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Abstract

In this paper, a novel parametric and global image histogram thresholding method is presented. It is based on the estimation of the
statistical parameters of “object” and “background” classes by the expectation–maximization (EM) algorithm, under the assumption that
these two classes follow a generalized Gaussian (GG) distribution. The adoption of such a statistical model as an alternative to the more
common Gaussian model is motivated by its attractive capability to approximate a broad variety of statistical behaviors with a small
number of parameters. Since the quality of the solution provided by the iterative EM algorithm is strongly affected by initial conditions
(which, if inappropriately set, may lead to unreliable estimation), a robust initialization strategy based on genetic algorithms (GAs) is
proposed. Experimental results obtained on simulated and real images confirm the effectiveness of the proposed method.
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Thresholding is a fundamental task in image processing
and pattern recognition as it represents a basic step for im-
age understanding in numerous applications. It consists of
converting gray-level images into binary images by select-
ing an appropriate decision threshold. The gray-level values
below or equal to the selected threshold are usually classi-
fied as background, while the values above this threshold
are classified as object (or vice versa). Image thresholding is
widely used in many application domains, such as biomed-
ical image analysis [1], handwritten character identification
[2], automatic target recognition [3], change-detection ap-
plications [4–6], etc.

In general, automatic thresholding techniques are clas-
sified into two main groups: global methods and local
methods. Global methods adopt a fixed threshold for the
entire image, while local methods exploit threshold values
that change dynamically in the image. Local methods are
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generally used when background and object classes have
statistical properties that are not stationary in the different
portions of the analyzed image (for example, due to nonho-
mogeneous light conditions) (see, for example, Refs. [7,8]).
In this paper, we address the former group, i.e. global thresh-
olding methods.

Many techniques for global image thresholding have been
proposed in the literature [9–22]. They are generally based
on parametric or nonparametric approaches. In the paramet-
ric approach, object and background classes are discrim-
inated (1) by assuming a predefined statistical model for
approximating the class distributions and (2) by determining
the optimal threshold value as a function of the statistical
parameters of the two classes. By contrast, the nonparamet-
ric approach does not make any assumption about the class
statistical distributions. Among the early global threshold-
ing techniques available in the literature, one can find the
work presented in Refs. [9,10]. In this iterative method,
the threshold value is first initialized with the mean of the
entire histogram. Then at each iteration the new threshold
value is computed as the average of the two mean values of
the two distributions on the left and right-hand side of the
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threshold estimated at the previous iteration. This iterative
process continues until convergence is reached. In Ref. [11],
the authors propose to select the optimal threshold value
through a discriminant criterion that defines a separability
measure between the object and background classes on the
basis of second-order statistics. In Ref. [12], a method based
on the moment preserving principle is presented, in which
the threshold value is selected in such a way that the first
three moments of the original image are preserved in the bi-
nary image. In Ref. [13], the threshold value is identified by
maximizing the sum of entropies of object and background
classes of the image. In Ref. [14], a method that optimizes
a criterion function based on the Bayes classification rule
for minimum error and on the Gaussian assumption for ob-
ject and background classes is presented. In Ref. [15], the
optimal threshold is determined by maximizing the poste-
rior entropy subject to inequality constraints derived from
measures of the uniformity and shape of the regions in the
image. In Ref. [16], an extension of the methods presented
in Refs. [13,15] using 2-D entropies is proposed. The 2-D
entropies are obtained from a bi-dimensional histogram
constructed using the gray-level values and the local aver-
age gray values. In Ref. [17], a maximum likelihood (ML)
thresholding method based on a population of Gaussian
mixtures is introduced. In this work, the authors show that
the maximization of the likelihood of the conditional dis-
tributions under the Gaussian assumption with equal and
different variances is equivalent to the methods developed
in Refs. [11,14], respectively. In Ref. [18], a technique
based on Kullback’s minimum cross-entropy principle is de-
scribed. The optimum threshold is obtained by minimizing
the aforementioned cross entropy (formulated on a pixel-
to-pixel basis) between the object and background classes.
An algorithm that maximizes the sum of the entropies com-
puted from the autocorrelation functions of the thresholded
image histogram is presented in Ref. [19]. More recently,
other global thresholding procedures based on fuzzy logic
have been introduced [20–22]. Their underlying idea is to
determine the best threshold value by minimizing a mea-
sure of fuzziness (ambiguity) of an image. Numerous other
image thresholding methods can be found in the image pro-
cessing and pattern recognition literature. Among others the
interesting comparative studies reported in Refs. [6,23–26]
deserve to be pointed out.

Usually, thresholding techniques based on parametric
models (e.g., those developed in Refs. [9,10,14,17]) suf-
fer from some serious drawbacks (which may be very
critical in complex images) such as (i) they are based on
the Gaussian assumption for modeling the class distri-
butions in the image, which often does not hold in real
images; (ii) they often lead to biased estimates of the sta-
tistical parameters of the object and background classes;
and (iii) their effectiveness is strongly reduced when the
prior probabilities of object and background classes are
unbalanced or when the two classes overlap significantly
[23–26].

In order to address these drawbacks, in this pa-
per, we propose a novel parametric and global image
histogram thresholding technique. It is based on the
expectation–maximization (EM) algorithm to estimate the
parameters of the object and background classes, which are
assumed to follow a generalized Gaussian (GG) distribu-
tion. In the literature, the EM algorithm has already been
used for global image histogram thresholding [27] and for
the complex problem of change detection in multitemporal
remote-sensing (RS) images [4] by assuming that the two
above classes follow a Gaussian distribution. In order to
cope with the limitations of the Gaussian model, an ap-
proach combining the EM algorithm with a semi-parametric
model based on the Parzen window was proposed in Ref.
[5]. In spite of the fact that this approach has proved effec-
tive in many thresholding problems for complex cases, it
may exhibit problems of stability due: (i) to the relatively
large number of parameters to be estimated in an unsu-
pervised way and (ii) to the empirical procedure used to
initialize the EM algorithm. In this paper, we propose to use
the GG model as an alternative model for approximating the
aforementioned classes. Compared to the semi-parametric
model, the GG model is intrinsically more stable, since it
is characterized by fewer parameters to be estimated (three
parameters for each class). Compared to the Gaussian
model, thanks to an additional statistical parameter (i.e., the
shape parameter), it is more flexible and can approximate
a large class of statistical distributions. After formulating
the thresholding problem as a binary classification prob-
lem with a mixture of GG distributions, the iterative EM
equations for the parameter estimation of the GG mixture
are derived. Since the goodness of the solution found at
convergence by the EM algorithm strongly depends on the
adopted initialization procedure, we propose to identify the
optimal set of initial parameter values by means of a robust
initialization strategy based on genetic algorithms (GAs).

