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Abstract—This paper addresses unsupervised change detection
by proposing a proper framework for a formal definition and a
theoretical study of the change vector analysis (CVA) technique.
This framework, which is based on the representation of the CVA
in polar coordinates, aims at: 1) introducing a set of formal defi-
nitions in the polar domain (which are linked to the properties of
the data) for a better general description (and thus understanding)
of the information present in spectral change vectors; 2) analyzing
from a theoretical point of view the distributions of changed and
unchanged pixels in the polar domain (also according to possible
simplifying assumptions); 3) driving the implementation of proper
preprocessing procedures to be applied to multitemporal images
on the basis of the results of the theoretical study on the distribu-
tions; and 4) defining a solid background for the development of
advanced and accurate automatic change-detection algorithms in
the polar domain. The findings derived from the theoretical analy-
sis on the statistical models of classes have been validated on real
multispectral and multitemporal remote sensing images according
to both qualitative and quantitative analyses. The results obtained
confirm the interest of the proposed framework and the validity of
the related theoretical analysis.

Index Terms—Change detection, change vector analysis (CVA),
multitemporal images, polar representation, remote sensing,
spherical representation, statistical models, unsupervised
techniques.

I. INTRODUCTION

UNSUPERVISED change detection plays an important role
in many application domains related to the exploitation

of multitemporal remote sensing images. The availability of
images acquired on the same geographical area by satellite
sensors at different times makes it possible to identify and
label possible changes that have occurred on the ground. In this
context, in order to properly exploit the huge amount of data
acquired by current remote sensing satellites, it is mandatory to
develop effective unsupervised and automatic change-detection
techniques.

Several unsupervised change-detection methodologies have
been proposed in the literature [1]–[3]. Among them, a widely
used technique is change vector analysis (CVA). CVA is
typically applied to multispectral images acquired by passive
sensors, by considering more than one spectral channel in order
to exploit all the available information about the considered
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event of change. However, usually CVA is used in an empirical
way without referring to a specific theoretical framework
capable to properly and formally represent all the information
contained in the spectral change vectors (SCVs) obtained by
subtracting corresponding spectral bands of two images ac-
quired at different dates. In addition, in most of the applications,
only the magnitude of the SCVs is exploited in order to identify
changed pixels. Only in a few applications, also the direction of
the vector is empirically used for deriving information on the
kind of change that occurred on the ground [4]–[13]. This lack
of a formal framework and of a proper analysis of the statistics
of data results in suboptimal applications of the CVA or, in
some cases, in a noncomplete understanding of the richness of
the information present in SCVs. This involves incomplete ex-
ploitation of all the available information and/or the definition
of change-detection algorithms that are not based on a solid
theoretical background and on proper analysis procedures.

In order to address the aforementioned problems, in this
paper, we present a consistent theoretical framework for proper
representation, modeling, and exploitation of the information
present in the SCVs computed according to the CVA technique.
The proposed framework and the related analysis are developed
in the context of a polar representation of the CVA. In partic-
ular, the proposed novel contributions of this paper consist in:
1) the introduction of formal definitions for the characterization
of the information present in SCVs; 2) a theoretical analysis
on the distributions of changed and unchanged pixels in the
polar domain under both general conditions and proper sim-
plifying assumptions; 3) the introduction of proper guidelines
for defining effective preprocessing strategies based on the
expected properties of the theoretical distributions of changed
and unchanged pixels; and 4) the definition of a solid back-
ground for the development of advanced and accurate automatic
change-detection algorithms in the polar domain. A validation
of the theoretical analysis, carried out on two multispectral and
multitemporal data sets, is also reported. The first data set is
made up of two real multitemporal remotely sensed images
including only one kind of change, while the second data set
is obtained from the first one by properly simulating a second
kind of change.

This paper is organized into seven sections. The next section
introduces the change-detection problem and the formulation
of the CVA technique in both Cartesian and hyperspherical
domains. Section III gives some basics on the models for joint
conditional class distributions in both Cartesian and polar co-
ordinate systems. Section IV presents the proposed theoretical
analysis on the models of marginal conditional distributions
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of magnitude and direction; furthermore, it proposes a critical
analysis on the importance and effects of image-preprocessing
procedures (e.g., radiometric corrections, coregistration, etc.)
on the data distributions. The validation of the proposed theo-
retical analysis carried out on single-change and double-change
data sets is reported in Sections V and VI, respectively. Finally,
Section VII discusses the obtained results and draws the con-
clusions of this paper.

II. PROPOSED POLAR-REPRESENTATION

FRAMEWORK FOR CVA

A. Background and CVA Formulation

Let us consider two coregistered multispectral images, X1

and X2, of size I · J acquired over the same area at different
times t1 and t2.1 Let X1 and X2 be two multidimensional
random variables that represent the statistical distributions of
pixels in images X1 and X2, respectively. Let Xb,t be the
random variable representing the bth component of the multi-
spectral image Xt(t = 1, 2) in the considered feature space. Let
Ω = {ωn,Ωc} be the set of classes of unchanged and changed
pixels to be identified. In greater detail, ωn represents the class
of unchanged pixels and Ωc = {ωc1 , . . . , ωcK

} is the set of
the K possible classes (kinds) of change occurred in the con-
sidered area.

The first step of the most widely used change-detection
techniques presented in the literature performs comparison be-
tween the two considered images according to a proper operator
[1]. When dealing with multispectral images, the comparison
operator is usually the vector difference, which is applied to
a n-dimensional feature space in order to give as input to the
change-detection process all the relevant spectral information.
This technique is known as CVA [1], [5] and has been suc-
cessfully used in many different application domains [4]–[13].2

CVA first computes a multispectral difference image (XD)
subtracting the spectral feature vectors associated with each
corresponding spatial position in the two considered images
X1 and X2. Let XD be the multidimensional random variable
representing the SCVs in the difference image obtained as
follows [1]:

XD = X2 − X1. (1)

Each SCV is usually implicitly represented in polar coordi-
nates with its magnitude and direction. Although the direction
of the SCVs is rich of information (e.g., on the kind of changes
occurred on the ground and on the distribution of registra-
tion noise), in the most of the applications it is not consid-
ered. Among the few studies reported in the literature where
magnitude and direction expressed as cosine functions are
considered together for change detection, we recall [5]–[13].
In 1980, Malila [5] first formulated the concept of change
vector and, then, used both magnitude and direction in a two-
dimensional (2-D) space for identifying changes due to plants’

1In this paper, only the case of pairs of images is discussed. It is worth noting
that the proposed framework can be applied to a multitemporal sequence made
up of more than two images by analyzing separately couples of images.

2The particular case of working with a single feature reduces the CVA to the
univariate image-differencing technique [1].

clearcut and regrowth in the northern Idaho (U.S.) forest. In
[5]–[8], the direction variable was subdivided into a fixed
number of sectors, each of them corresponding to positive or
negative changes in one of the B considered features (i.e.,
spectral channels or linear combinations of them, like tasseled-
cap transformation). This kind of quantization leads to the
definition of a maximum of 2B sectors and, hence, of types of
changes. The major drawback of this approach is that different
kinds of changes could assume the same sector code. In [9], the
CVA sector-coding approach was extended to the solution of
multivariate, full-dimensional, and also multi-interval problems
(i.e., applications involving more than two acquisition dates).
In [10], Allen and Kupfer introduced in the CVA technique
the use of direction cosines for the description of SCV direc-
tions. They applied a hierarchical linear-discriminant analysis
for testing predictive power of magnitude and vector angles
in solving change-detection problems. Direction cosines were
used also in [11] and [12]. In these works, the authors first
identified changed pixels on the basis of magnitude values,
then image-classification algorithms were applied to direction
cosines for discriminating the different kinds of change. In [13],
Nackarets et al. defined a modified CVA technique, where
polar coordinates are transformed back into a Cartesian coordi-
nate system to overcome discontinuity between 0 and 2π and
different kinds of changes are then detected by using either
supervised or unsupervised-clustering algorithms. A different
approach to the use of the direction information has been
presented in [4], where Bruzzone and Cossu proposed a method
for estimating and reducing the effects of the registration noise.
The method is based on a joint exploitation of the magnitude
and direction components.

However, most of the analyses reported in the literature
have been carried out in an empirical way, without a rigorous
characterization of the statistical models of information classes
and without referring to a proper theoretical framework for
complete understanding and proper processing of the infor-
mation present in SCVs. In this paper, in order to fill the
aforementioned gaps, we propose a rigorous framework for
CVA in the polar domain.

