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Abstract—In this paper, a model-based approach to multires-
olution fusion of remotely sensed images is presented. Given
a high spatial resolution panchromatic (Pan) image and a low
spatial resolution multispectral (MS) image acquired on the same
geographical area, the presented method aims to enhance the
spatial resolution of the MS image to the resolution of the Pan
observation. The proposed fusion technique utilizes the spatial
correlation of each of the high-resolution MS channels by using
an autoregressive (AR) model, whose parameters are learnt from
the analysis of the Pan data. Under the assumption that the
parameters of the AR model for the Pan image are the same as
those that represent the MS images due to spectral correlation,
the proposed technique exploits the learnt parameter values in
the context of a proper regularization technique to estimate the
high spatial resolution fields for the MS bands. This results in a
combination of the spectral characteristics of the low-resolution
MS data with the high spatial resolution of the Pan image. The
main advantages of the proposed technique are: 1) unlike standard
methods proposed in the literature, it requires no registration
between the Pan and the MS images; 2) it models effectively
the texture of the scene during the fusion process; 3) it shows
very small spectral distortion (as it is less affected, compared to
standard methods, by the specific digital numbers of pixels in the
Pan image, since it exploits the learnt parameters from the Pan
image rather than the actual Pan digital numbers for fusion); and
4) it can be used in critical situations in which the Pan and the MS
images are acquired (also by different sensors) in slightly different
areas. Quantitative experimental results obtained using Landsat-7
Enhanced Thematic Mapper Plus (ETM+) and Quickbird images
point out the effectiveness of the proposed method.

Index Terms—Autoregressive model, combination, decimation,
image processing, merging, model-based fusion, multiresolution
fusion, multispectral image, panchromatic image, remote sensing,
superresolution.

1. INTRODUCTION

HE PROCESS of combining panchromatic (Pan) and mul-
tispectral (MS) data to produce images characterized by
both high spatial and spectral resolutions is known as multires-
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olution fusion (see [1] for a precise definition of the problem,
where it has been suggested to use the terms merging and
combination in a much broader sense than fusion, with combi-
nation being even broader than merging). Given technological
limitations related to the radiometric resolution of the detectors,
MS images are generally acquired with a larger instantaneous
field of view (IFOV) (i.e., lower spatial resolution) than Pan
images. This depends on the relatively high spectral resolution
of the MS channels, which should be balanced with a low
spatial resolution to obtain an acceptable signal-to-noise ratio
(SNR) in the acquired data. Due not only to this physical
constraint, which involves a tradeoff between the spatial and the
spectral resolutions, but also to the ever increasing availability
of spaceborne sensors imaging with different scales and spec-
tral bands, in the past few years, the remote-sensing community
has devoted great attention to the process of multiresolution
fusion. With the fusion of different images, we can overcome
the limitations of information obtained from individual sources
and obtain a better understanding of the observed scene [2]-[6].

Many researchers have addressed the problem of multires-
olution image fusion for remote-sensing applications. The
most common method for fusing a high-resolution Pan im-
age with an MS remote-sensing image is based on the
intensity—hue—saturation transform (IHS) technique [7]-[10].
This technique aims at enhancing the spatial details, but it
also produces spectral distortion. High-pass filtering (HPF)
fusion methods [11], [12], which are based on injecting high-
frequency components into interpolated versions of MS data,
have shown better performance by improving the quality of
spatial details, resulting in a better visual effect. Other methods
considered in the remote-sensing literature include approaches
based on principal component analysis [13], [14] and the
wavelet transform (WT) [15]-[18]. The standard WT method
replaces the high-frequency component of the MS images with
that of the Pan image by working in the wavelet domain and
then synthesizing the fused image by applying the inverse WT.
Fusion schemes based on the “a trous” wavelet (ATW) algo-
rithm have also been proposed [19], [20]. In [21], Aiazzi et al.
proposed two context-driven fusion methodologies based on
the undecimated discrete WT (UDWT) and the generalized
Laplacian pyramid (GLP), respectively. The former uses an oc-
tave bandpass representation obtained from a conventional WT
by omitting the decimators and upsampling the wavelet filter
bank. The latter is based on an oversampled structure obtained
by recursively subtracting from an image an expanded and
decimated low-pass version of it. Modeling the relationships
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between wavelet coefficients of MS and Pan images at a
coarser resolution and using them after extrapolation at a higher
resolution for injecting high-frequency details into the MS
images has been considered in [22], where an undecimated
multiresolution approach to MS band sharpening is used. A
common drawback of all the above methods is that they require
accurate coregistration before the fusion process can take place.
This may be a practical constraint affecting the fusion results,
especially when considering Pan and MS images acquired by
different satellites.