The paper is organized in six sections. The problem for-
mulation is reported in Section 2. A detailed description of
the proposed method is introduced in Section 3. In Section
4, the proposed initialization procedure based on GAs is pre-
sented. Descriptions of the data sets and the experiments are
given in Section 5. Finally, conclusions and discussions are
drawn in Section 6.

2. Problem formulation

Let us consider an image X of size M × N pixels, where
each pixel x of coordinates (m, n) ∈ [1, M]×[1, N ] can take
L possible gray-level values defined in the range [0, L − 1].
Let h(x) be the normalized histogram of the image X (we
assume that h(x) is the only information available about the
image). The histogram h(x) can be seen as an estimate of
the true probability density function p(x) of the image. We
aim at thresholding the image X in order to assign each im-
age pixel to one of the two opposite classes, namely object



Y. Bazi et al. / Pattern Recognition 40 (2007) 619–634 621

and background. This task can be reduced to a problem of
selection of the threshold value T that optimizes a prede-
fined criterion. Once T is computed, the thresholded image
Y = {y(m, n), 1�m�M, 1�n�N} can be generated by
assigning the following values:

y(m, n) =
{

0 if x(m, n)�T ,

255 if x(m, n) > T .
(1)

The above problem can be solved as a binary classi-
fication problem, where the probability density function
p(x) of the image X is a mixture of two parametric den-
sity functions associated with the object and background
classes, i.e.,

p(x) =
2∑

i=1

Pipi(x|�i ), (2)

where P1 and P2 are the prior probabilities, and p1(x|�1)

and p2(x|�2) the class-conditional densities associated with
the object and background classes, respectively. �1 and �2
are the vectors of parameters on which the two parametric
class-conditional densities depend. The Generation of the
binary classification map Y requires: (1) the adoption of a
statistical model for the two class-conditional densities; (2)
an estimation of the statistical parameters related to the two
classes (i.e., Pi and �i , with i =1, 2); and (3) the application
of a decision criterion.

In this paper, we propose to solve this problem through a
formulation of the EM algorithm under the assumption that
the class-conditional densities p1(x|�1) and p2(x|�2) follow
a GG distribution. The thresholded image Y is then generated
by exploiting the estimated parameters in the context of
a Bayesian decision rule (e.g., minimum error, minimum
cost, etc.).

3. EM algorithm under the GG assumption

3.1. GG distribution

In order to cope with the limitations of the Gaussian
model, we need to use another model that can describe in
the best possible way the statistical behaviors of the object
and background classes in a generic image. A possible solu-
tion is to adopt a more general parametric model that should
satisfy two main properties: (i) flexibility (i.e., it should be
capable of modeling a large variety of statistical behaviors)
and (ii) stability (i.e., it should not require the estimation of
a large number of parameters). Among the models available
in the literature, the GG distribution is a particularly attrac-
tive candidate as it requires only one additional parameter
to be estimated compared to the Gaussian model, and it can
approximate a large class of statistical distributions (e.g.,
impulsive, Laplacian, Gaussian, and uniform distributions).
The analytical equation of the GG distribution we adopt in
this paper for modeling the two class-conditional densities

Fig. 1. GG distribution plotted for different shape parameters in the
assumption of zero mean and scale parameter equal to one.

is given by [28]

pi(x|�i ) = �i

2�i�(1/�i )
e−[|x−�i |/�i ]�i

, i = 1, 2, (3)

where �i , �i and �i are the mean, the scale, and the shape
parameters of the ith class-conditional distribution, respec-
tively, and �(·) is the Gamma function, which is defined as
�(�) = ∫∞

0 e−t t�−1 dt . The scale parameter that expresses
the width of the distribution is related to the normal standard
deviation by the equation:

�i = �i

√
�(1/�i )

�(3/�i )
. (4)

The shape parameter �i tunes the decay rate of the density
function. It is worth noting that �i = 2 yields the Gaussian
(normal) density and �i = 1 results in the Laplacian density
function. As limit cases, for �i → 0 the distribution becomes
impulsive, whereas for �i → ∞ it approaches a uniform
distribution. Fig. 1 shows the plot of GG distributions for
different values of the shape parameter �i in the assumption
of zero mean and scale parameter equal to one.

3.2. EM estimation algorithm for the GG distribution

A common way of estimating the set of statistical param-
eters � = [P1, P2, �1, �2] related to the two classes object
and background consists of maximizing the log likelihood
L(X|�) of the two-component mixture defined in (2), i.e.,

�∗ = arg max
�

{L(X|�)}, (5)

where

L(X, �) =
L−1∑
x=0

h(x) ln[p(x|�)]. (6)



622 Y. Bazi et al. / Pattern Recognition 40 (2007) 619–634

It is well known that the solution to the above problem
cannot be found analytically, as it is an intrinsically ill-posed
problem (many-to-one mapping) that can result in different
solutions. A possible choice to obtain ML estimates of the
mixture parameters is to use the EM algorithm [29]. It is
based on the interpretation of X as incomplete data, where
the missing part is Y (i.e., the thresholded image). In other
words, the missing part can be evaluated as a set of L labels
Z = {z(x) : x ∈ [0, L − 1]} associated with the L possible
sample realizations x ∈ [0, L − 1]. Each label z(x) of Z
indicates which component (i.e., object or background) is
at the origin of the realization x. It is a binary vector given
by z(x) = {z1(x), z2(x)} with zi(x) = 1 if x belongs to the
component i and zi(x)=0 otherwise. The complete data log
likelihood function becomes [30]:

L(X, Z, �) =
2∑

i=1

L−1∑
x=0

zi(x)h(x) ln[Pipi(x|�i )], (7)

where �i = [�i , �i , �i].
In the case of a GG distribution, it is possible to prove

that the complete log likelihood is given by

L(X, Z, �) =
2∑

i=1

L−1∑
x=0

zi(x)h(x) ln Pi +
2∑

i=1

L−1∑
x=0

zi(x)h(x)

×
[

ln �i − ln 2 − ln �i − ln �(1/�i )

−�
−�i

i |x − �i |�i

]
. (8)

The quantity zi(x) can be estimated as the conditional ex-
pectation of zi given the observation x and the set of param-
eters � [30].