B. General Framework for Hyperspherical Representation

Given a B-dimensional feature space, the SCV associated
with a pixel of the analyzed scene can be described with
its magnitude value and B − 1 directions. In this paper, we
propose to represent the properties of the SCVs, instead of
using a Cartesian coordinate system, by plotting SCVs in a
B-dimensional hyperspherical coordinate system.3 Thus, the
multidimensional random variable XD can be represented with
a random variable ρ ∈ [0,+∞) that models the statistical
distribution of the change vector magnitude, andB − 1 random
variables [ϑ, ϕ1, ϕ2, . . . , ϕB−2] that represent the distribution
of the change vector angular coordinates (ϑ ∈ [0, 2π) and ϕk ∈
[0, π], k = 1, . . . , B − 2). It is worth noting that changing the
coordinate system has a dramatic impact on the statistical
distributions of the considered classes. This aspect will be
analyzed in the next section.

3In the particular case of B = 2 the hyperspherical coordinate system is said
polar-coordinate system.
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Let X1,D, . . . , XB,D be the random variables representing
the distributions of SCVs along the B dimensions (spectral
channels) of the considered Cartesian coordinate system; then,
the relations between the random variables modeling SCVs
in the Cartesian and in the hyperspherical coordinates are the
following:

Xb,D = ρ

(
b−1∏
k=1

sinϕk

)
cosϕb, 1 ≤ b ≤ B − 2

XB−1,D =ρ

(
B−2∏
k=1

sinϕk

)
cosϑ

XB,D =ρ

(
B−2∏
k=1

sinϕk

)
sinϑ (2)

where ρ ∈ [0,+∞), ϕk ∈ [0, π], b = 1, . . . , B − 2, and ϑ ∈
[0, 2π).

In the following, for simplicity, we will assume that the
CVA technique is applied only to two spectral channels of the
considered multitemporal images, i.e., that a 2-D coordinate
system is sufficient to completely describe SCVs. However,
the analysis can be generalized to the case of more spectral
channels by considering more direction contributions for de-
scribing each SCV (see Appendix). It is worth noting that,
although the aforementioned generalization is possible, the
assumption of working with a couple of spectral channels
is reasonable in many change-detection problems [14]–[16].
This choice is often due to the need of isolating the most
informative features with respect to the specific considered
problem without including noisy and misleading spectral chan-
nels in the analysis. In the above assumption, in the Cartesian
coordinate system, only random variables X1,D and X2,D are
necessary to describe SCVs, whereas in the polar-coordinate-
system random variables representing the magnitude ρ and the
direction ϑ are required for each SCV. The relation between
Cartesian and polar representation of the difference image is
as follows: 


ρ =
√

(X1,D)2 + (X2,D)2

ϑ = arctan
(

X2,D
X1,D

)
.

(3)

C. Proposed Polar Framework for the CVA
Technique: Definitions

In this section, we propose a rigorous characterization of the
polar framework for the CVA technique. First of all, observe
that in the polar representation, all the change vectors of a
given scene are included in a magnitude-direction domain MD
defined as (see Fig. 1)

MD = {ρ ∈ [0, ρmax] and ϑ ∈ [0, 2π)} (4)

where ρmax is the maximum value assumed by the magnitude
on the considered image, i.e.,

ρmax = max
{√

(X1,D)2 + (X2,D)2
}
. (5)

Fig. 1. Representation of the regions of interest for the CVA technique in the
polar-coordinate system.

According to the given definition of the magnitude-direction
domain MD, in order to establish a clear framework for CVA,
we propose to identify different regions in MD for pointing
out the information present in SCVs. From the definition in
(4) and following indications in [16], we expect that unchanged
pixels have magnitude close to zero (often not exactly zero due
to the presence of noise components), while changed pixels
have magnitude far from zero. Consequently, it is possible to
identify two different regions associated with: 1) unchanged
and 2) changed pixels. Thus, the polar domain can be split into
two parts: 1) circle Cn of no-changed pixels and 2) annulus
Ac of changed pixels. This can be done according to the opti-
mal (in the sense of the theoretical Bayesian decision theory)
threshold value T that separates pixels belonging to ωn from
pixel belonging to Ωc (dark gray and light gray areas in Fig. 1,
respectively).
Definition 1: The circle of no-changed pixels Cn is de-

fined as

Cn = {ρ, ϑ : 0 ≤ ρ < T and 0 ≤ ϑ < 2π} . (6)

Cn can be represented in the polar domain as a circle with
radius T . From this definition, we can state that for the generic
pixel (spatial position) (i, j), it holds that

(i, j) ∈ ωn ⇔ (i, j) ∈ Cn (7)

or in other words

(i, j) ∈ ωn ⇔ ρ(i, j) < T. (8)

This means that the unchanged pixels satisfy (7) [or equiva-
lently (8)] and are included in Cn.
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Definition 2: The annulus of changed pixels Ac is defined as

Ac = {ρ, ϑ : T ≤ ρ ≤ ρmax and 0 ≤ ϑ < 2π} . (9)

Ac can be represented in the polar domain as a ring with inner
radius T and outer radius ρmax. From this definition, we can
state that for the generic spatial position (i, j), it holds that

(i, j) ∈ Ωc ⇔ (i, j) ∈ Ac (10)

or in other words

(i, j) ∈ Ωc ⇔ T ≤ ρ(i, j) ≤ ρmax. (11)

This means that all the changed pixels satisfy (10) [or equiva-
lently (11)] and are included in Ac.

According to the above definitions, the polar domain can be
described as the union of Ac and Cn, i.e.,

MD = Ac ∪ Cn. (12)

The previous definitions have been based on the values of the
magnitude, independently on the direction variable. A further
important definition is related to sectors in the polar domain,
which are mainly related to the direction of the change vectors
and, therefore, to the kinds of change occurred on the ground.
Definition 3: The annular sector Sk of change ωck

∈ Ωc is
defined as

Sk ={ρ, ϑ : ρ≥T and ϑk1 ≤ϑ<ϑk2 , 0≤ϑk1<ϑk2<2π} .
(13)

Sk can be represented in the polar domain as a sector of change
within the annulus of changed pixels [see (9)] and bounded
from two angular thresholds ϑk1 and ϑk2 (see Fig. 1). We expect
that pixels that belong to the same kind of change are included
in the same annular sector. In the polar-coordinate system, two
angular coordinates identify two sectors: 1) a convex sector
(i.e., the smallest one) and 2) a concave sector (i.e., the largest
one). As it is reasonable to expect that pixels belonging to the
same change class have a low variance, generally, the sector we
are interested to is the convex one. It is worth noting that this
condition is no longer satisfied if the convex sector covers the
discontinuity between 0 and 2π. In this case, the variance of the
changed pixels is high and the relation between the two angular
coordinates is inverted, i.e., ϑk1 > ϑk2 ; thus, the definition of
Sk becomes

Sk = {ρ, ϑ : ρ ≥ T and ϑk1 ≤ ϑ < 2π ∪ 0 ≤ ϑ < ϑk2 ,

0 ≤ ϑk1 < ϑk2 < 2π} . (14)

Fig. 1 depicts an example of annular sector as a hatched sector
of annulus that overlaps regionAc between angular coordinates
ϑk1 and ϑk2 .

In real applications, often the pixels with magnitude close
to the optimal (in the sense of the theoretical Bayesian de-
cision theory) threshold value T and with direction close to

Fig. 2. Representation of the regions of uncertainty for the CVA technique in
the polar-coordinate system.

the two angular threshold values ϑk1 and ϑk2 cannot be ac-
curately labeled according to a simple thresholding procedure
due to the intrinsic uncertainty present in the data. In these
cases, by taking into account that the spatial autocorrelation
function of the images is not impulsive (i.e., pixels are spa-
tially correlated),4 it is possible to increase the reliability of
the decision process according to a context-sensitive analysis
of the investigated pixel [16]. This analysis is aimed at exploit-
ing the spatial correlation as an additional information source
in the decision process. In order to model and represent this
uncertainty in the proposed framework, we can define two
additional regions: 1) the annulus Au of uncertain pixels with
respect to the magnitude, and 2) the annular sector Skur

for
uncertain pixels with respect to change ωck

∈ Ωc and, thus,
directions ϑkr

(where r = 1, 2).
Definition 4: The annulus Au of uncertain pixels is de-

fined as

Au = {ρ, ϑ : T − α ≤ ρ ≤ T + α and 0 ≤ ϑ < 2π} (15)

where α is a parameter that defines the margin around T , in
which pixels cannot be easily identified as either changed or
unchanged. Au can be represented in the polar domain as a
ring with inner radius T − α and outer radius T + α (light gray
annulus in Fig. 2). From this definition, we can state that

(i, j) ∈ Au ⇔ T − α ≤ ρ(i, j) ≤ T + α. (16)

This means that all the uncertain pixels satisfying (16) are in-
cluded in Au. The use of this definition depends on the specific
data-analysis strategy (if no contextual information is consid-
ered, it is assumed that α = 0 and, consequently, Au = ∅).