In this paper, we address the problem of multiresolution
fusion from a different perspective, based on superresolution
techniques [23], [24]. The idea of superresolution refers to
the process of producing a high spatial resolution image from
several low-resolution images, by increasing the maximum
spatial frequency and removing the degradations that arise
during image acquisition from a low-resolution camera. The
most obvious superresolution method is to capture multiple
low-resolution observations of the same scene by subpixel shift
in the camera motion, i.e., using motion cue. However, this
method requires an accurate registration process, which is a
very difficult and challenging task. In order to overcome this
difficulty, in recent years, image-processing researchers have
started to exploit learning-based methods for image superreso-
lution. In these methods, a database of high-resolution training
images is used to create high-frequency details in zoomed
images [25]-[27]. The advantage of learning-based methods is
that they provide a very natural way of obtaining the required
image characteristics. By choosing a proper feature set from
training images, the quality of the obtained results can be im-
proved. Nevertheless, instead of using a set of training images
to learn the properties of the scenes, one could use available
high-resolution observations to infer the required parameter
values and exploit them along with low-resolution observations
to accomplish the desired task. In [28] and [29], the authors use
a multiresolution autoregressive (AR) model for the image, and
exploit the extracted parameters for texture classification and
image segmentation.

In this paper, we present a novel approach to multiresolution
fusion, which exploits the available high-resolution Pan
image to learn the spatial relationships for the unknown
high-resolution MS images by using an AR structure. The
AR parameters learnt from the Pan image are used as the AR
parameters for the fused MS channels in order to enhance their
spatial resolution. The assumption is that the same parameters
learnt on the Pan image are valid for all MS channels, as we are
only learning the spatial dependence between pixels and not
their explicit values. This approach has four main advantages
compared to classical multiresolution methods.

1) Unlike standard methods, it is totally insensitive to reg-
istration errors between the Pan and the MS images (this
property is very important because a residual misregistra-
tion can be present between these images).

2) It shows very small spectral distortion (as it is less af-
fected, compared to standard methods, by the specific
digital numbers of pixels in the Pan image, since it
exploits the learnt parameters from the Pan image rather
than the actual Pan digital numbers for fusion).
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Fig. 1. Tllustration of the data fusion for an MS and a Pan image for a
1:2 scale ratio. Here, T indicates upsampling, and LR and HR stand for low
resolution and high resolution, respectively.

3) It models the texture of the analyzed scene effectively.
4) It can be applied to Pan and MS images acquired (also by
different sensors) in slightly different geographical areas.

The outline of the paper is as follows. In Section II, a general
description of the proposed method is presented. Section III-A
discusses the modeling of the low spatial resolution MS image
formation, while Section III-B addresses the AR model for the
high-resolution image field. The estimation of model parame-
ters used in the AR model of fused images is presented in
Section IV-A. The regularization-based approach to en-
hance the spatial resolution of MS images is discussed in
Section IV-B. Experimental results are given and analyzed in
Section V. Finally, Section VI draws the conclusions of this

paper.