The EM algorithm consists in expectation and maximiza-
tion steps, which are iterated until convergence. The expec-
tation step is represented by the computations of the zi(x)

(i = 1, 2 and x ∈ [0, L − 1]) by using the current estimates
of the parameters Pi and �i (i = 1, 2). The maximization
step allows updating such parameter estimates. It is possi-
ble to show that the equations of these steps are as follows
(see Appendix A):

• E-step: Compute zi(x) at iteration t given the parameter
estimates from the previous M-step:

z
(t)
i (x) = P

(t)
1 pi(x|�(t)

1 )

P
(t)
1 p1(x|�(t)

1 ) + P
(t)
2 p2(x|�(t)

2 )
. (9)

• M-step: Maximize (8) given z
(t)
i (x) and �(t)

i , which is
equivalent to updating the statistical parameters as fol-
lows:

P
(t+1)
i =

L−1∑
x=0

z
(t)
i (x)h(x), (10)

L−1∑
x=0

z
(t)
i (x)h(x)�(x)|x − �(t+1)

i |�(t)
i −1 = 0, (11)

�(t+1)
i =

⎡
⎣�(t)

i

∑L−1
x=0 z(x)h(x)|x−�(t)

i |�(t)
i∑L−1

x=0 z
(t)
i (x)h(x)

⎤
⎦

1/�(t)
i

, (12)

L−1∑
x=0

z
(t)
i (x)h(x)

⎡
⎢⎣ 1

�(t+1)
i

+ 	(1/�(t+1)
i )

(�(t+1)
i )2

−
(

|x − �(t)
i |

�(t)
i

)�(t+1)
i

ln

(
|x − �(t)

i |
�(t)
i

)⎤⎥⎦= 0, (13)

where �(x) is given by

�(x) =
{

1 if x − �(t+1)
i < 0,

−1 if x − �(t+1)
i �0

(14)

and 	(·) is the digamma function defined as: 	(�) =
�′(�)/�(�) [31].

According to the EM algorithm, the final parameter es-
timates are obtained starting from a set of initial values
�(0) = {P (0)

i , �(0)
i , �(0)

i , �(0)
i : i = 1, 2} and then iterating the

above equations until convergence. Eqs. (11) and (13) related
to the estimation of the mean and shape parameters of the
two class distributions, respectively, are nonlinear. Accord-
ingly, they should be solved using numerical procedures such
as the Newton–Raphson method [32]. It is worth noting that,
while the convergence of the algorithm to a local maximum
of the log likelihood is guaranteed, the identification of the
global maximum cannot be assured. Indeed, the goodness
of the solution found by the EM algorithm strongly depends
on the choice of the initial parameter vector �(0). In order
to cope with this issue, we propose a robust initialization
strategy based on GAs, which will be described in Section 4.

3.3. Binary map generation

Without the need to compute the optimum threshold value
explicitly, the adopted formulation of the problem allows to
generate the thresholded map by utilizing any Bayesian de-
cision criterion, such as the minimum error and minimum
cost criteria. If we adopt the minimum error criterion to gen-
erate the binary map, since the final estimates of zi(x) (with
i=1, 2) represent the estimates of the posterior probabilities
of the two classes (object and background), one can assign
the optimal label y(m, n) to each pixel x(m, n) of the image
X in such a way that

y(m, n) =
{

0 if z1[x(m, n)]�z2[x(m, n)],
255 otherwise.

(15)

If one wishes to compute explicitly the optimal threshold
value T ∗ according to the MAP rule, a search must be made
for the intersection point of the two posterior probability
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functions z1(x) and z2(x), i.e.,

z1(T
∗) = z2(T

∗). (16)

4. Initialization procedure for the EM algorithm

As mentioned in Section 3, the EM algorithm is sensitive
to the problem of choosing the initial values of the parame-
ters to be estimated. If these initial values are inappropriately
selected, the EM algorithm may lead to an unsatisfactory
estimation of the class distributions. To address this issue,
several methods are reported in the literature. Some of these
are based on the use of multiple random initial conditions
to generate multiple solutions and then chose the one that
produces the highest likelihood [33,34]. Others are based
on initialization by clustering algorithms [33,35] or under a
tree structure scheme [27].

In this paper, we propose to use GAs as an alternative
solution to the problem of initialization. GAs represent a
well-known family of methods for global optimization that
have proved very attractive for their robustness explained by
the facts that: (i) at each iteration of the optimization pro-
cess, they retain a large number of candidate solutions and
(ii) they do not base the search on the gradient principle but
directly on the function to optimize [36,37]. The choice to
adopt GAs for initializing the parameters of the distributions
of classes mainly depends on the aforementioned properties
of this optimization method. Since the initial values of the
statistical parameters of classes strongly affect both the es-
timates obtained by the EM algorithm at convergence and
the thresholding results, it is important to adopt an accurate
and robust initialization procedure, which can properly ex-
plore the space of solutions. In GAs the effectiveness in the
exploration of the space of the solutions is merged with the
possibility to define an evaluation criterion based on a fitness
function that implements the concepts adopted both by the
EM algorithm (maximization of the log-likelihood function
of the estimates) and by the threshold selection algorithm
(minimization of the estimated error probability).

GAs perform a search by evolving a population of
candidate individuals modeled with “chromosomes”. From
one generation to the next, the population (set of candi-
date individuals) is improved by mechanisms inspired from
genetics, i.e., through the use of both deterministic and non-
deterministic genetic operators. The simplest form of a GA
involves the following steps. First, an initial population of
chromosomes (individuals) is generated randomly. Second,
the goodness of the chromosomes is evaluated according
to a predefined fitness function, which allows keeping the
best chromosomes after rejecting the worst (the better the
fitness, the higher the chance of being selected). This se-
lection process is important for the next step, which is
dedicated to reproducing the population. This is performed
by means of genetic operators, such as crossover and muta-
tion. The crossover operator crosses couples of individuals

(parents) with a probability Pc to form new offspring (chil-
dren). If no crossover is performed for a given couple, the
offspring is the exact copy of the parents. In order to intro-
duce some randomness in the search process, the mutation
operator is used. This latter mutates with a probability PM

each locus (i.e., each position in the chromosome) of each
new offspring. This process is iterated until a user-defined
convergence criterion is reached. The proposed GA-based
search procedure adapted to our problem of identifying
the optimal set of parameter values for initializing the EM
algorithm is described in detail in the following.