4This is true under the reasonable assumption that the geometrical resolution
of the considered multispectral sensor is proper for the analyzed scene.
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Definition 5: The annular sector Skur
of uncertain pixels of

change ωck
∈ Ωc close to ϑkr

is defined as

Skur
= {ρ, ϑ : ρ ≥ T and ϑkr

− βkr
≤ ϑ < ϑkr

+ βkr
,

0 ≤ ϑkr
< 2π} r = 1 or 2 (17)

where βkr
is a parameter that defines the margin around ϑkr

,
in which pixels cannot be easily identified as belonging to ωck

(dark gray annular sectors in Fig. 2). We expect that in general
βk1 = βk2 (as for the annulus Au of uncertain pixels, if no
contextual information is considered, it is assumed that βkr

= 0
and, consequently, Skur

= ∅).
In the following of the paper, for simplicity, we will assume

the absence of uncertainty, i.e, we will assume Au = ∅ and
Skur

= ∅(r = 1, 2).

III. ANALYSIS OF THE JOINT CONDITIONAL

DISTRIBUTIONS OF CLASSES

The definition of the different regions of interest in the polar
domain allows a better representation of the change-detection
problem and drives to the analysis of another important problem
that concerns the expected distribution of classes of interest in
the change-detection problem.

A. Class Distributions in the Cartesian Domain

As known from the literature [17], the statistical distribution
of natural classes in images acquired by multispectral passive
sensors can be considered approximately Gaussian. Thus, both
multidimensional random variables X1 and X2 can be mod-
eled as a mixture of multidimensional Gaussian distributions
in the Cartesian domain. As XD is obtained subtracting X1

from X2, its distribution can be also reasonably represented
as a mixture of multidimensional Gaussian distributions, each
of them associated with a class ωi, ωi ∈ Ω = {ωn,Ωc} =
{ωn, ωc1 , . . . , ωcK

}:

p(XD) =P (ωn)p(XD|ωn) + P (Ωc)p(XD|Ωc)

=P (ωn)p(XD|ωn) +
K∑

k=1

P (ωck)p(XD|ωck
) (18)

where p(XD|ωi) is a normal conditional density that models the
distribution of the class ωi in the multivariate-difference image.
As classes in XD can be approximated as jointly Gaussian
distributed, it is possible to show that all the componentsXb,D,
obtained subtracting corresponding spectral bands (b = 1, 2),
are also a mixture of normally distributed random variables.
This consideration and the assumption in (18) are the starting
point for analyzing the statistical distributions of the no-change
class and of theK classes of change in the polar domain.

B. Class Distributions in the Polar Domain

From (18), it is shown that the analytical expression of class
distributions in the polar domain can be obtained by computing
the joint conditional-density functions of the magnitude and
direction of SCVs [see (3)] of the 2-D random variable XD. A

simplifying hypothesis is to consider featuresX1,D andX2,D as
independent (see Section IV-C for a detailed discussion on this
hypothesis). Under this assumption, the distribution of the class
ωi(ωi ∈ Ω) in a Cartesian coordinate system can be written as
the product of the two marginal densities p(Xb,D|ωi) of the
class ωi(b = 1, 2), i.e.,

p(XD|ωi) =
1

2πσ1,iσ2,i

× exp

[
− (X1,D − µ1,i)2

2σ2
1,i

− (X2,D − µ2,i)2

2σ2
2,i

]
(19)

where µb,i and σb,i are the mean value and the standard devia-
tion, respectively, of the Gaussian distributed marginal density
of class ωi over the bth considered feature (b = 1, 2). Applying
the transformation from Cartesian to polar-coordinate system,
the joint conditional distribution can be written as

p(ρ, ϑ|ωi) =
1

2πσ1,iσ2,i

× exp

[
− (ρ cosϑ− µ1,i)2

2σ2
1,i

− (ρ sinϑ− µ2,i)2

2σ2
2,i

]
. (20)

According to this general equation (which is the starting point
for the statistical analysis reported in the next section), we can
define the quantities typically used for evaluating the perfor-
mance of change-detection algorithms (i.e., false alarms and
missed alarms) in the context of the proposed framework. Let us
define the following decision regions: 1) The region of changed
pixels (Rc) that corresponds to the union of all identified
nonoverlapping annular sectors Sk(k = 1, . . . ,K) (i.e. Rc =⋃K

k=1 Sk), and 2) the region of no-changed pixels (Rn) that
corresponds to the union of circle of no-change Cn and the
region Ac −

⋃K
k=1 Sk complementary to the region of changed

pixels with respect to Ac, (i.e., Rn = Cn

⋃{Ac −
⋃K

k=1 Sk}).
In ideal situations, no pixels will fall in region Ac −

⋃K
k=1 Sk;

whereas in real situations (when noise affects the data), we
may have patterns in the annulus of changed pixels that do not
belong to any of the sectors of changed pixels (these patterns
are usually few and relatively isolated).

Given the aforementioned decision regions and the joint
conditional distributions for the classes of change and no-
change in (20), it is possible to analytically define the false and
missed alarms.

False alarms occur when unchanged pixels are identified as
changed. The probability of this kind of error Pf can be written
as the integral of the joint conditional density function given the
class of no-change over the region of changed pixels, i.e.,

Pf =
∫
Rc

p(ρ, ϑ|ωn)dρdϑ. (21)

Missed alarms occur when changed pixels are identified as
unchanged. The probability of this kind of error Pm can be
written as the sum of the K integrals (one for each class of
change ωck

) of the joint conditional-density function given the
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class ωck
of change over the region associated to unchanged

pixels, i.e.,

Pm =
K∑

k=1

∫
Rn

p(ρ, ϑ|ωck
)dρdϑ. (22)

IV. ANALYSIS OF THE MARGINAL CONDITIONAL

DISTRIBUTIONS OF MAGNITUDE AND DIRECTION

The joint conditional density in (20) is too general to be
efficiently used in solving change-detection problems. A more
suitable way to approach the problem is to compute the mar-
ginal conditional densities of the magnitude ρ and the direction
ϑ. Starting from (20), these two densities can be computed for
each class ωi by integrating (20) over the range of ϑ and ρ,
respectively.

Let us first consider the marginal conditional density of the
magnitude p(ρ|ωi). Integrating (20) over the range of ϑ leads to
the following equation:

p(ρ|ωi) =
ρ

2πσ1,iσ2,i

×
2π∫
0

exp

[
− (ρ cosϑ− µ1,i)2

2σ2
1,i

− (ρ sinϑ− µ2,i)2

2σ2
2,i

]
dϑ. (23)

This integral cannot be expressed in a closed form, but it can be
reduced to an infinite series of Bessel functions. By following
[18], it is possible to show that p(ρ|ωi) can be written as

p(ρ|ωi)=
ρ

σ1,iσ2,i
exp(−V )

∞∑
p=0

(−1)pεpIp(P )I2p

(√
Q2 +R2

)

× cos
(

2p arctan
R

Q

)
, ρ ≥ 0 (24)

where Ip(z) is the pth-order modified-Bessel function of the
first kind defined as

Ip(z) =
1
2π

C+2π∫
C

exp (−z cos(u) + jpu) du (25)

where C is a constant, j is the imaginary unit, and D, P , Q, R
and εp are defined as follows:

V =
µ2

1,i

2σ2
1,i

+
µ2

2,i + ρ2

2σ2
2,i

+
σ2

2,i − σ2
1,i

4σ2
1,iσ

2
2,i

ρ2

P =
σ2

2,i − σ2
1,i

4σ2
1,iσ

2
2,i

ρ2

Q =
µ1,iρ

σ2
1,i

R =
µ2,iρ

σ2
2,i

εp =
{

1, for p = 0
2, for p 
= 0.

(26)

The marginal conditional density of the direction p(ϑ|ωi) can
be obtained by integrating (20) over the range of ρ. The integral
can be written in a closed form. It is possible to prove that after
some handling we obtain

p(ϑ|ωi)=

(
1+tan2(ϑ)

)
4π
√(
σ2

1,i tan2(ϑ)+σ2
2,i

)3

×
{

exp

(
−µ

2
2,iσ

2
1,i+µ

2
1,iσ

2
2,i

2σ2
1,iσ

2
2,i

)

×
[√

2π exp

(
−
(
µ2,iσ

2
1,i tan(ϑ)+µ1,iσ

2
2,i

)2
2σ2

1,iσ
2
2,i

(
σ2

1,i tan2(ϑ)+σ2
2,i

)
)

×(µ2,iσ
2
1,i tan(ϑ)+µ1,iσ
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ϑ ∈ [0, 2π). (27)

Figs. 3 and 4 show examples of the behaviors of the mag-
nitude and direction marginal conditional densities versus the
mean values (µ1,i, µ2,i) and the standard deviations (σ1,i, σ2,i),
respectively, of the class ωi characterized by a Gaussian distri-
bution in the Cartesian coordinate system. It is worth noting
that the periodicity of the direction distribution depends on
the tangent function; in real applications, the proper maximum
should be selected according to the data distribution.

