual Representation: To handle the formulation with the
unequal constraints (3), usually, the Lagrange theory is used.
After the computation (for details, refer to [16]), we can obtain

the following dual formulation for the optimization problem:

n 1 n o n
= Z ay — 5 Z Z yiyjaiajxiij
i=1 =1 j=1
0<a; <C 1<i<n
s.t. o] - 4
{ > i Yic; = 0. @

This is a quadratic programming problem. To make a fast
solution to the problem possible, we can adopt a sequential
minimization optimization [24] for the implementation of (4).
The optimal primal variable w can be derived in terms of
the dual variables, i.e., the Lagrange multipliers (o) ;, as
follows:

W= giaix;. (&)
i—1

After Lagrange multipliers (a;)?; are fixed, the predicted
value for a generic sample is given by

= z”: YioiX, X. (6)

Thus, the corresponding labeling is

_ 41, iff(x) >0
y=sgn[f(x)] = { —1, otherwise. @)

2) Primal Representation: An alternative implementation
of SVMs is to use other optimization techniques (like gradient
descent [25]) directly in the primal representation. We can
define the slack variable for a given sample x; as follows:

& :max{O,l —yi(w'x; +b)}. (8)
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Fig. 1. Losses in the SVM objective function (10). If p = 1, we obtain
the hinge loss represented with the solid curve; and if p = 2, we obtain the
quadratic loss represented with the dashed curve.

For the simplicity, we will ignore the bias b in the following as
it can be easily calculated by an algebra operation. Accordingly,
we can express all the constraints for the training samples in a
loss function, e.g.
H,(y,t) = max(0,1 — yt)*. ©)
If p = 1, the hinge loss is used (cf. the solid curve in Fig. 1),
while if p = 2, a quadratic loss is used (cf. the dashed curve in

Fig. 1). Accordingly, it is easy to rewrite the objective function
(3) in terms of a loss function as follows:

1 n
SIWIP+C D Hy(yi, w'i). (10)

i=1

In this case, given the vector w, we interpret a labeled sample x;
as a support vector if y; f(x;) < 1, i.e., the loss on this sample
is not equal to zero [22]. Note that (10) is an unconstrained
optimization problem. It is worth mentioning that a hard margin
SVM is a special case of the soft margin SVM when C' < co.

If a gradient descent optimization technique is used for the
implementation of (10), we can take into account the quadratic
loss, as the hinge loss is not differentiable. Then, the gradient
of (10) with respect to w is given by

V=w-+ ZCZHé(quTXi)ini

(11)
i=1
where
dHs (y;, f(x;
Hj(yi, W' x;) = 26(;(;5)())
21— f(x), f(xi)<1
B {0’ Fx) >1. 12

At the optimal solution w*, the first order vanishes such that
Vw+ = 0. Hence, we have

= 72CZH2 yi, WX )yiX; = (13)

Z BiX;.
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If we express the w value in the original cost function (10)
in terms of x, we can write

1 n n n
5 Z ﬂiﬁjX;Xj + CZ H2 Yis Z /BjX;er . (14)
i=1 j=1

7,j=1

In this way, we can confine the solution from the whole space
) associated with w to a smaller space €); associated with
(. In the next section, we can further see the advantage of
this replacement. Since Hs is first-order differentiable, we can
optimize (14) by the gradient descent. Accordingly, we can find
the equivalent solution of (10) with respect to 3 in (14). For the
details, the reader can refer to [22].

After obtaining the solution for 3, we can predict the value
for a test sample by using the following equation:

fx) = Bix/x. (15)
=1

C. Nonlinear SVMs

In real applications, usually, data are not linearly separable in
the input space. However, if data can be mapped into a higher
(or infinite) dimensional feature space (e.g., Hilbert space H)
with a nonlinear mapping function ®(-), a linear hyperplane
can be defined in the new space.

In both the dual and primal SVMs, the predicted value f(x)
[see (6) and (15)] is a linear combination of inner product
between the given sample and the training samples. With the
nonlinear mapping and kernel tricks, we can replace the inner
product of mapped samples with a kernel function, i.e.,

k(x;,x) = (@(xi)Tq)(x)) (16)

"
As it turns out, the number of operations required to compute
the inner product by evaluating the kernel function is not nec-
essarily proportional to the number of features [16]. Hence, the
use of the kernel trick in the sparse representation potentially
circumvents the high-dimensional feature problem inherent in
ill-posed problems.