Let us consider a population of S chromosomes
Cm (m = 1, 2, . . . , S) generated randomly. The chromo-
some Cm ∈ R8 is viewed as a vector representing the
statistical parameters defining the mixture in (2) i.e.,
Cm = [P1m, P2m, �1m, �2m, �1m, �2m, �1m, �2m]. Let f (m)

be the fitness function value associated with the mth chro-
mosome Cm. We propose to define f (m) as a function of
the average between the normalized absolute log-likelihood
value |L∗

m(X, Z, �∗)|N and the estimated probability of er-
ror P ∗

em obtained at the convergence of the EM algorithm
by adopting the chromosome Cm for initialization, i.e.,

f (m) = e−0.5(|L∗
m(X,Z,�∗

m)|N+P ∗
em), (17)

where the normalized absolute log likelihood is given by

|L∗
m(X, Z, �∗)|N = |L∗

m(X, Z, �∗)|∑S
i=1|L∗

i (X, Z, �∗)| (18)

and the probability of error is computed according to the
following equation:

P ∗
em =

∫
x>T

P ∗
1mp1m(x|�∗

1m) dx

+
∫

x �T

P ∗
2mp2m(x|�∗

2m) dx. (19)

The use of this empirical expression for the fitness function
is motivated by the fact that it is aimed at achieving two
main goals: (i) to obtain an accurate fitting of the mixture
of the estimated density functions to the observable global
density function (i.e., h(x)), which is equivalent to mini-
mizing the normalized absolute value of the log likelihood
function over the mixture parameters and (ii) to yield a bi-
nary map with the minimum error, which corresponds to
minimizing the estimated error probability P ∗

em. The average
between these two values is a reasonable empirical choice
to satisfy both constraints. The absolute value of the log
likelihood |L∗

m(X, Z, �∗
m)| is used instead of L∗

m(X, Z, �∗
m),

since the latter is always negative. The minimization of both
the probability of error and the normalized absolute value
of the log likelihood leads to the maximization of the fitness
function (17). Accordingly, the higher the fitness value of a
given chromosome, the higher the chance this latter has to be
selected.

The general description of the proposed GA-based initial-
ization procedure is summarized in Fig. 2. The algorithm
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Fig. 2. Flow chart of the proposed GA-based initialization procedure.

starts by randomly generating an initial population of S chro-
mosomes. The EM algorithm is then applied to each chro-
mosome in order to estimate the statistical parameters of the
object and background classes. The fitness function is eval-
uated for each chromosome after convergence of the EM al-
gorithm according to (17). The chromosomes are then sub-
ject to selection, crossover, and mutation operators in order
to generate a new population of size S as described in the
following.

(1) Selection operation: The chromosomes in the current
population are selected for reproduction according to the
roulette wheel spinning method [36]. This method starts by
assigning a probability qm and a cumulative probability Qm

to each chromosome Cm such that

qm = f (m)∑S
j=1f (j)

, m = 1, . . . , S, (20)

Qm =
m∑

j=1

qj , m = 1, . . . , S. (21)

Then a random nonzero floating point number l ∈
(0, 1] is generated. The chromosome Cm is chosen if
Qm−1 < l�Qm, (Q0 = 0). With this selection process,
the higher the fitness function value of a chromosome, the
higher the chance of being selected more times. At the next
iteration, another chromosome is selected with a new ran-
dom value of l ∈ (0, 1]. The two chromosomes are thus put
together to form a couple. The selection process is iterated
until S/2 chromosomes organized in S/4 couples ready for
crossover and mutation operations are selected.

(2) Crossover operation: Let Cold1 and Cold2 be two can-
didate chromosomes selected in the previous step as a cou-
ple to produce new offspring (i.e., Cnew1 and Cnew2) by
crossover. This is accomplished by first generating a ran-

Fig. 3. Offspring generated by simple crossover of the two parent chro-
mosomes.

dom value between [0, 1]. If this value is smaller than a
user-predefined crossover probability PC , the two candidate
chromosomes undergo a crossover operation; otherwise, the
new offspring (Cnew1 and Cnew2) are taken as the exact copy
of their parents (Cold1 and Cold2). In this paper, two simple
crossover operations are adopted. For each couple, one of
these two operations is selected randomly. In the first opera-
tion, a crossover locus is chosen randomly and two offspring
are generated by exchanging the values at that locus between
the two parents (see Fig. 3). In the second operation, two off-
spring are generated according to an arithmetical operation
between the two parent chromosomes. The first offspring is
generated by averaging the values of the two chromosomes,
i.e.,

Cnew1 = 1
2 (Cold1 + Cold2) (22)

while the second offspring is obtained by computing the
inner root of the product (i.e., 〈·, ·〉1/2) between the two
chromosomes, i.e.,

Cnew2(j) = 〈Cold1, Cold2〉1/2. (23)

(3) Mutation operation: After performing the crossover
operation for each couple Cold1 and Cold2, the two new cor-
responding offspring (i.e., Cnew1 and Cnew2) are subject to
a mutation operation. This prevents the search process from
falling into a local optimum solution. The mutation opera-
tion is applied to an offspring if a randomly generated value
between [0, 1] is smaller than the user-defined probability
of mutation PM . Then, a position in the offspring is selected
randomly and the corresponding value is perturbed by a ran-
dom noise following a uniform distribution [38]. At the end
of the mutation operation, a new generation of the S/2 chro-
mosomes selected from the previous generation and their
corresponding S/2 offspring is obtained.

(4) Convergence criterion: The entire process made up
of the EM, the selection, the crossover, and the mutation
steps is repeated until a stop criterion is satisfied. A simple
stop criterion consists of evaluating the absolute difference
between the average values of fitness functions Fav com-
puted over two successive generations (i.e., two successive
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iterations r − 1 and r).

|Fav(r) − Fav(r − 1)| < 
, (24)

where

Fav(j) =
S∑

m=1

f j (m)

S
, j = r − 1, r (25)

and 
 is an arbitrary small positive constant.