Equations (24) and (27) represent two complex mathematical
expressions. In real applications, usually additional hypotheses
can be made in order to simplify the analytical expressions of
the probability density functions. In the change-detection prob-
lem, different assumptions can be formulated for the classes
of changed and unchanged pixels. In the following, the cases
related to the two classes of interest will be addressed separately
and in greater detail.

A. Statistical Models for the Class of Unchanged Pixels

As stated in Section III-B, we assume that images X1 and X2

have been coregistered [19], [20] and, that possible differences
in the light and atmospheric conditions at the two times have
been corrected [21].5 Under these hypotheses, we can reason-
ably assume that in unchanged areas, natural classes do not sig-
nificantly change their distributions between the two acquisition
dates. This simplifies the computation of distributions in the
polar domain as we can write

µ1,ωn
∼=µ2,ωn ≈ 0 (28)

σ1,ωn
∼=σ2,ωn = σωn . (29)

5This assumption will be discussed in Section IV-C.
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Fig. 3. Examples of conditional distributions of the magnitude (a) with respect to different values of µ2,i (µ1,i = 5 and σ1,i = σ2,i = 10) and (b) with respect
to the different values of σ2,i (µ1,i = µ2,i = 5 and σ1,i = 10).

Fig. 4. Examples of conditional distributions of the direction (a) with respect to different values of µ2,i (µ1,i = 5 and σ1,i = σ2,i = 10) and in the case
µ1,i = µ2,i = 0 (which leads to the uniform distribution) and (b) with respect to different values of σ2,i (µ1,i = µ2,i = 5 and σ1,i = 10).

Substituting both expressions (28) and (29) into (23) and
solving the integral, we get for the magnitude random variable
the following probability density function:

p(ρ|ωn) =
ρ

σ2
ωn

exp
(
− ρ2

2σ2
ωn

)
, ρ ≥ 0 (30)

which is commonly known as the Rayleigh distribution.
Concerning the statistical distribution of the direction vari-

able for the class of unchanged pixels, it can be obtained
substituting (28) and (29) into (27), i.e.,

p(ϑ|ωn) =
1
2π
, ϑ ∈ [0, 2π). (31)

This means that the statistical distribution of the direction is
uniform within [0, 2π).

B. Statistical Models for the Classes of Changed Pixels

The analytical study of the distribution of the generic class
ωck

∈ Ωc (for simplicity of notation in the following ωck
will

be indicated as ωk) of changed pixels is more complex than the

one carried out for the class of unchanged pixels. In this case,
assumption (28) is no further valid, as changes in land-cover
types modify the mean values of the natural classes in different
ways in different spectral channels (this depends on the kind of
change). This leads to the following condition:

µ1,ωk

= µ2,ωk


= 0. (32)

It is worth noting that if µ1,ωk
= µ2,ωk

, the analysis of the
distribution is simplified. In order to further simplify the com-
putation of the magnitude and direction statistical distributions,
we can assume that

σ1,ωk
≈ σ2,ωk

= σωk
. (33)

In some applications, this assumption is reasonable, but its
validity should be verified for any specific case considered.6

Thus, rewriting (23) according to (32) and (33) and solving
the integral, it is possible to show that the random variable

6If the assumption is not verified, the general (24) and (27) should be used for
modeling the statistical distributions of magnitude and direction, respectively,
or a proper preprocessing should be applied to the data before using the
simplified model (see Section IV-C).
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TABLE I
SUMMARY OF THE THEORETICAL MARGINAL CONDITIONAL

DISTRIBUTIONS OF MAGNITUDE AND DIRECTION FOR THE CHANGE

AND NO-CHANGE CLASSES UNDER SIMPLIFYING ASSUMPTIONS

representing the magnitude is Ricean distributed, with condi-
tional density function given by

p(ρ|ωk) =
ρ

σ2
ωk

exp
(
−ρ

2 +M2
ωk

2σ2
ωk

)
I0

(
ρMωk

σ2
ωk

)
, ρ ≥ 0

(34)

where I0(·) is the modified zeroth-order Bessel function of the
first kind [see (24)] and Mωk

is the noncentrality parameter of
the class of change ωk:

Mωk
=
√
µ2

1,ωk
+ µ2

2,ωk
. (35)

It is worth noting that as Mωk
becomes much larger than the

standard deviation σωk
, then the Ricean distribution tends to

become Gaussian.
Concerning the density of the direction of the class of

changed pixels ωk, it is possible to prove that in the afore-
mentioned assumptions, (27) can be simplified leading to the
following nonuniform distribution:

p(ϑ|ωk) = exp

(
−µ

2
2,ωk

+ µ2
1,ωk

2σ2
ωk

)

×
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1
2π
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1
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√
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)]}
,

ϑ ∈ [0, 2π). (36)

C. Discussion

In the previous subsections, we analyzed the statistical mod-
els more suitable to represent class distributions in the polar
domain in the general case and in some simplifying assump-
tions. Since the use of simplified models is of great importance
for the development of effective and adequately complex au-
tomatic change-detection techniques, here, we report a critical
discussion on the assumptions considered for modeling the
distributions of the classes of changed and unchanged pixels.
In addition, we analyze practical implications of the theoretical
analysis, in order to suggest criteria for driving the defini-
tion of proper preprocessing techniques for an effective data
representation. Table I reports a summary of the theoretical
statistical distributions derived (under simplifying assumptions)

in Sections IV-A and IV-B for magnitude and direction of
change and no-change classes.

First of all, it is important to point out that a hypothesis at
the basis of the theoretical analysis reported in the previous
subsections consists in assuming independence among features
describing SCVs in the Cartesian domain. The validity of this
assumption depends on the considered images and applications,
as well as on the subset of investigated spectral channels.
Significant deviations from this assumption affect the preci-
sion of the analytical distributions derived for describing the
behaviors of changed and unchanged pixels. Nonetheless, we
expect that the obtained distributions are more precise than
simple empirical models used in the literature. In addition, if
for a generic data set the aforementioned assumption is not
reasonable, it is possible to transform data from the original
feature space to a transformed domain, in which features can be
approximately modeled as uncorrelated. This can be obtained
by applying a principal component transformation (PCT) to the
features characterizing the SCVs [22]. In this way, at the cost of
an additional transformation applied to the data, it is possible to
properly adopt the analytical models described in Sections IV-A
and IV-B in the development of change-detection techniques.7

The aforementioned assumption is at the basis of the
presented theoretical analysis. All the other assumptions
(discussed in the following) allow only to simplifying the sta-
tistical distributions with respect to the general models in (24)
and (27), which can be included in automatic techniques for op-
erational change-detection algorithms but are rather complex.
For this reason, in the following, we analyze the simplifying
assumptions in greater detail.

An important hypothesis that deserves to be discussed con-
cerns the assumption that different features in the Cartesian
SCV domain have similar standard deviations. The validity
of the assumption in the original feature space depends on
the considered images and applications, as well as on the
investigated spectral channels. However, as for the assumption
of the independence, if this approximation is not acceptable for
the considered data set, it is possible to transform the original
feature space according to a procedure of diagonalization and
whitening [22] and to apply change-detection algorithms to the
transformed space.8 (As the application of this procedure mod-
ifies the relation between the covariance terms of the spectral
channels, it should be applied with particular attention).

A further relevant assumption to be analyzed for the class
of unchanged pixels consists in the hypothesis that the mean-
vector components of the SCVs are equal to zero. This as-
sumption is verified, if the images are radiometrically corrected,
so that the mean vectors are the same at the two dates (this
condition can be always satisfied according to proper pre-
processing strategies). Under this assumption, we obtain that
the magnitude has a Rayleigh distribution and the direction
has a uniform distribution. However, in some practical cases,

7It is worth noting that the PCT guarantees independence of features on the
basis of the global distributions of patterns in the feature space. This means that
after transformation, the feature independence on the classes of changed and
unchanged pixels can be assumed only in an approximate way.