II. GENERAL DESCRIPTION OF THE METHOD

The proposed method for multiresolution fusion is illustrated
by the block scheme shown in Fig. 1. The low-resolution
MS image is modeled by a simple decimation process. The
decimation process relates to the fact that the low-resolution
data are due to the integration of light falling on the charge-
coupled device (CCD) sensor array of suitable area compared
to the desired high-resolution images. We obtain the initial
estimate of the high-resolution MS image by interpolating its
low-resolution version using a proper interpolation technique.
The contextual dependences in the unknown high-resolution
MS image are modeled using an AR model. The required AR
parameters are then estimated from the available high spatial
resolution Pan image, and are used as coefficients for linear
dependences in the AR model of the fused MS bands. This cor-
responds to injecting in the MS image the geometrical proper-
ties learnt from the high-resolution Pan observations. The basic
assumption is that due to the high spatial correlation of each MS
band with Pan data, the same parameterization can be used in
all spectral channels. In greater detail, we define a cost function
that consists of both a data-fitting term (based on the model of
the low-resolution image and representing a constraint) and a
regularization term (based on the AR model for the unknown
high-resolution image). It is worth noting that the learnt AR
parameters are used to enforce the spatial dependence in the
regularization term. A suitable optimization technique is then
exploited to minimize the cost function. The minimization leads
to a high spatial resolution MS image that preserves the original
spectral properties. The procedure is repeated for each MS
channel using the same parameters estimated on the Pan data.
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Fig. 2. Low-resolution image formation model illustrated for one of the
spectral channels of an MS image.

Nevertheless, the effect of these parameters on different spectral
bands may be significantly different because they represent
only one term of the cost function to be minimized. In the
following sections, the different parts of the proposed approach
are described in greater detail.

It is worth noting that the proposed model-based approach
differs from the amelioration de la resolution spatiale par in-
Jection de structures (ARSIS) model-based approach presented
in [31], where the authors use a wavelet-based multiresolution
analysis. They assume a suitable model to infer the unknown
wavelet coefficients for the MS images, taking into account the
physics of Pan and MS images and the correlation between
their computed wavelet coefficients at lower scales. These
wavelet coefficients are used to derive the model parameters
that are then used for obtaining the missing wavelet coefficients
of the MS images at the higher scale. On the contrary, the
proposed approach uses the AR model for the given high spatial
resolution Pan image as well for the unknown high-resolution
MS images. Then, the model parameters learnt from the Pan
image are used in a suitable regularization framework to obtain
high spatial and high spectral resolution MS images without
requiring any registration between MS and Pan images.

III. MS AND PAN IMAGE MODELS
A. MS Image Formation Model

The multiresolution fusion problem can be cast in a high-
resolution restoration framework, where an appropriate prior
model learnt using the high spatial resolution Pan observations
is exploited to regularize the solution. Let us consider p images,
made up of a single high-resolution Pan image and p — 1 low-
resolution MS channels. Fig. 2 shows the block scheme of the
model that represents the relationship between the available
low-resolution MS image and its high-resolution version for
a single spectral channel. In particular, the observed low-
resolution MS images are modeled as decimated and noisy
versions of their high-resolution versions (to be estimated).
Let z; represent the available lexicographically ordered high-
resolution Pan image.

If z,,, m =2,3,...,p, represents the lexicographically or-
dered high spatial resolution MS images (each of N2 x 1 pix-
els)and y,,, m = 2,3,. .., p, are the corresponding vectors (of
size M? x 1) containing pixels from the low spatial resolution
observations, then we can write

Ym = Dz + Vi, m=2,3,...,p (1

where D is the decimation matrix of size M2 x N? and v,,
is the M? x 1 noise vector that we assume to be a zero-
mean independent and identically distributed (i.i.d.) process
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with variance 2. For a decimation (downsampling) factor of
g, the decimation matrix D consists of g2 nonzero elements
of value 1/¢? along each row at appropriate locations [32].
As an example, for a decimation factor of ¢ =2 and with
lexicographically ordered z,, of size 16 x 1, the D matrix is
of size 4 x 16 and can be written as

1100110000000000
0011001100000000
0000000011001100
0000000000110011

D 2

1
T4

Thus, the low-resolution intensity is the average of the high-
resolution intensities over a neighborhood of ¢ pixels cor-
rupted with additive noise. This decimation model simulates
the integration of light intensity that falls on the high-resolution
detector, and the decimation process is represented by the
matrix D, which has the structure given in (2).

Our problem now reduces to estimating z,,, m = 2,...,p,
given y,,, m = 2,...,p, and z; (high-resolution Pan image).
This is an ill-posed inverse problem. The problem is ill posed
as the matrix D is not invertible, i.e., one is required to estimate
values of four pixels from a single pixel when the upsampling
factor ¢ = 2. It should be mentioned here that the aliasing
process modeled by (1) accounts for the spatial frequency
distortion, conserving the spectral properties of the MS images
to be fused. This is a very important feature of the proposed
technique.