5. Experimental results

In order to assess the effectiveness of the proposed thresh-
olding method, both simulated and real images were used in
the experiments. In particular, simulated data with different
statistical characteristics were considered as well as real im-
ages related to nondestructive test (NDT) and remote sens-
ing (RS) problems. The results provided by the proposed
method were compared with those yielded by a set of four
thresholding techniques widely used in the literature, i.e.
Otsu’s [11], K&I’s [14], Kapur’s [13] and H&W’s [20] tech-
niques. In all experiments, we adopted the following param-
eters for the GA-based initialization procedure: population
size S = 50, crossover probability PC = 0.9, mutation prob-
ability PM = 0.1, and convergence threshold 
 = 0.001.

5.1. Experiments on simulated data

In the experiments on simulated data, we analyzed the ro-
bustness of the proposed method to three important features
that characterize a histogram composed of a mixture of two
distributions: (1) the prior probability of each distribution;
(2) their degree of overlap; and (3) the statistical model they
follow. Three experiments were designed to test the robust-
ness of the method to these three critical issues. For each
experiment, several simulated test images with histograms
composed of mixtures with different statistical characteris-
tics associated with the object and background classes were
generated (see Fig. 4 for an example of these images).

In the first experiment, in order to evaluate the effect of
the prior probability parameter on the proposed method, four
test images representing Gaussian mixtures were produced
by varying the prior probabilities and keeping the means
(i.e., �1 = 50, �2 = 100), and standard deviations constant
(i.e., �1 = �2 = 15). As an example, Fig. 5 shows the his-
togram of a test image with a mixture characterized by equal
prior probabilities (i.e., P1 = P2 = 0.5). The threshold val-
ues obtained by applying the different thresholding meth-
ods to the four test cases are reported in Table 1 (in this
table the optimal threshold value corresponds to the opti-
mal Bayes threshold, which is obtained from the intersec-
tion between the two true class densities weighted by their
true prior probabilities). As can be seen, in all test cases the
thresholds obtained by the proposed method are the optimal

Fig. 4. Example of a test image used in the experiments simulating object
and background.
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Fig. 5. Test histogram generated by simulating a Gaussian mixture with
equal prior probabilities P1 =P2 =0.5 (�1 =50, �2 =100, �1 =�2 =15).

ones. Among the reference thresholding algorithms, as the-
oretically expected in such situations [14], K&I’s method
proved almost as accurate as the proposed method since it
provided threshold values very close to the optimal ones.
The Kapur’s algorithm seems dealing satisfactorily with the
issue of unbalanced priors. By contrast, the two other non-
parametric algorithms, namely Otsu’s and H&W’s methods,
performed well only when the population sizes of the two
classes were similar (i.e., in situations where prior proba-
bilities were balanced) confirming the experimental results
found in Refs. [17,23–26].

As previously mentioned, the second experiment aimed
at assessing the sensitivity of the proposed method to the
degree of overlap between the distributions of the object
and background classes. Also in this case, different test
images were generated to simulate Gaussian mixtures char-
acterized by fixed prior probabilities and standard devia-
tions (i.e., �1 = �2 = 15) but different class means, �1 and
�2, to vary the degree of overlap. Regarding the choice
of the prior probability values, we considered two differ-
ent scenarios: balanced and unbalanced prior probabilities
(i.e., P1=P2=0.5, and P1=0.9, P2=0.1, respectively). As an
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Table 1
Threshold values obtained on simulated histograms, generated to test the sensitivity of the different thresholding techniques to the variation of the prior
probabilities

Test case (P1, P2) Toptimal TEM.GA TK&I TOtsu TH&W TKapur

1 (0.9, 0.1) 85 85 89 64 53 78
2 (0.8, 0.2) 82 82 84 71 72 74
3 (0.6, 0.4) 77 77 77 74 74 73
4 (0.5, 0.5) 75 75 74 75 73 75

Average time — 114.87 1.796 1.750 1.765 1.703
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Fig. 6. Test histogram produced with a Gaussian mixture characterized
by the parameters P1 = 0.9, P2 = 0.1, �1 = 50, �2 = 80, �1 = �2 = 15.

example of the second scenario, Fig. 6 depicts the histogram
of a test image representing a strongly overlapped mixture,
where the means of the two classes are 50 and 70, respec-
tively. For both scenarios, Table 2 shows the threshold values
obtained by the different methods on the different simulated
images. In the first scenario, where the priors are balanced,
the results point out that the five methods perform very well
up to reasonable overlapped mixtures (i.e., test cases 1–4 in
Table 2a). When the overlap becomes strong (i.e., test cases
5, 6 in Table 2a), both the proposed method and K&I’s faced
problems since they could not provide a meaningful thresh-
old value, while the three other reference methods could
recover the optimal threshold. More specifically, in the test
cases 5, 6, the global histogram representing the mixtures
became monomodal and nearly Gaussian. Consequently, at
convergence of the EM–GA algorithm, the estimated mix-
ture corresponded to two nearly Gaussian distributions: one
with prior probability almost equal to one and centered at
the optimal threshold value, the other with negligible prior
probability. The K&I criterion did not exhibit any internal
minimum but a clear maximum at the optimal threshold
value, specifying that the maximum error is reached at that
point. These results are justified by the fact that the mini-
mum error criterion, exploited by these two methods in their
formulation, is applicable only if the global histogram is
multimodal. By contrast, the other three reference methods
have a tendency to split the only mode in the middle because
of the properties of the cost function they use. In the sec-
ond scenario, we again considered six test cases, this time
by choosing unbalanced prior probability values (P1 = 0.9,

P2 = 0.1). In all the test cases (Table 2b), the best accuracy
in the threshold estimation was obtained by the proposed
method, which proved very stable also in the critical case
of very overlapped distributions (i.e., �1 = 50, �2 = 70). In
greater detail, with the proposed technique it was possible
to identify the optimal threshold in the first three test cases.
However, for difficult situations characterized by very over-
lapped distributions in addition to unbalanced priors, an in-
crease in the error between the optimal and the computed
thresholds can be observed. Such an increase, anyway is still
limited. As an example, the optimal threshold and the one
computed by the proposed method are equal to 82 and 84
for (�1, �2) = (50, 80), and become equal to 85 and 90, re-
spectively, for (�1, �2) = (50, 70). These experiments show
that the other methods are less stable than the proposed one.