8As stated for PCT also, whitening produces effects on the basis of the
global distributions of patterns in the feature space. This means that after
transformation the standard deviation of the classes can be considered similar
only in an approximate way
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Fig. 5. Images of the Lake Mulargia (Italy), used in the experiments. (a) Channel 4 of the Landsat-5 TM image acquired in September 1995. (b) Channel 4 of
the Landsat-5 TM image acquired in July 1996. (c) Available reference map of changed areas.

images are not radiometrically corrected and preprocessing
procedures for matching the light conditions are neglected.
According to the presented theoretical analysis, this may result
in two main very critical effects: 1) a possible increase of the
overlapping of the classes of unchanged and changed pixels
in the magnitude domain and 2) a strong deviation of the
conditional distribution of the direction of unchanged pixels
from the expected uniform model. The first effect is due to
the fact that, although differences in light conditions result in
a bias common to all classes in the Cartesian domain, when the
nonlinear magnitude operator is applied, the bias may result in
an increase of overlapping between classes (this behavior will
be shown in the experimental analysis reported in Section V).
The second effect results from the observation that if the mean-
value components of the SCVs are different from zero, the di-
rection distribution of the class of unchanged pixels is no longer
uniform but assumes a completely different behavior, which
should be modeled with (36) (see Fig. 4). This has a dramatic
impact on the data-processing strategy, as it completely changes
the distribution of the direction with respect to what expected
in the ideal case. These observations confirm the importance of
the radiometric-correction step in the CVA technique.

Finally, another important implication derived from the
theoretical analysis concerns the behavior of the distributions
of the direction for the unchanged and changed classes, which
are uniform and nonuniform, respectively. This means that it is
possible to exploit the direction information (and in particular,
the modes associated to distribution for each changed class) for
reducing the effects of the residual sources of noise present in
the preprocessed multitemporal images (e.g., the registration
noise that appears outside the change modes can be easily
removed as it will be shown in the experimental analysis
reported in Section V-A). This confirms from a theoretical

point of view the analysis carried out in [4], where the direction
information was used for identifying, modeling, and reducing
registration noise.

In order to illustrate the use of the proposed CVA framework
and to assess its effectiveness, in the next two sections, we
consider two different real multitemporal data sets: 1) a single-
change data set and 2) a double-change data set.

V. EXPERIMENTAL RESULTS: SINGLE-CHANGE CASE

A. Data-Set Description and Experiment Design

The first data set is made up of two multispectral images
acquired by the Thematic Mapper (TM) multispectral sensor
of the Landsat 5 satellite on the island of Sardinia, Italy, in
September 1995 (t1) and July 1996 (t2). Both images have
a spatial resolution of 30 × 30 m. The area selected for the
experiments is a section (412 × 300 pixels) of the two scenes
including Lake Mulargia. As an example of the images used
in the experiments, Fig. 5(a) and (b) shows Channel 4 of the
September and July images, respectively.

Between the two acquisition dates, only one kind of change
occurred in the investigated area, which is related to the exten-
sion of the lake surface (the water volume of the Lake Mulargia
increased producing an enlargement of the lake surface). The
multitemporal images were coregistered and radiometrically
corrected. A reference map of the analyzed site was defined
according to a detailed visual analysis of both the available mul-
titemporal images and the difference image. The obtained refer-
ence map contains 7480 changed pixels and 116 120 unchanged
pixels [see Fig. 5(c)]. The extracted information was used for
both computing the parameters of the statistical distributions for
the classes of interest and evaluating the performances (in terms
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of false and missed alarms) of the change-detection process
carried out by using the proposed statistical models.

The considered change-detection problem is relatively sim-
ple, and thus, it is suitable for a proper understanding of the
properties and potentialities of the proposed framework. In
this particular single-change problem, we define Ωc = {ωc1} =
{ωc}. In this paper, we considered only the two spectral chan-
nels 4 and 7 of the TM, i.e., the near and the middle infrared,
as they are the most reliable for detecting changed areas. For
simplicity of notation, in the following, these channels will be
referred with subscripts 1 and 2, respectively.

In order to assess the effectiveness of the proposed frame-
work, three different experiments have been carried out.

In the first experiment, a qualitative analysis of the true
distributions of data in the polar domain versus different pre-
processing applied to the images is carried out. This experi-
ment is aimed at pointing out the effects of the preprocessing
procedures on both the data distributions and the precision of
the models introduced in Section IV for data representation.

The second experiment is aimed at validating the accuracy of
the theoretical models of distributions presented in Section IV
in fitting the true data distributions for both the magnitude and
the direction, under the simplifying assumptions introduced in
Sections IV-A and IV-B. Furthermore, the goodness-to-fit of
the Rayleigh and Rice distributions adopted for the magnitude
of the change and no-change classes, respectively, is compared
with the goodness-to-fit of the widely used Gaussian model.
Here, the well-known Kolmogorov–Smirnov (KS) test is used
for establishing whether a statistical model fits or not the true
distribution [23]. The KS statistical test determines if two sets
of data are drawn from the same statistical distribution. The test
is based on the comparison between the cumulative distribution
functions of the true data Sn(x)9 (or empirical distribution
function) and the expected one F (x) (i.e., the cumulative dis-
tribution of the density function adopted for modeling the data)
[23]. The KS test compares the cumulative distributions by a
difference operator computing the so-called KS-statistic Dn

Dn = sup
x

{|F (x) − Sn(x)|} . (37)

It is worth noting that Dn is a random variable, whose
distribution does not depend upon F (x), i.e., the KS test is
nonparametric and distribution free. The output of the KS test
consists in the acceptance of the assumption that the true data
distribution follows the selected model, if Dn ≤ Dα

n with a
high probability PKS; otherwise, the hypothesis is rejected and
the two distributions are considered different.Dα

n is the critical
value that depends on both the desired confidence level α, and
the number of samples n used for estimating the empirical
distribution function (numerical values of Dα

n for different
combination of α and n are well-known tabulated values [23]).

The third and last experiment is aimed at establishing the
possible improvements that can be obtained on the accuracy
of the change-detection process (in terms of false and missed
alarms, as well as total errors) by adopting the derived the-
oretical statistical models (for approximating the magnitude
distributions of change and no-change pixels) rather than the

9x is the set of values for which both the cumulative densities are known.

widely used Gaussian model. In addition, an analysis on the
impact of a poor preprocessing phase on the change-detection
accuracy is also reported.

B. Qualitative Analysis of the Class Distributions in the
Polar Domain

The aim of the first experiment is to qualitatively show
the effects of an inaccurate preprocessing phase (in terms of
radiometric differences and/or misregistration noise) on the
statistical distributions of magnitude and direction in the polar-
coordinate system. In order to accomplish this analysis, we
study the statistical distributions of SCVs obtained by applying
the CVA technique to multitemporal images in three different
cases: 1) radiometrically corrected and coregistered images;
2) coregistered images without radiometric corrections; and
3) radiometrically corrected images with a poor coregistration
(a residual shift of about two pixels on ground control points
was accepted).

As expected from the theoretical analysis, in all cases, it is
possible to identify two clusters in the polar domain. In the case
of corrected images [Fig. 6(a)], the first cluster is centered in the
origin of the polar plot and shows high occurrences (red color)
close to zero and a uniform distribution with respect to the
direction domain. This cluster is associated to the unchanged
SCVs. The second cluster shows a preferred direction and is
located relatively far from the origin. This cluster is related
to the SCVs associated with changed pixels. In this case, it is
quite easy from a qualitative viewpoint to identify the decision
boundary (threshold value on the magnitude) between the circle
Cn of no-changed pixels and the annulus Ac of changed pixels.
Furthermore, also the sector S of the changed pixels is clearly
visible [see Fig. 6(a)].

The situation is significantly different in the second case,
i.e., if no radiometric corrections are applied to the original
images. Radiometric differences between the two acquisitions
[see Fig. 6(b)] have a dramatic impact on the distribution of the
no-change class. As one can see, the cluster of unchanged pixels
is no longer centered in zero; thus, the direction distribution
is no further uniform but assumes values in a subset of the
domain, which is defined by the difference of the mean values
of unchanged pixels at the two dates in the two considered
spectral bands. In greater detail, in this condition, the no-
change-class distribution with nonzero mean can be approxi-
mated with the model described in Section IV-B for the class
of changed pixels. This behavior points out that the use of the
uniform model for the approximation of the distribution of the
direction of the class of unchanged pixels in the data-analysis
phase when images are not radiometrically corrected is not
acceptable. Furthermore, by analyzing Fig. 6(b), it is possible to
observe that the mean value of the magnitude of the unchanged
pixels increases (with respect to the case of radiometrically
corrected images), while the mean value of the magnitude
of the changed pixels decreases. This means that if only the
magnitude is used for the change detection (like in many real
applications), the classes result more overlapped. This effect,
which is due to the nonlinearity of the magnitude operator,
involves a higher change-detection error with respect to the case
of radiometrically corrected data. In other words, the absence
of radiometric corrections does not result in a bias contribution
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Fig. 6. Histograms in the polar-coordinate system obtained after applying CVA to (a) multitemporal radiometrically corrected and coregistered images,
(b) coregistered multitemporal images without radiometric corrections, and (c) multitemporal radiometrically corrected images with a significant residual
registration noise (single-change case).

common to both classes, but may decrease significantly the
separability between them in the magnitude domain.