1) Dual Representation: Regarding the dual formulation of
nonlinear SVMs, the inner product between a pair of patterns
in (4) can be replaced with (16) as follows:

Lla) = Zo‘i - %Zzyiyjaiajk(xivxj)
i=1

i=1 j=1

1<i<n

<o <
St {O cai<C (17)

Yo yia; = 0.

After the optimization procedure on (17), the predicted value
for a generic sample is given by

Fx) = piaik(xi, x). (18)
=1
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2) Primal Representation: The kernel trick can be used
for the primal formulation of the nonlinear SVM, where the
inner product in (14) is replaced with a kernel function (-, -),
ie., with k(x;,x;) = (®(x;) " ®(x;))s in a Hilbert space H.
Hence, we can implement the SVM in the kernel space H with
the minimization of

1 n
S8 KB+CY Hs (v, K] ) (19)

i=1

where K; = [k(x;, x;)]}—, € R™*! is the ith column of K =

[k(xi,%;)]} ;=1 € R™ ™. Itis worth noting that the linear SVM

is a special case of the nonlinear SVM with a linear mapping.
Like in linear SVMs, the predicted value for a test sample

can be obtained by

f(x) = Zﬁik(xi,x). (20)
i=1

D. S3VMs in the Dual

As discussed in the introduction, in hyperspectral image clas-
sification, it is often difficult to obtain enough labeled patterns
to properly train SVMs. Although standard supervised SVMs
are characterized by a good generalization ability, the empirical
risk may have large deviations when the ratio between the num-
ber of training samples and the number of classifier parameters
(which is proportional to the number of input features) is very
small. In addition, the problem of small-size training dataset
may force an arbitrary large margin in supervised learning. This
may result in a low classification accuracy as well as in poor
generalization capabilities. To address this problem, algorithms
implementing the large margin principle on both labeled and
unlabeled samples have been introduced in [13] under the name
TSVMs and implemented in [17] and in [26] and [27] under the
name of S>VMs. In this paper, we use the latter since it better
represents the properties of the presented algorithms.?

Unlabeled (x;)7%" | samples can be also taken into account
by defining a cost function with an additional term with respect
to the supervised case (3). The objective of S3VMs can be
written as

1 2 ! *
{2||W|| +C;§i+c

min ’
w€7(y1)zi,:11 i=n+1
VR W X > 1 - & & >0
s.t. i=1 I L= v ‘ 21
{V?jﬁl LYW x> 11— &, & > 0. @h

In greater detail, similar to the supervised SVMs, to be able
to handle nonseparable training and unlabeled data, the slack

2In the literature, semisupervised learning commonly refers to the employ-
ment of both labeled and unlabeled data for training and contrasts supervised
learning (in which all available data are labeled) or unsupervised learning
(in which all available data are unlabeled). Transductive learning, instead, is
in contrast to inductive learning [28, Ch. 24 and 25]. A classifier is transductive
if it only works on the labeled and unlabeled training data and cannot handle
unseen data. Nevertheless, under this convention, TSVMs are actually inductive
classifiers. The name TSVM originates from the intention to work only on the
observed data.
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variables ()7, and (&)77", and the associated penalty
values C' and C* are introduced. Also in this case, the Lagrange
theory can be applied to (21) so that we can address the
optimization problem in the dual formulation in the nonlinear
case (according to the use of kernel functions) as follows:

n+m n n
= Z o; — ;(ZZyiyjaiajk(xi,xj)
i=1 i=1j=1
n n+m
+QZ Z yiyjaiajk(xi,xj)

i=1 j=n+1

n+m n+m
+ Z Z yz'yjaiajk(xuxj))
1=n+1j=n+1
Vi, 0<a; <C
st {VHEm i 0< o <O

Z::{n yio; = 0.

Joachims [17] proposed a combinatorial optimization tech-
nique to implement (21) that is based on an iterative algorithm.
At the initial iteration, standard SVMs are used to obtain an
initial separating hyperplane based on the training data alone
(xi)_,, and “pseudo” labels are given to the unlabeled samples
(x;)74™ .. In this way, the unlabeled samples obtain the la-
beling information and are thus called semilabeled data. Then,
the solution is improved by switching the labels of unlabeled
samples to decrease the value of the objective function. In the
meanwhile, the influence of unlabeled samples is increased in
the iterative strategy. This strategy is iterated until convergence
[17]. Such an implementation technique is called S*VMslight 3
The above technique was modified and extended to the classi-
fication of multispectral remote sensing images in “ill-posed”
multicategory problems in [11].