It is worth noting that, according to the results obtained
in the two above experiments, which were carried out un-
der the Gaussian assumption for the object and background
classes, the proposed method proved to be more effective
than the K&I method, whose parametric formulation is based
on the Gaussian assumption. This can be explained by the
fact that: (1) the GG model is also capable of approximating
a Gaussian distribution accurately and (2) contrary to the
K&I method, the EM-based estimation procedure together
with the GA-based initialization strategy represents an ef-
fective way of obtaining unbiased estimates of the statisti-
cal parameters of the object and background classes, even
in unfavorable conditions of prior probabilities and overlap
between the two classes.

In the third experiment, we assessed the full capabilities
of the proposed method, i.e., by considering non-Gaussian
statistical models for the object and background classes.
To carry out such a task, we generated four test images by
simulating mixtures of GG distributions characterized by
different shape values. The remaining statistical parameters
were kept unchanged and set as follows: P1 =0.9, P2 =0.1,
�1 = 50, �2 = 100, �1 = �2 = 15. Fig. 7 shows an example
of the histogram of a test image with shape parameters �1
and �2 equal to 1 and 6 corresponding to Laplacian and
pseudouniform distributions, respectively. Table 3 shows
the thresholds obtained by the different methods on the four
test cases. Again in this experiment, the results point out
that the proposed method is capable of providing very ac-
curate thresholds, since for all four test cases, the obtained
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Table 2
Threshold values obtained on simulated histograms generated to test the sensitivity of the different thresholding techniques to the overlap between object
and background class distributions with: (a) equal probabilities (P1 = P2 = 0.5) and (b) unbalanced prior probabilities (P1 = 0.9, P2 = 0.1)

Test case (�1,�2) Toptimal TEM.GA TK&I TOtsu TH&W TKapur

(a)

1 (50, 120) 85 85 84 85 85 85
2 (50, 110) 80 80 79 80 80 80
3 (50, 100) 75 75 74 75 73 75
4 (50, 90) 70 70 69 70 70 70
5 (50, 80) 65 — — 65 65 65
6 (50, 70) 60 — — 60 60 60

Average time — 72.53 1.796 1.750 1.765 1.703

(b)

1 (50, 120) 92 92 93 83 87 79
2 (50, 110) 88 88 90 75 51 79
3 (50, 100) 85 85 89 64 53 78
4 (50, 90) 83 82 92 58 53 78
5 (50, 80) 82 84 107 55 52 77
6 (50, 70) 85 90 121 52 51 72

Average time — 99.18 1.796 1.750 1.765 1.703
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Fig. 7. Test histogram generated by simulating a GG mixture with pa-
rameter values P1 = 0.9, P2 = 0.1, �1 = 50, �2 = 100, �1 = �2 = 15,
�1 = 1, �2 = 6.

threshold values fit optimal ones exactly. Among the non-
parametric methods used for comparison (i.e., Kapur’s,
H&W’s, and Otsu’s algorithms), Kapur’s algorithm proved
to be the best, but it gave less accurate results than those
of the proposed method, in particular, in cases where the
mixture includes a Laplacian distribution. This can be ex-
plained by the fact that the entropy of small value shape
parameter distributions such as the Laplacian is low, thus
forcing Kapur’s algorithm (which is based on the maxi-
mum entropy principle) to select biased threshold solutions
for which the entropy-based criterion is higher. Due to its
criterion being limited to first-order statistics, H&W’s al-
gorithm was not able to discriminate between the complex
distributions adopted in these experiments. The poor perfor-
mance of Otsu’s algorithm can be found in the unbalanced
prior probabilities used to construct the GG mixture. The
parametric K&I’s algorithm could not run as well as in
the previous experiments because of the Gaussian assump-
tion. Although the superiority of the proposed method was

expected because the mixtures are based on GG distribu-
tions, the obtained promising results allowed also to validate
our GA-based initialization procedure for the parameter
estimation process.

5.2. Experiments on NDT images

The second set of experiments is related to the problem of
the analysis of NDT images. NDT consists of the use of spe-
cial equipments and methods to detect an object and quan-
tify its possible defects without harming it. NDT methods
are used in a broad variety of applications, such as nuclear
industry, chemistry, aeronautics and astronautics, civil con-
structions, etc. In this work, two real NDT images were used
in the experiments to assess the performance of our method.
The first image (of size 256 × 256 pixels) represents a light
microscopy image of a material structure. Light microscopy
is frequently used for inspecting the microstructures of ma-
terials in order to derive information about their properties
such as porosity, particle sizes, distribution uniformity, etc.
The second NDT image (of size 256 × 128 pixels) depicts
a defective cloth. The two images (with their corresponding
ground truth) are shown in Figs. 8 and 9, respectively.

The results in terms of threshold values and of number
of misclassified pixels obtained by applying each thresh-
olding method to the first NDT image (whose histogram is
reported in Fig. 10a) are reported in Table 4a (it is worth
noting that all the pixels were assigned to one of the two
classes without any rejection option). They show that the
threshold value yielded by the proposed method was the
closest to the optimal one. In this case, it was equal to 184,
corresponding to 1151 misclassified pixels, while the opti-
mal threshold (found by manually thresholding the image
on the basis of the information present in the ground-truth
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Table 3
Threshold values obtained on simulated histograms generated to test the sensitivity of the different thresholding techniques to the shapes of the distribution
of the object and background classes

Test case (�1,�2) Toptimal TEM.GA TK&I TOtsu TH&W TKapur

1 (1, 1) 87 87 82 70 77 73
2 (1, 6) 83 83 85 69 71 74
3 (6.2) 81 81 91 58 49 79
4 (6, 6) 81 81 94 58 49 79

Average time — 110.54 1.796 1.750 1.765 1.703

Fig. 8. First NDT problem: (a) material image and (b) ground-truth image.