In the third case, image misregistration generates in the
histogram plotted in the polar domain: 1) more spread SCV
distributions and 2) the presence of unchanged SCVs that are
out ofCn and assume values in the entire direction domain. The
spread increment is related to the nonperfect correspondence
between multitemporal pixels, which leads to an increase of the
variances of classes. The presence of pixels outside Cn and S
is mainly due to the effects induced from border regions and
details, which lead to the comparison of pixels belonging to
completely different classes. These pixels have high-magnitude
values but have direction that may differ from those of true
changed pixels [Fig. 6(c)]. This behavior points out a very
important guideline for practical applications, i.e., in situations
where the residual misregistration between images cannot be

neglected, the use of the direction variable in addition to the
magnitude can reduce false alarms due to registration noise.

On the basis of the aforementioned analysis, it is clear that
the polar representation results in a useful qualitative tool
for easily understanding the effectiveness of the preprocessing
applied to the data.

C. Quantitative Analysis of the Accuracy of the Statistical
Models of Class Distributions in the Polar Domain

This experiment aims at a quantitative validation of the
analytical models defined for approximating the statistical dis-
tributions of the magnitude and direction of the classes of
changed and no-changed pixels. The validation is carried out
according to the KS test. In these trials, only the radiometrically
corrected and coregistered images were considered.
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TABLE II
MEAN VALUES AND STANDARD DEVIATIONS FOR THE CLASS OF

UNCHANGED AND CHANGED PIXELS IN THE CARTESIAN

COORDINATE SYSTEM (SINGLE-CHANGE CASE)

Fig. 7. Comparison between the behavior of the distribution of the magnitude
of the unchanged pixels and its approximations obtained with Gaussian and
Rayleigh models (single-change case).

In order to perform the validation of the derived statistical
models, the true mean values and standard deviations of the
change and no-change distributions were computed fromXD in
the Cartesian coordinate system on the basis of the available ref-
erence map. The obtained values are summarized in Table II. In
addition, for the magnitude of the change and no-change classes
a comparison between the goodness-to-fit of Rice and Rayleigh
models, respectively, and the commonly used Gaussian model
is performed. In the following, the analysis of the results
obtained on the two classes are considered separately.
1) Statistical Models for the Class of No-Changed Pixels:

In order to adopt statistical models in (30) and (31) for the
magnitude and the direction of unchanged SCVs, respectively,
it should be verified if the hypotheses in (28) and (29) hold.
By observing numerical values of standard deviations σb,ωn in
Table II, it is reasonable to conclude that they are similar to
each other and can be approximated to the mean of the standard
deviations (which is 9.49), thus satisfying (29). For the mean
values, no approximations should be introduced as (28) is veri-
fied (owing to the use of the radiometrically corrected images).

Let us first consider the magnitude variable. In Fig. 7, it is
possible to see that the Rayleigh model approximates with good
accuracy the distribution of the unchanged pixels (extracted
from the reference map). In greater detail, this model fits better
the data than the Gaussian model. This is confirmed by the
KS test that results in a significantly higher PKS value for
the Rayleigh model than for the Gaussian one (0.6396 versus
2 · 10−4).

Let us now consider the behaviors of the distributions in the
direction dimension. The KS test states that the SCV directions
are uniformly distributed with a PKS value equal to 0.9939.

Fig. 8. Comparison between the behavior of the distribution of the direction
of the unchanged pixels and its approximation obtained with the uniform model
(single-change case).

Fig. 9. Comparison between the behavior of the distribution of the magnitude
of the changed pixels and its approximations obtained with Gaussian and Rice
models (single-change case).

This reasonable result is confirmed also by a qualitative visual
comparison between the true data distribution and the uniform
distribution (Fig. 8).
2) Statistical Models for the Class of Changed Pixels: In

order to adopt statistical models in (34) and (36) for the magni-
tude and the direction of changed SCVs, respectively, it should
be verified if the hypothesis in (33) hold. Similarly to the no-
change class, from numerical values in Table II, it is possible
to observe that it is reasonable to approximate the standard-
deviation values σb,ωc to the mean of the standard deviations,
i.e., 9.77. This condition satisfies (33).

From Fig. 9, it is possible to see that the Rice model fits well
the data in general, and only slightly better than the Gaussian
model. This is confirmed by the KS test that results in a slightly
higher PKS value for the Rice model than for the Gaussian
one (0.9993 versus 0.9961). The small difference in the two
statistical models for this data set is that the noncentrality
parameter (35) is much larger than the standard deviation, thus
the Ricean distribution tends to become Gaussian.
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Fig. 10. Comparison between the behavior of the distribution of the direction
of the changed pixels and its approximation obtained with the nonuniform
model (single-change case).

The KS test states that the SCV direction is distributed ac-
cording to (36) with a PKS value equal to 0.3306. The relatively
small value of PKS is due to the presence of SCVs whose
direction differs from the expected one (see Fig. 10), as SCV
direction is highly sensitive to noise components. Such outliers
can be related to the presence of residual misregistration noise.

D. Analysis of the Effectiveness of the Proposed Framework
for Solving Change-Detection Problems

This experimental part has two goals: 1) the first is to evaluate
the impact of radiometric corrections on the performances of
CVA; and 2) the second is to assess the improvement of the
change-detection accuracy obtained by adopting the proposed
statistical models rather than the Gaussian one for the change
and no-change classes in the magnitude domain.

In order to evaluate the impact of the radiometric corrections
on the performances of the CVA technique, we have compared
the accuracies yielded by thresholding the magnitude variable
in the case of: 1) radiometrically corrected and coregistered
images and 2) coregistered images without radiometric correc-
tions. To this end, the threshold values were defined according
to a supervised manual trial-and-error procedure (MTEP), i.e.,
the minimum-error threshold was derived by performing a
nonautomatic evaluation of the overall change-detection errors
versus all the possible values of the decision threshold and,
then, the threshold value that yielded the minimum overall
error was chosen. From the qualitative analysis carried out
in Section V-A, we expect that the change-detection accu-
racy is lower when no radiometric corrections are applied.
As shown from Table III, the MTEP procedure applied to
the magnitude of the original data set resulted in 1803 errors,
while we obtained only 704 errors when thresholding was
applied to the magnitude after a very simple radiometric-
correction procedure, which adjusted the mean value of the
images. The overall error is more than halved. In greater detail,
after rediometrically correcting the multitemporal images, both
missed and false alarms decreased significantly from 529 to
369 pixels and from 1274 to 335 pixels, respectively.

TABLE III
OVERALL ERROR, FALSE ALARMS, AND MISSED ALARMS (IN NUMBER OF

PIXELS) AND THRESHOLD VALUE RESULTING FROM THE MTEP APPLIED

TO THE COREGISTERED IMAGES WITH AND WITHOUT RADIOMETRIC

CORRECTIONS (SINGLE-CHANGE CASE)

TABLE IV
OVERALL ERROR, FALSE ALARMS, AND MISSED ALARMS RESULTING

FROM THE SELECTION OF THE DECISION THRESHOLD VALUES CARRIED

OUT BY USING MTEP AND BDR WITH THE PROPOSED STATISTICAL

MODELS AND THE STANDARD GAUSSIAN STATISTICAL

MODEL (SINGLE-CHANGE CASE)

In order to asses the effectiveness of the proposed statistical
models in solving change-detection problems, we considered
only the coregistered and radiometrically corrected multitem-
poral data set. Here, the MTEP results have been compared with
the performances obtained by solving the change-detection
problem according to the Bayes decision rule (BDR) [22] under
two different assumptions on statistical distributions: 1) the
proposed statistical models (i.e., Rayleigh model for the class
of unchanged pixels and Rice model for the class of changed
pixels) and 2) the widely used Guassian model for both classes
(Table IV).

As expected, owing to the capability of the Rayleigh and
Rice density functions to better model the true data distribu-
tions (see Section V-B), the proposed models allow to obtain
a lower amount of total errors with respect to the model
based on the Gaussian distribution (956 versus 1143). This is
that using the proposed model, the obtained threshold value
(i.e., 43) is much closer to the optimal one (i.e., 51) than
the threshold computed with the Gaussian model (i.e., 40).
It is worth noting that although significant, the difference
of threshold values between the Gaussian and the proposed
models is relatively small. This depends on the fact that on the
considered data set the Rice distribution is close to the Gaussian
one, as the noncentrality parameter is much larger then the
standard deviation. We expect that higher improvements can be
obtained in more general cases.

VI. EXPERIMENTAL RESULTS:
DOUBLE-CHANGE DATA SET

A. Data-Set Description and Experiment Design

The second data set is made up of the same two multispectral
images acquired on the island of Sardinia, Italy, in September
1995 (t1) and July 1996 (t2) described in Section V-A, in
which a second kind of change was introduced. In order to
simulate the presence of the new change, a data set made up
of two multispectral images acquired by the Landsat-5 TM
multispectral sensor on the island of Elba, Italy, in August 1994
(t1) and September 1994 (t2) was considered [16]. Between
these two acquisitions, a wildfire destroyed a large part of the
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Fig. 11. Simulated double-change data set. (a) Channel 4 of the simulated image at t2. (b) Reference map of changed areas (burned area in light gray color, lake
enlargement in black color).