Finally, after Lagrange multipliers c; and (yz)fiﬁ_l are fixed
in the semisupervised process, the output of the SVM can be
computed as

(22)

n+m

Fx) =Y aiyik(xi,x). (23)
i=1

III. S3VMS IN THE PRIMAL: AN EFFECTIVE
ALTERNATIVE TO THE DUAL FORMULATION

Similar to supervised SVMs, the S3VMs characterized from
the objective function in (21) can be developed directly in the
primal formulation. To this end, all the constraints for labeled
and unlabeled samples should be included in the objective
function by rewriting (21) as follows:

1 n n+m
§||W||2+CZHp(yi,WTXi)+C* > Hy (1 lw'xil).
i=1 i=n+1

(24)

3 Available at http:/svmlight.joachims.org/.
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Fig. 2. Losses for unlabeled samples in (24): Symmetric hinge loss (the solid
curve) and alternative Gaussian approximation loss (the dashed curve).

Since the loss function of the unlabeled samples is nonconvex
(e.g., if p = 1, the symmetric hinge loss curve reported in Fig. 2
is obtained), the objective function of S3VMs with additional
unlabeled samples in (24) is also nonconvex [14], [17]. Thus,
the optimization becomes difficult since many local minima
could characterize the optimization phase. The effect of this be-
havior is that different implementation techniques can provide
different results. Nonetheless, we believe that the objective of
S*VMs is well-designed [29], as the S*VMs combine powerful
regularization-based SVMs with the cluster assumption [14],
which states that two samples in the same cluster are likely to
have the same label. In other words, the decision boundary of
the S*VMs is prone to lie in low-density regions of the feature
space. For this reason, it is important to better analyze the
optimization problem of the S*VMs [14].

What follows introduces two different implementation tech-
niques, i.e., VS3VM and LDS-VS3VM, that are promising for
analyzing the hyperspectral data.

A. S3VMs With Gradient Descent Optimization: YV S>VMs

To implement (24), different optimization techniques, such
as the gradient descent algorithm [30], can be used. However,
since the last term in (24) is not differentiable, in order to
make the application of the gradient method possible, it should
be replaced with a differentiable function. Thus, (24) can be
approximated with the following equation:

n+m B
> Hw'x) (25

i=n+1

1 - \
§||W||2 + CZH2(%WTX¢) +C

i=1

where H (t) is an approximation form of the symmetric hinge
loss for the unlabeled samples. This approximation is defined
by ﬁ(t) := exp(—st?), where s is a constant. For instance,
when s = 3, a Gaussian approximation of the symmetric hinge
loss for the unlabeled data is obtained (see the dashed curve in
Fig. 2). To better use the gradient descent, the labeled samples
are associated with a quadratic loss.
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The gradient of (25) with respect to w is given by

n

V=w+ ZC’ZHé (i, f(x:)) yixi
i=1

n+m

—2s5C* Z H (f(x:)) (W x3)x.

i=n—+1

(26)

At the optimal solution w*, the gradient vanishes such that
Vw+ = 0. Hence, the optimum value is a linear combination
of all training samples as follows:

n+m
w = Z Bix;. 7
i=1
Like in supervised SVMs, replacing (27) in (25), we have
n—i—m nt+m
s Z ﬁzﬂ]x X +CZH2 Yis Z ﬁzx X
4,j=1
n+m n+m
ce > H Z Bix] x; (28)
1=n+1

We term such S®VM optimized by gradient descent as VS3VM.

Let us now consider nonlinear S*VMs, where the inner
product is replaced by a kernel function and we can solve this
problem in an associated Reproducing Kernel Hilbert Space .
We can rewrite (28) as

rH—rrL n+m
7Zﬁz Xza' Zﬁ] ij'
n+m
—l—CZHg Yis Zﬂ k(x;, %)
i=1 j=1
n+m n+m
Z H Z Bik(x:,%;)
1=n—+1
1 ~ n . n+m o
= 5BTKﬁ+c;H2<yi7Kiﬂ>+C*i§1H(Kiﬂ>
(29)

where the kernel matrix K is defined by K = [k(x;, xJ)}Z';L"'l
and Ki is the ith column of K. Since H. 5 and H are first-order

differentiable, we can optimize (29) by the gradient descent.