Fig. 9. Second NDT problem: (a) defective cloth image and (b) ground-truth image.
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Fig. 10. Histograms of the two NDT images: (a) material image and (b) defective cloth image.
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Table 4
Threshold values and numbers of misclassified pixels obtained with the different thresholding methods on: (a) the NDT material image and (b) the NDT
defective cloth image

Optimal EM–GA K&I Otsu H&W Kapur

(a)

Threshold value 186 184 193 166 181 136
Misclassified pixels 551 1151 3613 9836 2342 22742
Time (ms) — 76.953 1.625 1.625 1.656 1.609

(b)

Threshold value 55 54 36 74 74 53
Misclassified pixels 90 92 243 15 844 15 844 97
Time (s) — 33.437 1.937 1.921 2 1.875

Fig. 11. NDT material binary images obtained by: (a) manual supervised optimal thresholding and (b) the proposed thresholding method.

Fig. 12. NDT defective cloth binary images obtained by: (a) manual supervised optimal thresholding and (b) the proposed thresholding method.

image) was equal to 186, corresponding to 551 misclassi-
fied pixels (see Fig. 11 for a visual comparison between
the binary image obtained by the proposed method and
the one yielded by manual optimal thresholding). Among
the reference thresholding techniques, the worst result was
provided by Kapur’s method, which totally failed to de-
termine a reasonable threshold, while the threshold closest
to the one yielded by the proposed method was computed
by H&W’s algorithm.

The results obtained by thresholding the histogram (see
Fig. 10b) of the cloth image are provided in Table 4b.
Also in this case, the best threshold value was given by the

proposed method. It was equal to 54, corresponding to 92
misclassified pixels, while the optimal threshold obtained
by manual supervised thresholding was equal to 55, corre-
sponding to 90 misclassified pixels. This promising result is
confirmed by visually inspecting the binary images obtained
both by the proposed method and by manual optimal thresh-
olding (see Fig. 12). Similarly to what was observed in the
experiments with data simulating a strong overlap between
the distributions of the two classes (see previous Section
5.1), Kapur’s method performed well for this real image
(the threshold value was equal to 53, corresponding to 97
misclassified pixels), while the worst result was obtained by
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Fig. 13. SAR images related to the city of Pavia (Italy): (a) image acquired
on 20th October 2000 immediately after flooding; (b) image acquired on
28th October 2000 when the flooded areas were reduced; and (c) map of
changed areas used as ground truth.

Otsu’s and H&W’s methods (their threshold value was equal
to 74, corresponding to 15 844 misclassified pixels).

5.3. Experiments on multitemporal SAR images

In these experiments, we propose to apply our method
to the complex problem of the detection of changed (and
unchanged) areas on the Earth’s surface by the analysis of
multitemporal images acquired by a spaceborne Synthetic
Aperture Radar (SAR). In particular, two SAR images ac-
quired by the ERS-2 sensor over the city of Pavia (Italy) on
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Fig. 14. (a) Log-ratio image generated from filtered images and (b) corresponding histogram.

20 and 28 October 2000, respectively, were considered.
The two images represent a flooding event that occurred
during the two acquisition dates. The equivalent numbers
of looks (ENL) of the two images are equal to 2.64 and
3.43, respectively. These values mean that the two images
are highly corrupted by a critical multiplicative speckle
noise, which is typical of SAR data. The considered images
(with the corresponding ground-truth image) are shown
in Fig. 13.

In order to reduce the speckle noise effects that make sep-
aration between changed and unchanged classes difficult,
we applied two iterations of the enhanced Lee filter with a
window size of 5 × 5 pixels to the two original SAR im-
ages [39]. Then, according to what usually done in the con-
text of change detection in SAR imagery [40], changes can
be identified by thresholding the log-ratio image generated
from the filtered images (see Fig. 14). Table 5 shows the re-
sults achieved with the different thresholding methods. The
threshold value obtained by the proposed method was the
closest to the optimal threshold value provided by manual
supervised thresholding of the log-ratio image. In this case,
the threshold obtained by the proposed method was equal to
110 (corresponding to 5692 misclassified pixels), while the
optimal threshold was equal to 106 (corresponding to 5536
misclassified pixels). Concerning the reference thresholding
techniques, on the one hand, H&W’s and Otsu’s methods
failed to obtain a reasonable threshold. This can be explained
by the small number of pixels representing the changed class
(i.e., by the unbalanced prior probabilities of the object and
background classes), which penalizes the aforementioned
methods, as already shown in the experiments with simu-
lated data (see Section 5.1). On the other hand, the K&I’s and
the Kapur’s methods exhibited in this case results compet-
ing with the proposed method. A visual comparison between
the change-detection map provided by the proposed method
and that yielded by manual supervised thresholding confirms
the effectiveness of the presented threshold-selection method
(see Fig. 15).
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Table 5
Threshold values and numbers of misclassified pixels obtained with the different thresholding methods on the log-ratio SAR image of the city of Pavia
(Italy)

Optimal EM–GA K&I Otsu H&W Kapur

Threshold value 106 110 117 152 147 116
Misclassified pixels 5536 5692 7138 268 459 171 622 6754
Time (ms) — 91.094 1.515 1.531 1.531 1.515

6. Conclusions

In this paper, a novel parametric image thresholding
method has been presented. The underlying idea of the
proposed method is to estimate the statistical parameters
related to object and background classes by using the EM
algorithm under the assumption that the two classes follow
a GG distribution. The main contributions of this paper are
related to two important methodological issues. The first
one is related to the formulation of the EM estimation algo-
rithm under a GG-based mixture model. The choice of this
distribution is attractive for modeling the object and back-
ground classes in a generic image under analysis, since it is
flexible and robust. In other words, despite it can approxi-
mate a large class of statistical distributions, it requires only
the estimation of one additional parameter (i.e., the shape
parameter) compared to the widely used Gaussian model.
The second contribution concerns the critical problem of
parameter initialization in the EM algorithm. This has been
addressed by developing a robust and efficient strategy based
on GAs.

In order to assess the effectiveness of the proposed
method, in the experiments we considered several different
simulated and real images. For purposes of comparison,
we also used four thresholding methods widely referenced
in the literature. From the obtained results, it was possible
to underline the following main attractive properties of the
proposed method: (i) it showed very high thresholding accu-
racies (in average it proved to be the most effective among
the considered techniques and provided results that were
very close to those yielded by optimal manual supervised
thresholding); (ii) it can address situations characterized
by strongly unbalanced prior probabilities between object
and background; and (iii) it is robust to the problem of
ambiguity between object and background classes in non-
homogeneous images. The only critical issue we verified
in our experiments with the proposed technique concerns
cases in which the histogram of the considered image is
monomodal, due both to very overlapped class distributions
and to balanced prior probabilities. In these extreme critical
situations, traditional techniques proved to be more effec-
tive than the proposed method. Another advantage of the
proposed method lies in the possibility of applying any kind
of decision rule (e.g., minimum cost, minimum risk, spatial
context-based decision rules [41]) for selecting the optimal
threshold value thanks to its explicit unbiased estimation of
the class statistical parameters.