Fig. 12. Histograms in the polar-coordinate system obtained after applying CVA to multitemporal radiometrically corrected and coregistered images
(double-change case).

vegetation in the northwest part of the island. On the basis of the
available ground truth, the area affected from the change was
isolated on spectral channels 4 and 7 of the TM images of both
the August and September acquisitions. The selected area was
inserted in the lower left part of the spectral channels 4 and 7
of the September and July images of the Sardinia Island. It is
worth noting that in order to obtain a realistic representation of
the statistics of the change, both radiances at t1 and t2 of the
Elba data set were inserted in the Sardinia data set. In this way,
we obtained a data set that properly represents the properties of
the different kinds of changes considered. The reference map
of this data set was built by modifying the reference map of the
Sardinia data set accordingly to the introduced change. As an
example of the resulting data set, Fig. 11(a) and (b) show the
channel 4 of the simulated image at t2 and the double-change
reference map, respectively. The reference map has 7480 pixels
belonging to the changed class ωc1 (which is associated with
the change in water level in the lake, black color), 2414 pixels
belonging to the changed class ωc2 (which is associated with
the burned area, light gray color), and 113 706 unchanged pixels
(white color).

The experiments for this data set were carried out only on
the coregistered and radiometrically corrected pair of images in

order to evaluate the effectiveness of the proposed theoretical
framework for analyzing and extracting SCV information about
different kinds of change. Three different experiments were
carried out: 1) a qualitative analysis of the distribution of the
classes in the polar domain; 2) a validation of the accuracy of
the theoretical models in fitting the true data distributions using
the KS test for the change class ωc2 (we refer the reader to
Section V for the analysis of magnitude and phase distributions
of the classes of unchanged pixels and of changed pixels
associated with the water level in the lake); and 3) an evaluation
of the accuracy of the change-detection process (in terms of
confusion matrix and Kappa coefficient) obtained by adopting
the derived theoretical statistical models for both magnitude and
direction distributions.

B. Qualitative and Quantitative Analysis of the Class
Distributions in the Polar Domain

As expected from the theoretical analysis, the presence of a
second kind of change resulted in the appearance of an addi-
tional cluster in the polar domain (Fig. 12). Thus, the number
of clusters is now three. As in the data set with a single change,
the cluster associated with the unchanged SCVs is centered in
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TABLE V
MEAN VALUES AND STANDARD DEVIATIONS FOR THE CLASS OF

CHANGED PIXELS ωc2 IN THE CARTESIAN COORDINATE SYSTEM

Fig. 13. Comparison between the behavior of the distribution of the magni-
tude of the changed pixels of class ωc2 and its approximations obtained with
Gaussian and Rice models (single-change case).

the origin of the polar plot and shows high occurrences (red
color) close to zero and a uniform distribution with respect to
the direction variable. Both the clusters related to the SCVs
associated with changed pixels are located relatively far from
the origin and show a quite similar magnitude but different
preferred directions. These differences are due to the different
radiometric variations induced from the two kinds of changes
on the considered spectral channels.

As in Section V-B, hypothesis in (33) should hold for adopt-
ing statistical models in (34) and (36) for the magnitude and
the direction of changed SCVs, respectively. From numerical
values in Table V, it is possible to observe that also for the new
kind of change it is reasonable to approximate the standard-
deviation values σb,ωc2 to the mean of the standard deviations,
i.e., 10.83. This condition satisfies (33).

The effectiveness of the theoretical model in fitting the true
data distribution is easy to understand in a qualitative way by
observing Fig. 13, where it is possible to see that the Rice
model fits well the data in general and only slightly better than
the Gaussian model. This is confirmed also by the KS test that
results in a slightly higher PKS value for the Rice model than for
the Gaussian one (i.e., 0.9903 versus 0.9461). As for the class
of change associated with the enlargement of the lake surface,
the reason of the small difference for this class is that the
noncentrality parameter (35) is much larger than the standard
deviation and, thus, the Ricean distribution tends to become
Gaussian.

Analogously, from Fig. 14, it is possible to conclude that
the true direction distribution of SCVs of class ωc2 is very

Fig. 14. Comparison between the behavior of the distribution of the direction
of the changed pixels of class ωc2 and its approximation obtained with the
nonuniform model (single-change case).

close to the general model in (35). The KS test confirmed this
observation resulting in a PKS value equal to 0.9683.

C. Analysis of the Effectiveness of the Proposed Framework
for Solving Change-Detection Problems

Finally, in order to assess the effectiveness of the pro-
posed framework for solving change-detection problems, we
compared the results yielded by the proposed statistical mod-
els for both the magnitude and the phase distributions with
the results obtained applying a supervised MTEP. In order to
distinguish the classes of unchanged pixels and the two classes
of changed pixels, it is necessary to identify: 1) the threshold
value T that separates the circle Cn of no-changed pixels from
the annulusAc of changed pixels (T is identified by considering
the two kinds of changes as a single class)10; 2) the two angular
threshold values ϑ11 and ϑ12 that bound the annular sector S1

of changed pixels associated with the enlargement of the lake
(ωc1); and 3) the two angular threshold values ϑ21 and ϑ22 that
bound the annular sector S2 of changed pixels associated with
the burned area (ωc2).

In this case, the MTEP was applied in two sequential steps.
The first step considers only the magnitude and identifies,
among all possible values, the threshold value T that separates
the class of unchanged pixels from the two classes of changed
pixels (considered as a single class in the magnitude domain)
with the minimum overall error. The second step considers
also the direction and identifies, given the value of T , the four
angular thresholds that maximize the Kappa coefficient of the
final change-detection map (in this case, the two kinds of
changes are separated from the no-change class and also from
each other).

Also, the solution of the change-detection problem by adopt-
ing the proposed statistical models for the magnitude and the
direction distributions was obtained with a two-step procedure.

10It is worth noting that it is possible to optimize the change-detection results
by selecting a different threshold value in the magnitude domain for each
annular sector (i.e., for each kind of change present in the considered scene).
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TABLE VI
THRESHOLD VALUE T AND ANGULAR THRESHOLD VALUES ϑ11 , ϑ12 , ϑ21 , AND ϑ22 OBTAINED BY ADOPTING

THE MTEP AND THE BDR WITH THE PROPOSED STATISTICAL MODELS (DOUBLE-CHANGE CASE)

TABLE VII
CONFUSION MATRICES FOR THE CHANGE-DETECTION MAPS OBTAINED

WITH (a) THE MTEP AND (b) THE BDR WITH THE PROPOSED STATISTICAL

MODELS (DOUBLE-CHANGE CASE)

The first step identifies the threshold value T applying the
BDR under the hypothesis that the class of unchanged pixels
is Rayleigh distributed and the class of changed pixels is given
by the sum of two Rice distributions. The second step detects
the angular threshold values ϑ11 , ϑ12 , ϑ21 , and ϑ22 by applying
the BDR under the assumption that the direction distribution
of unchanged pixels is uniform in [0, 2π) and, that, both
direction distributions of classes ωc1 and ωc2 follow (36).

As shown in Table VI, also in this case, the threshold value
T selected on the basis of the proposed statistical models
(i.e., 40) is similar to the threshold value obtained with the
MTEP procedure (i.e., 45). Furthermore, also in the direction
domain, the threshold-selection procedure based on the pro-
posed statistical models resulted in a pair of threshold values
for each annular sector (i.e., ϑ11 = 13.17◦ and ϑ12 = 57.30◦ for
S1, and ϑ21‘ = 323.30◦ and ϑ22 = 13.17◦ for S2) very similar
to the optimal ones (i.e., ϑ11 = 13.17◦ and ϑ12 = 45.84◦ for S1,
and ϑ21 = 323.87◦ and ϑ22 = 12.02◦ for S2). The similarity
of the threshold values resulted in almost the same value of
the Kappa coefficient of accuracy for both the change-detection
procedures (i.e., 0.9372 for the MTEP and 0.9370 for the BDR).
These good results are further confirmed by the analysis of the
confusion matrices (see Table VII).