B. LDS-VS2VMs

In this section, we introduce an S?VM algorithm that en-
forces the cluster assumption by changing the data represen-
tation on a graph.

1) Graph-Based Kernel: In order to better implement the
S3VMs, the data can be represented on a graph to enforce
the cluster assumption, such that the decision boundary can
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be defined between clusters, i.e., in low-density regions of
the feature space (cluster assumption). Chapelle and Zien [14]
proposed to represent the data on a graph and then considered
the density between a pair of patterns along a path in the whole
dataset.

Let the graph G = (V, E) be derived from the labeled and un-
labeled datasets such that the vertices V' are the data points, and
symmetric edges (i, j) € E (weighted by W;;) are connected
by a pair of vertices. If a fully connected graph is considered,
edges are connected by the vertices to all the remaining ones.
If sparsity is desired, edges can be put only between the ver-
tices that are nearest neighbor (NN) [e.g., thresholding degree
(k-NN)* or the distance (e-NN)°]. The edge weight W;; is a
measure for the similarity between the two vertices x; and x;.
For instance, if we use the Gaussian kernel, and if the distance
d;; between vertices x; and x; is defined by Euclidean dis-
tance d;; = ||x; — x;||?, then we have the weight value W;; =
exp(—di;/27).

Let us assume that, on the one hand, if a pair of patterns
(vertices) are in the same cluster, then there exists a path
connecting them such that the data density along the path is
high. On the other hand, if two patterns are in different clusters,
there exists a low-density area somewhere along the path. If
the minimum density along a path ¢ is assigned with a score
marked as S(q), then the path ¢ connecting the vertices x; and
x; within the same cluster has a high score; otherwise, if the
path goes between clusters, there does not exist such a path with
a high score. Let P;; denote the set of the shortest paths® with
respect to the density connecting the two vertices x; and x; on
agraph G = (V, E), and p € V! be a set of [-tuples of vertices
along one path g, which is one of the paths F;;. Consequently,
we can define the similarity between a pair of vertices to
maximize the scores in all paths, i.e., maxgcp,, {S(q)}. This
path-based similarity measure is described in [32]. The length
of the path is represented as |¢|. A path g is said to connect the
vertices xp, and x, . with (X,,,%p, ;) € E for 1 <k <q|.
Fischer et al. [32] defined the dissimilarity between vertices x;
and x; in a way that the maximum distance is estimated for a
pair of vertices along one path ¢, i.e., d; := maxy |q| dxpkxpk+1
to be a new distance between vertices x,, and x,, . Then, the
minimum distance among the maximum ones in all the paths
is the final measure of the dissimilarity between vertices x;
and x;. Hence, we have

di; = max {S(q)} = exp {—217 (mln d )} (30)

qEPLJ q Pw

This is called connectivity kernel, which is positive definite
[32]. However, from (30), we can see that the kernel values do
not depend on the length of the paths. If a path connects two

“Vertices x; and x; are connected by an edge if x; is in the k&-NN of x; or
vice versa. k is a hyperparameter that controls the density of the graph. k-NN
has the nice property of “adaptive scales,” because the neighborhood radius is
different in low and high data density regions.

SVertices x; and x; are connected by an edge if the distance d;; < €. The
hyperparameter € controls neighborhood radius. Although e is continuous, the
search for the optimal value is discrete.

SWhich can be computed by the Dijkstra’ algorithm [31].
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Fig. 3. LDS-VS3VMs: Example of a simple graph with three paths connect-
ing the vertices x1 and x4.

TABLE 1
LDS-VS3VMs: EXAMPLE OF THE DISTANCE OF ALL THE PATHS
CONNECTING THE VERTICES X1 AND x4 (CF. FIG. 3)
ACCORDING TO DIFFERENT p VALUES

p df;dm dgdash dgsohd di)4
0 13.5 11.4 11 11
0.1 | 10.93 | 10.16 11 10.16
1 8.52 9.22 11 8.52
oo 8.5 9.2 11 8.5

vertices in two clusters, like a bridge to connect two clusters, the
similarity might be taken from this path. To avoid this problem,
we “soften” dg, i.e.,

lg|-1
1
d=-In|1+) (e”d"pk*mﬂ - 1) 31)
p k=1
Thus
d?; = min (d2)”. (32)

qePp;;