Fig. 15. Change-detection maps obtained by thresholding the log-ratio
image with: (a) manual supervised optimal thresholding and (b) the
proposed thresholding method.

The main disadvantage of the proposed technique con-
sists in the higher computational time required compared to
standard algorithms (which depends on the GA used for the
identification of the best initial conditions). Nonetheless, this
computational time is acceptable in many applications (on
average in all our experiments the processing time was not
greater than 2 min on a standard PC). In addition, it is worth
noting that the computational complexity of the GA can be
reduced either by using approximated strategies for the eval-
uation of the fitness function or by reducing the number of
iterations required for reaching the convergence. This results
in different trade-offs between required computational time
and quality of the solution.

As a future development of this work, the proposed
method will be extended to the problem of multilevel
thresholding and will be integrated with a Markov random
field approach for modeling spatial-context information in
the thresholding process.
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Appendix A

In this appendix, we derive the EM equations for a mixture
of two GG distributions. The complete data log likelihood
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is given by

L(X, Z, �) =
2∑

i=1

L−1∑
x=0

zi(x)h(x) ln[Pipi(x|�i], (26)

where zi(x) can be estimated as the conditional expecta-
tion of zi given the observation x and the parameter set
� = [P1, P2, �1, �2]. In the case of a GG distribution, the
complete data log likelihood is given as follows:

L(X, Z, �) =
2∑

i=1

L−1∑
x=0

zi(x)h(x)

× ln

[
Pi

�i

2�i�(1/�i )
e−[|x−�i |/�i ]�i

]
. (27)

Eq. (27) can be written after some transformations in the
following compact form:

L(X, Z, �) =
2∑

i=1

L−1∑
x=0

zi(x)h(x) ln Pi +
2∑

i=1

L−1∑
x=0

zi(x)h(x)

×
[

ln �i − ln 2 − ln �i − ln �(1/�i )

−�
−�i

i |x − �i |�i

]
. (28)

The estimation of the mean (�1, �2), the scale (�1, �2) and
the shape (�1, �2) parameters associated with object and
background classes is carried out by maximizing the above
function as discussed in the following.

A.1. Estimation of the mean �i

The estimation of the mean is obtained by computing the
derivative of (28) with respect to �i , i.e.,

dL(X, Z, �)

d�i

= 0. (29)

This allows to obtain

L−1∑
x=0

zi(x)h(x)

[
− �i

�
�i

i

�(x)|x − �i |�i−1

]
= 0, (30)

where

�(x) =
{

1 if x − �i < 0,

−1 if x − �i �0.
(31)

By taking the term −�i/�
�i

i out of the summation, we find
that the estimate of the mean is achieved by solving the
following nonlinear equation:

g(�i ) =
L−1∑
x=0

zi(x)h(x)�(x)|x − �i |�i−1 = 0. (32)

A.2. Estimation of the scale parameter �i

The estimation of the scale parameter is yielded by com-
puting the derivative of (28) with respect to �i , i.e.,

dL(X, Z, �)

d�i

= 0. (33)

Accordingly, we obtain

L−1∑
x=0

zi(x)h(x)

[
− 1

�i

+ �i�
−�i−1
i |x − �i |�i

]
= 0. (34)

After some simple transformations, we get the estimate of
the scale parameter from the following equation:

�i =
[

�i

∑L−1
x=0 zi(x)h(x)|x − �i |�i∑L−1

x=0 zi(x)h(x)

]1/�i

. (35)

A.3. Estimation of the shape parameter �i

Also for the shape parameter, the estimation is yielded by
computing the derivative of (28) with respect to �i , i.e.,

dL(X, Z, �)

d�i

= 0 (36)

which is equivalent to

L−1∑
x=0

zi(x)h(x)

[
1

�i

+ �′(1/�i )

�2
i �(1/�i )

−
( |x − �i |

�i

)�i

× ln

( |x − �i |
�i

)]
= 0, (37)

where

d

d�i

ln(�(1/�i )) = − �′(1/�i )

�2
i �(1/�i )

. (38)

This can be rewritten as

L−1∑
x=0

zi(x)h(x)

[
1

�i

+ 1

�2
i

	(1/�i ) −
( |x − �i |

�i

)�i

× ln

( |x − �i |
�i

)]
= 0, (39)

where 	(�) = �′(�)/�(�) is the digamma function [31].
Finally, the estimate of the shape parameter is achieved

by solving the following nonlinear equation:

�(�i ) =
L−1∑
x=0

zi(x)h(x)

[
1

�i

+ 1

�2
i

	(1/�i )

−
( |x − �i |

�i

)�i

ln

( |x − �i |
�i

)]
= 0. (40)
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A.4. Numerical evaluation of the mean and the shape
parameters

In order to compute the mean and the shape parameter
values at the EM iteration t +1 from the nonlinear equations
(32) and (40), we use the standard iterative Newton–Raphson
method. At iteration (r + 1) of the latter, the estimation of
the mean value is given by (for simplicity the subscripts t
and t + 1 referring to the EM iterations are omitted in the
expressions)

�(r+1)
i = �(r)

i − g(u
(r)
i )

g′(�(r)
i )

, (41)

where

g′(�(r)
i ) = (�i − 1)

L−1∑
x=0

zi(x)h(x)|x − �(r)
i |�i−2. (42)

In the same manner, the shape parameter at step (r + 1) is
given by

�(r+1)
i = �(r)

i − �(�(r)
i )

�′(�(r)
i )

, (43)

where

�′(�(r)
i ) =

L−1∑
x=0

zi(x)h(x)

[
− 1

(�(r)
i )2

− 	′(1/�(r)
i )

(�(r)
i )4

− 2

(�(r)
i )3

	(1/�(r)
i ) −

( |x − �i |
�i

)�(r)
i

×
[

ln

( |x − �i |
�i

)]2
]

(44)

in which the function 	′(�) is the trigamma function defined
as: 	′(�) = d2/d�2 ln �(�) [31].
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