VII. DISCUSSION AND CONCLUSION

In this paper, a polar theoretical framework for unsupervised
change detection based on of the CVA technique has been
presented. The main motivation of this paper relies on the
observation that the CVA is a widely used technique for unsu-
pervised change detection in multispectral and multitemporal
remote sensing images, but a precise theoretical framework
concerning its definition and use has not been proposed in the
literature (in many applications, CVA is used without a com-
plete understanding of the implications of the representation
of the change information in the magnitude-direction domain).
In this work, we aimed at filling this gap by introducing:
1) a proper polar framework for the representation and the

analysis of multitemporal data in the context of the CVA
technique; 2) a set of formal definitions (which are linked to
the properties of the data) related to pattern representation in
the polar domain; 3) a theoretical analysis of the distributions
of changed and unchanged pixels in the polar domain; 4) a
critical analysis of the theoretical study of distributions aimed
at driving a proper exploitation of the information present in
the polar representation; and 5) two examples of use of the
proposed framework in change-detection problems.

In the light of the aforementioned contributions, we expect
that the main impact of this work in the remote sensing com-
munity can be focused on the following issues:

1) possibility to use in all practical applications of the CVA
technique (irrespectively of the specific change-detection
problem considered) a uniform polar representation with
proper formal definitions of the different regions of inter-
est based on the proposed framework;

2) better understanding of the statistical properties of SCVs
in the polar domain and of the impact of the simplifying
assumptions usually considered in the literature in the
development of automatic data-analysis algorithms;

3) presentation of a solid background for the development of
advanced and accurate automatic algorithms for change
detection, which properly takes into account the statistical
properties of data in the polar domain;

4) better understanding of the fundamental role played by a
proper preprocessing step (e.g., radiometric corrections,
coregistration, etc.) for driving a correct design and use
of efficient automatic data-processing algorithms.

The presented analysis points out that some of the simplify-
ing assumptions usually adopted for representing data distri-
butions in the polar domain can become critical if a precise
modeling of the change-detection problem is desired. Among
the other properties discussed in the Section IV-C, we stress the
following four observations.

1) The theoretical and experimental analyses confirm that it
may be critical solving the change-detection problems by
representing the magnitude of classes of unchanged and
changed pixels with Gaussian distributions, rather than
using the more accurate models described in this paper
(i.e., the Rayleigh distribution for unchanged pixels and
the Rice distribution for changed pixels).

2) Radiometric corrections play a fundamental role in unsu-
pervised change detection based on CVA: a) for increas-
ing the separability between the classes of changed and
unchanged pixels (by increasing the distance between the
mean values of the two classes in the magnitude domain)
and b) for properly exploiting the direction information in
the data-processing phase. (If the radiometric corrections
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are neglected, the direction distribution of the class of un-
changed pixels is completely different from the expected
uniform model, resulting in an important source of errors
in the design of automatic data-processing techniques).

3) The use of the direction information in the change-
detection algorithms can be very important for reducing
the false alarms induced from registration noise.

4) The use of the direction information in the change-
detection algorithms is very important for distinguishing
different kind of changes.

The effectiveness of the proposed polar framework and of
the related statistical analysis, as well as the importance of their
implications, have been verified on two change-detection prob-
lems by analyzing qualitatively and quantitatively the reliability
of the simplifying assumptions considered in the theoretical
analysis of data distributions and their impact on the precision
of the models. The results obtained confirm that the theoretical
models presented in this paper are suitable for a proper repre-
sentation of the considered data sets when the CVA technique
is adopted.

As a final remark, it is worth noting that in the proposed
framework, according to the majority of the literature, we
analyze separately the magnitude and direction variables in
both the statistical-modeling phase and the threshold-selection
process. Although, this is a simplification from the viewpoint
of the Bayesian decision theory (which seems reasonable for
studying with a limited complexity the statistics of classes), it
results in a better understanding of both the physical meaning
of these variables and the different roles they play in the
change-detection problem. An alternative strategy for a joint
analysis of the magnitude and direction variables could be
the use of clustering procedures. However, it is difficult to
properly model the cluster joint statistical distributions in the
MD space.

As future developments of this work, we are: 1) studying
the reformulation of some threshold-selection algorithms devel-
oped in the literature [15], [16] according to the distributions
derived from the theoretical analysis reported in this paper;
2) considering the properties of the direction information for:
a) devising effective unsupervised change-detection algorithms
capable of automatically identifying different kinds of change
in a generic multitemporal data set; b) better reducing the
effects of the registration noise in the polar domain; and
c) optimizing the framework and the procedure for threshold
selection in the magnitude domain by considering different
threshold values for different kinds of change.

APPENDIX

In this Appendix, we provide the guidelines for extending the
proposed framework to the B-dimensional case (B > 2).

Let us consider the general case of CVA applied toB spectral
channels of the considered multitemporal images. As stated
in Section III-A for the 2-D case, also in the B-dimensional
case, it is reasonable to represent XD as a mixture of mul-
tidimensional Gaussian distributions as it is obtained by sub-
tracting the multidimensional random variables X1 and X2,
both modeled with a mixture of multidimensional Gaussian
distributions. Furthermore, also in this case, we assume that

features Xb,D(b = 1, . . . , B) are statistically independent.11

Under this assumption, the distribution of the class ωi(ωi ∈ Ω)
in a Cartesian coordinate system can be written as the product
of the B marginal densities p(Xb,D|ωi) related to the class
ωi(b = 1, . . . , B), i.e.,

p(XD|ωi)=
1

(2π)
B
2

B∏
b=1

σb,i

exp

[
−

B∑
b=1

(Xb,D−µb,i)2

2σ2
b,i

]
(38)

where µb,i and σb,i are the mean values and the standard
deviations, respectively, of the Gaussian distributed marginal
density of class ωi over the bth considered feature (b =
1, . . . , B). Equation (38) can be written in hyperspherical co-
ordinates using (2), as given in (39), shown at the top of the
next page.

The marginal conditional densities of the random variables
ρ, ϑ, and ϕ1, ϕ2, . . . , ϕB−2 for each class ωi can be computed
by proper integrations of (39). The general formulation of the
integrals to be evaluated is given in the following:

p(ρ|ωi) =

2π∫
0

[ π∫
0

. . .

π∫
0

p(ρ, ϑ, ϕ1, . . . , ϕB−2|ωi)

× dϕ1 . . . dϕB−2

]
dϑ (40)

p(ϑ|ωi) =

+∞∫
0

[ π∫
0

. . .

π∫
0

p(ρ, ϑ, ϕ1, . . . , ϕB−2|ωi)

× dϕ1 . . . dϕB−2

]
dρ (41)

p(ϕh|ωi) =

+∞∫
0

2π∫
0

[ π∫
0

. . .

π∫
0

p(ρ, ϑ, ϕ1, . . . , ϕB−2|ωi)

× dϕ1 . . . dϕB−2

]
dρdϑ (42)

where dϕh is not included in the integration variables.
In the general case, the models to be adopted should be based

on the solution of the integral (40)–(42). These solutions can
be simplified in some particular cases. In the following, we
report the simplified equations for a pair of important situations
analogous to those shown in Sections IV-A and IV-B.

As stated in Section IV-A, it is reasonable to expect that the
mean along each of the B spectral channels for the class of un-
changed pixels is equal to zero (i.e., µb,ωn

∼= 0, b = 1, . . . , B).

11Discussion on this hypothesis is reported in Section IV-C.
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p(ρ, ϑ, ϕ1, . . . , ϕB−2|ωi) =
1

(2π)
B
2

B∏
b=1

σb,i

exp


−
(
ρ

(
B−2∏
k=1

sinϕk

)
sinϑ− µB,i

)2

2σ2
B,i

−

(
ρ

(
B−2∏
k=1

sinϕk

)
cosϑ− µB−1,i

)2

2σ2
B−1,i

−
B−2∑
b=1

(
ρ

(
b−1∏
k=1

sinϕk

)
cosϕb − µb,i

)2

2σ2
b,i


 (39)

A significantly simplified equation can be obtained in the ap-
proximation that all the standard deviations are similar to each
other (i.e., σb,ωn

∼= σωn , b = 1, . . . , B). Under this assumption,
we can rewrite (40) and (41) as

p(ρ|ωk) =
2ρB−1(

2σ2
ωk

) 1
2 B Γ

(
1
2B
) exp

(
− ρ2

2σ2
ωk

)
, ρ ≥ 0

p(ϑ|ωn) =
1
2π
, ϑ ∈ [0, 2π). (43)

Considering changed pixels, it is possible to derive a signifi-
cantly simplified equation for the distribution of the magnitude
in the case in which the mean along each of the B dimensions
is not equal to zero (i.e., µp,ωk


= µq,ωk

= 0, p, q = 1, . . . , B

with p 
= q) and under the assumption that all the standard
deviations are similar to each other (i.e., σb,ωk

∼= σωk
, b =

1, . . . , B). Under these hypotheses, (40) can be rewritten as

p(ρ|ωk) =
Mωk

σ2
ωk

(
ρ

Mωk

) 1
2 B

exp
(
−ρ

2 +M2
ωk

2σ2
ωk

)

× I 1
2 (B−2)

(
ρMωk

σ2
ωk

)
, ρ ≥ 0. (44)
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