If p — 0, dfj becomes the sum of the original distance along the
path g; if p — o0, (30) is recovered. If p is in a range between
0 and oo, a value between the maximum and the minimum will
be obtained for dfj. For example, Fig. 3 shows a simple graph
with four vertices, where there exist three paths to connect the
vertices X1 and X4: qqot : X1 — X2 — X4 (shown on the dotted
curve in Fig. 3), qqash : X1 — X3 — X4 (shown on the dashed
curve in Fig. 3), and gscliq : X1 — X4 (shown on the solid curve
in Fig. 3). The distance between the pairs along the three paths
is also assigned in Fig. 3. The final distance df, between the
vertices x; and x4 according to different p is shown in Table I.
From the experimental analysis, the value p turns out crucial for
obtaining good results.

2) LDS Algorithm: Since the distance between a pair of
vertices is softened, it comes out that the kernel matrix K is
not positive definite, except for two extreme cases: p = 0 and
p = 00. One possible solution is to use the multidimensional
scaling (MDS) [33] to find a Euclidean embedding of D°”.
Then, the embeddings found by the MDS are the eigenvectors
corresponding to the positive eigenvalues of —H D” H, where
H,;=6;;—1/(n+m). For detail, the reader is referred to [14].

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 45, NO. 6, JUNE 2007

The LDS-VS?VM algorithm is summarized in the following.
Require: (Xi);lilm’ (yi)?=1’ v P

1) Build the NN graph G from all labeled and unlabeled
data.

2) Compute the n X (n + m) distance matrix D? of the
minimal distance according to dfj in (32) from all
labeled points to all the points.

3) Perform a nonlinear transformation on D’ to get

the kernel matrix K = (k(xi,xj))Z’j”:T” with the
Gaussian function:
dP.
k(x;,%x;) = exp —2—: . (33)

4) Apply MDS to K, then take the first p components to
form a new kernel matrix K.

5) Train VS®*VM with K on 29).

6) return [3*.

IV. EXPERIMENTAL RESULTS
A. Dataset Description

The data analyzed in this paper were acquired by the NASA
EO-1 satellite over the Okavango Delta, Botswana, in May
2001. The Hyperion sensor on EO-1 acquired the hyperspectral
image at 30-m pixel resolution over a 7.7-km strip in 242
bands covering the 400-2500-nm portion of the spectrum with
windows of 10 nm.

Preprocessing of the data aimed to mitigate the effects of
bad detectors, interdetector miscalibration, and intermittent
anomalies was carried out at the University of Texas (Center for
Space Research) [34]. Uncalibrated and noisy bands that cover
water absorption features were removed, and the remaining
145 bands ([10-55, 82-97, 102-119, 134-164, 187-220]) were
given as input to the classification system. Fourteen classes
were defined representing the land-cover types in seasonal
swamps, occasional swamps, and drier woodlands located in
the distal portion of the Delta. These classes were chosen to
reflect the impact of flooding on vegetation in the study area.
The class names and the corresponding numbers of samples
included in the training and test sets are reported in Table II.
Classes 3 and 4 are both floodplain grasses that are seasonally
inundated, but differ in their hydroperiod (the amount of
time inundated). Classes 9, 10, and 11 represent the different
mixtures of acacia woodlands, shrublands, and grasslands.
Training data were selected manually using a combination
of GPS located vegetation surveys, aerial photography from
the Aquarap (2000) project, and 2.6-m resolution IKONOS
multispectral imagery. For greater details on this dataset, we
refer the reader to [34].

To study the effects of the nonstationary spectral signatures
of classes, two different datasets were defined based on the
selection of different kinds of test samples. The first one is
the spatially adjoint (SA) dataset, where training and test data
are collected in the neighboring areas and, therefore, represent
similar realizations of the spectral signatures of classes. The
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TABLE II
DISTRIBUTION OF SAMPLES IN THE ORIGINAL TRAINING DATASET,
THE SD TEST DATASET, AND THE SA TEST DATASET

Class|Name ||Training Set| SD Test Set ! |SA Test Set 2
1 Water 270 126 68
2 Hippo grass 101 162 26
3 Floodplain grassesl 251 158 63
4 Floodplain grasses2 215 165 54
5 Reedsl 269 168 68
6 Riparian 269 211 68
7 Firescar2 259 176 65
8 Island interior 203 154 51
9 Acacia woodlands 314 151 79
10 |Acacia shrublands 248 190 62
11 Acacia grasslands 305 358 77
12 |Short mopane 181 153 46
13 |Mixed mopane 268 233 67
14 |Exposed soils 95 89 24

second one is the spatially disjoint (SD) dataset, where test and
training data are acquired in different areas, thus representing
possible spatial variabilities of the spectral signatures of classes.