B. High-Resolution Image Field Modeling

As discussed in Section III-A, we consider this as an ill-
posed image-fusion problem as there are infinite solutions to
(1). Thus, obtaining a robust solution requires a reasonable
assumption (constraint) about the nature of the true image.
Once the prior model for the true image is chosen, the obtained
solution depends on the model parameters. A proper choice
of the model parameters leads to a better solution and ill-
posedness results in a better posed problem. However, the
parameters of the prior model are unknown as the true high-
resolution MS images are unavailable and have to be esti-
mated. To solve this ambiguity, we propose to use the available
high-resolution Pan observations of the same scene for the
learning of the parameter values, so that they can be used to
improve the solution. In other words, the spatial correlation
for the unknown high-resolution MS spectral channels can
be estimated from the available high-resolution Pan data. In
order to accomplish this task, a proper model for the high-
resolution Pan image is needed from which to extract parame-
ters. These parameters characterize the mutual influence among
context-dependent entities, such as pixel intensities and other
spatially correlated features. A possible approach to model
spatial dependence is to use Markov random fields (MRFs)
[33], [34]. MRFs achieve this goal by characterizing mutual
influence among the entities using conditional probabilities for
a given neighborhood. However, although the MRF model for
priors is a popular statistical model (and effectively captures
contextual dependences), it involves very high computational
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Fig. 3. Fifth-order neighborhood for the pixel at location (0, 0).

complexity, as one needs to compute the partition function in
order to estimate the true parameters. The computational burden
can be reduced if we use a scheme such as the maximum
pseudolikelihood (MPL), which does not require the partition
functions to be estimated [35]. Nonetheless, to obtain the global
minimum, we still need to use a stochastic relaxation technique,
which is computationally taxing. In addition, pseudolikelihood
is not a true likelihood except for the trivial case of a null
neighborhood. This motivates us to use a different (but proper)
prior. We assume a linear dependence of a pixel to its neighbors
in a high spatial resolution image and represent it with an AR
model. Although this becomes a weaker model than the MRF-
based one, it is more suitable to process the large amount of
data involved in remote-sensing applications as the computation
is drastically reduced. It is worth noting that an MRF model
can represent a large variety of spatial interrelationships among
pixels locally, out of which the AR model is only a subset
representing linear dependences. Interested readers are referred
to [36] for details.

Let z(s) be the gray-level value of the image pixel at site
s =(i,7)inan N x N lattice, where i = 1,2,..., N and j =
1,2,..., N. The AR model for z(s) can be expressed as [29]

z(s) = Z 0(r)z(s + 1) + /pn(s) (3)

reN;

where N is the neighborhood of pixel at s. 6(r), r being a
neighborhood index with r € N, and p are unknown para-
meters, and n(-) is an i.i.d. noise sequence with zero mean
and unit variance. Here, p is the variance of the white noise
that generates the specified data for the given AR parameters.
We use a fifth-order neighborhood that requires a total of 24
parameters (i, j) (see Fig. 3). The choice of neighborhood is
motivated by the fact that, on the one hand, a larger neighbor-
hood captures the local texture very well but then it becomes
too specific and lacks the generalization capability. If the local
texture somehow differs from the globally estimated texture,
the model fits very poorly at those sites. On the other hand, a
small size of neighborhood generalizes very well, but lacks the
capability to capture the intricacies of the image texture. Thus,
a neighborhood size of five appears to represent a good trade-
off. Furthermore, it is commonly observed in many satellite
images that the scene content does not have direction-specific
textures. This means that there is no left or right or up or down
preference while modeling the texture in a given image. Under
such cases, one may assume the AR model to be rotationally
symmetric, thus reducing the number of unknown parameters.
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In view of above and to reduce the computation time taken
to estimate these parameters, we use a symmetric AR model,
where 6(r) = 6(—r), and estimate only eight parameters. We
observed that the improvement in the performance is negligible
when we considered an asymmetric AR model with all the
24 parameters estimated, but the computational complexity
increases marginally. Nonetheless, we show results of fusion
for both cases in the experimental section. It may be mentioned
here that we assume a folded torus model of the image [29]
so that border pixels are taken cared of while estimating the
parameters.