1) SA Data: For this dataset containing 3248 labeled sam-
ples, ten randomly sampled partitions of the training data were
subsampled such that 75% of the original data were used
for training and 25% (818 samples) for testing. In order to
investigate the impact of the quantity of labeled data on clas-
sifier performance, these training data were then subsampled
to obtain ten splits made up of 50%, 30%, 15%, and 5% of
the original labeled data. To simulate strongly the ill-posed
problems, in this paper, only small-size training sets made up
of 5% (156 samples) of the original labeled data are taken
into account for the learning. For this dataset, ten sets of 5%
labeled samples are used for the learning and 25% of test
samples are used as unlabeled patterns for the semisupervised
learning. All classifiers were evaluated using the ten sets of
test data containing 25% of the original labeled samples. For
a comparison, the classification accuracies obtained using the
supervised classifiers with different ratios of training samples
are also reported.

2) 8D Data: Often, the training and test data are spatially
correlated and, thus, can be assumed to be the samples extracted
from the same distribution. However, in practice, it is important
to estimate how a classifier performs in areas that are somewhat
different from those of training sites, where the spectral signa-
tures of classes may have different behaviors. With this goal
in mind, a spatially disjoint test set containing 2494 samples
was also defined from a geographically separate location at the
Botswana site and used to evaluate the classifiers mentioned
above [34]. In this dataset, the training data are the same as
those of the SA dataset, i.e., they are made up of 156 labeled
samples.

B. Model Selection

Before model selection, all the data were normalized to
a range [—1,+1]. In the semisupervised setting, the training
dataset contains labeled samples and unlabeled samples (which
are test samples used without any label). In the following exper-
iments, for the SA dataset, the training data include 156 labeled
samples and 818 unlabeled/test samples; for the SD dataset, the
training data include 156 labeled samples (the same as those
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of the SA dataset) and 2494 unlabeled samples. For both SA
and SD datasets, we assume that the test data correspond to
the unlabeled data (which are used without their labels in the
learning phase).

Besides the presented VS3VM and LDS-VS?VM, for a com-
parison, we also conducted experiments with the supervised
SVMs and the benchmark algorithm S3VMY#&" (implemented
in the dual formulation of the objective function).

Concerning the model selection, for the sake of computation
complexity, the leave-one-out validation is not applicable to
S3VMs. Since the size of the labeled samples is limited, also
the holdout validation is not reliable in semisupervised learn-
ing. In this paper, in order to obtain a tradeoff between the
aforementioned techniques, cross validation is adopted. To be
fair in the comparison, cross validation is also considered in the
supervised learning. In greater detail, a small-size labeled set is
randomly divided into n folds (in all the experiments, fivefold
cross validation was used). Then, one of n folds is defined as
the test set, and the remaining (n — 1) folds as the training set.
In the semisupervised setting, the semisupervised algorithm is
applied to the labeled set and the unlabeled samples. After the
semisupervised learning, the test error can be estimated. Once
all the folds as test sets are evaluated, the model with the lowest
average error over the n results obtained by the n test sets was
selected as the final one.

Gaussian radial basis function (RBF) kernels are chosen
for all the experiments since they are good general purpose
kernels.” In supervised SVMs (primal SVMs are used in the ex-
periments), two hyperparameters, i.e., y (spread of the Gaussian
kernel function) and C' (regularization parameter) should be
selected by model selection. In SVMY&" | the penalization
parameter C* of the unlabeled samples is fixed starting from
a very small value and reaching the same value as that of the
labeled samples at the convergence of the iterative strategy.
Thus, the same two hyperparameters as those of supervised
SVMs are involved in the model selection. In VS*VM and
LDS-VS®VM, the penalization parameter of unlabeled samples
C* is also derived in the model selection. To deemphasize
the influence of the unlabeled samples, C* should be smaller
than that of the labeled samples. Consequently, a proportion
of C, termed as C), is considered instead of C* as one of
hyperparameters such that C* = C' x C),. For LDS-VS*VM,
two additional hyperparameters p and k (i.e., the number of
neighboring samples for constructing a graph) should be de-
rived in the model selection. If £ = oo, a fully connected graph
is taken into account. Table III lists the hyperparameters used
in all the algorithms considered in this paper, while the range
of values used for the grid search strategy adopted for model
selection is listed in Table I'V.

C. Experimental Results

To validate the performance of the presented methods, we
conducted several numerical trials. Experiments were carried

71t is worth noting that in some experiments on hyperspectral data poly-
nomial kernels outperformed RBF kernels. However, the optimization of the
choice of the kernel function is outside the scope of this paper.
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TABLE III
HYPERPARAMETERS USED FOR THE ALGORITHMS
CONSIDERED IN THIS PAPER

Algorithm Hyperparameters

SVMs v, C

§3yMLight 5, C

VS3VM v, C,Cp

LDS-VS3VM | v, C, Cp, p, k
TABLE 1V

SEQUENCE OF VALUES FOR HYPERPARAMETERS IN THE MODEL
SELECTION PROBLEM WITH A GRID SEARCH STRATEGY

Hyperparameters | Grid range
Nl 20, 21, 22, 23, 24 25
C 10, 100
Cp 0.1, 1
P 0, 272, 2-1 90 2l 92 93
k 10, 20, 50
TABLE V

AVERAGE OVERALL TEST ERROR OVER TEN SPLITS FOR SA AND SD
TEST SETS PROVIDED BY S3VMUight 7§3vM, LDS-VS3VM,
AND STANDARD SUPERVISED SVMs (MODEL SELECTION
WAS CONDUCTED OVER TEN SPLITS)

Dataset Average Overall Error (%)

Supervised Semi-Supervised SVMs

SVMs  |[$3vMEEh 7 S3VM LDS-VS3VM
Spatial Adjoint (SA)|[ 10.02 10.23 8.77 8.77
Spatial Disjoint (SD)] 2928 || 28.14 | 26 26.85

out using SVMs, S*VMUght  7S3VM, and LDS-VS*VM on
the hyperspectral remote sensing data considered.

For solving the multiclass problem, we used the one-versus-
rest combination strategy [11], [23] for all the algorithms.
Regarding the SA and SD datasets, the average test error
over the ten experiments conducted with each classification
techniques is listed in Table V. The model selection was carried
out over ten splits.

Regarding the SA dataset, one can see from the table that,
although the classification accuracy is already good for standard
supervised SVMs, all the S*VMs in the primal outperformed
standard SVMs. Only S3VMUY&ht (which is optimized in the
dual) slightly decreased the classification accuracy. In greater
detail, the LDS-VS?*VM algorithm detects the best model when
the parameter p = oo. For this reason, VS*VM is recovered
from LDS-VS®VM; thus, the corresponding two test errors are
the same.

As regards the SD dataset, the classification accuracy is
significantly degraded due to the different characteristics of
the training and test datasets (which mainly depend on the
nonstationary behaviors of the spectral signatures of land-
cover classes). Also on this dataset, the S*VMs outperform
the SVMs by significantly increasing the gap of accuracy with
respect to the SA dataset. In this case, VS3VM obtained the
best classification accuracies. Although LDS-VS?*VM with five
hyperparameters has more chance to obtain better classification
results, the slightly lower accuracy provided by this technique
with respect to the VS*VM depends on both the complexity
of the model-selection procedure for the LDS-VS3VM and
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Fig. 4. Average test errors over ten splits provided by the supervised SVMs
versus different proportion of original labeled set (i.e., 5%, 15%, 30%, 50%,
and 75%). The lowest test error obtained by primal S3VM (i.e., VS3VM) with
5% of original labeled samples is reported as baseline.

TABLE VI
TEST ERROR PER SPLIT FOR SD DATASET WHEN THE MODEL
SELECTION IS OPTIMIZED SEPARATELY ON EACH SPLIT

Split Average Overall Error (%)
SVMs  S3VMLight  ¥YS3VM  LDS-VS3VM

1 29.75 25.7 26.66 20.81
2 2791 25.62 25.02 22.01
3 26.06 259 22.98 19.33
4 29.71 26.58 24.42 23.78
5 28.35 29.95 19.97 20.33
6 28.55 27.95 23.98 21.21
7 30.59 31.68 26.1 26.38
8 27.79 27.06 25.06 24.9
9 28.35 30.35 26.58 26.94
10 30.15 29.51 2474 22.41
Average | 28.72 28 24.55 22.81

the suboptimal global procedure adopted. For this reason, the
n-fold cross validation could not detect the best model for the
test (unlabeled) set.

In order to further observe the effectiveness of the pre-
sented algorithms for addressing the ill-posed problems, we
also conducted experiments using the supervised SVMs with
different proportions of labeled samples (i.e., 15%, 30%, 50%,
and 75% of original 3248 labeled samples). The lowest error
with 5% original labeled set obtained by VS3VM is reported
as a baseline in Fig. 4. As one can see from the figure, in the
semisupervised setting, the average overall test error obtained
with only 5% of original labeled samples is almost equal to
the error yielded with 50% of original labeled samples in the
supervised setting. This further confirms the effectiveness of
the proposed techniques.

To better evaluate the effect of model selection on the clas-
sification accuracies, Table VI reports individual test errors
yielded by optimizing the model selection on each split (and not
globally as in the previous experiments). For most of splits, the
LDS-VS*VM algorithm obtained the lowest error. In particular,
the LDS-VS?VM algorithm decreased the average test error
over the ten splits of 5.91% with respect to that provided by
the supervised SVMs. This further confirms the effectiveness
of the presented S>VMs for the classification of hyperspectral
remote sensing data.
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D. Computational Complexity

The presented S*VMs in the primal exploit the gradient
descent technique. Thus, they have a computation complexity
which is cubic with the number of labeled and unlabeled
samples, i.e., O((n +m)3). By analyzing in greater detail
the computational complexity of the presented VS*VM and
LDS-VS3VM, we can state the following.

1) VS*VM

The time complexity of a gradient descent algorithm is
approximately equal to that of evaluating the cost func-
tion multiplied by the square of the number of variables,
ie., O((n+m)3).

2) LDS-VS*VM

The computation of this algorithm is made up of three

parts.

a) Search of closest neighbor vertices with Dijkstra’s
algorithm. This results in a complexity

O (IE| + (n + m)log(n +m))

for computing the path distances of one labeled sam-
ple to the remaining ones. Thus, it takes O(n(n +
m)(k + log(n +m))) on a k-NN graph for the entire
matrix D”.

b) Compute VS3VM, i.e., O((n +m)?).

¢) Apply MDS. It has the same complexity of VS*VM
since it computes the eigendecomposition of an (n +
m) square matrix.

The complexity associated with the last two items can

be reduced if one considers only the first p eigenvectors.

Thus, the total complexity becomes

O (n(n+m) (k +log(n +m)) + 2p(n +m)?)..

V. DISCUSSION AND CONCLUSION

This paper has introduced different implementations of
S3VMs (defined in the primal formulation of the optimization
problem) for classification of hyperspectral remote sensing
images. Since the objective function of S*VMs is nonconvex,
the solution to the learning problem can be associated with
many local minima of the cost function rather than with a
global minimum as in supervised SVMs. This behavior does
not depend on the use of an improper objective function, but
from an intrinsic problem of S*VMs. This is confirmed from
the fact that the objective function of S*VMs is implemented
under the cluster assumption, i.e., in the proper hypothesis
that samples in the same cluster belong to the same class.
The aforementioned behavior of the objective function results
in the effect that different optimization techniques may yield
different results. For this reason, in alternative-to-standard
dual optimization, we analyzed the problem of the learning
of S3VMs directly in the primal formulation by presenting
two different algorithms: VS*VM and LDS-VS®*VMs. The
VS®*VM optimizes the cost function of S*VMs with the gra-
dient descent technique. To enforce the cluster assumption of
S3VMs, the data can be represented on a graph in order to
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set decision boundaries in low-density regions. This defines
the LDS-VS3VM algorithm. The accuracy and the reliability
of all the presented S*VM algorithms have been evaluated on
real hyperspectral remote sensing data, in the presence of ill-
posed classification problems. From an empirical experimen-
tal analysis, the primal S*VMs obtained higher classification
accuracies than those provided by both S®VMs in the dual
and supervised SVMs. Furthermore, the experimental results
confirm that different implementations can involve different
solutions (associated with different local minima). This further
justifies the need for studying the different implementation
of S3VMs.

As future developments, we are now investigating other
optimization techniques (i.e., simulated annealing, stochastic
gradient, and genetic algorithms) to further analyze the non-
convex problem with many local minima of S3VMs [35], [36].
In addition, as changing data representation can help the clas-
sification process, we are studying the possibility to generate
different data representation for solving the learning problem.
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