IV. PARAMETER ESTIMATION AND FUSION
A. Estimation of AR Prior Parameters

One of the characteristics of an image is the statistical
dependence of the gray level at a lattice point on those of
its neighbors. As stated above, we characterize this statistical
dependence by using an AR model, where the gray level at a lo-
cation is expressed as a linear combination of the neighborhood
gray levels and an additive noise. We estimate the AR model
parameters by considering the image as a finite lattice model
using the iterative scheme given in [29]. In this way, we use
the Pan image z; as an AR model, considering the same neigh-
borhood size around each pixel. Thus, we use a homogeneous
model and derive a set of parameters for the entire Pan image.
Once we estimate the values of the AR model parameters 6,
we use them for the fusion of each of the MS channels. In
other words, we extract parameters from the high-resolution
Pan image and use the same AR prior for the unknown high-
resolution MS images. The extracted AR parameters can also be
used on MS spectral channels with bandwidths outside the Pan
image (even though this is a suboptimal application of the
proposed technique as, depending on the considered area, the
texture properties of the spectral channels outside the range of
wavelengths of the Pan image may be only partially correlated
with the texture properties of the Pan data). Another attractive
scenario is the one in which the fusion task is extended to
portions of the MS image for which the Pan observations are not
available. A critical issue may be the stationarity of the model
parameters versus the portion of the considered Pan area. To
solve this problem, the approach could be applied to subimages
with similar properties where we can reasonably assume spatial
stationarity.

B. Fusion Using AR Prior

Regularization is a popular method for interpolating sparse
data, as well as smoothing the data obtained from noisy
measurements. The regularization-based approach is quite
amenable to the integration of information from multiple
observations with the smoothness function chosen from the
prior knowledge of the function to be estimated here. The
AR prior knowledge plays the role of a contextual constraint
used to regularize the solution. The AR parameters estimated
from the Pan observations are used in the cost function that
is to be minimized. The minimization leads to estimates of
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(e) (/)

Fig. 4. RGB false-color composition 4, 3, and 2 of fusion results at 30 m X 30 m obtained from degraded ETM+ MS bands (Landsat-7 data set). (a) True MS
image. (b) HPF fusion. (c) IHS fusion. (d) BT fusion. (¢) GS method. (f) Bicubically interpolated MS image.

high spatial resolution MS images. We use the simple linear [see (3)], one can easily derive the corresponding cost function
dependence of a pixel value on its neighbors as a constraint to be minimized as

using the AR model for the high spatial resolution MS image 2
to be recovered. The AR set of parameters ¢ estimated from the o — MY — Dz |)? +Z Zm () — Z O(r) zm (s +7)
Pan image contains the coefficients for linear dependence in the i reN,

prior term. Using a data-fitting term [see (1)] and a prior term (@)
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where m = 2,3,...,p. Here, X\ is a regularization parameter
that is proportional to o2/p, where p is the variance of the
driving noise source in (3) and o2 is the variance at the image
sensor, as given in (1) (i.e., the data-fitting error). Note that the
first term in the above equation relates to the confidence in data
fitting, and the second term relates to the confidence in model
fitting. The second term provides the spatial regularization
while upsampling the observations. Since the model parameter
vector 6 has already been estimated from the Pan image, as dis-
cussed in the previous section, a solution to the above equation
can be obtained. It is worth noting that the above cost function
is convex and therefore can be minimized using the gradient-
descent technique. In order to speed up the computation, the

initial estimate zﬁ,?) is obtained as the bicubically interpolated
version of the MS image y,,,. The estimation process converges
in a few iterations, making the procedure computationally very
efficient. The minimization is carried out independently for
each of the MS bands using the same parameter set learnt from
the Pan data, resulting in the fused high spatial and high spectral

resolution MS images.

V. EXPERIMENTAL RESULTS AND COMPARISONS

In this section, to assess the effectiveness of the pro-
posed approach, we consider two different data sets acquired
by Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and
QuickBird satellite sensors, respectively. The purpose of se-
lecting such different types of sensors is to demonstrate that
the proposed method works for both moderately high and very
high spatial resolution data. All experiments were carried out on
images acquired over the same geographical area at the same
time. The trials have been conducted on spatially degraded
images so that the effectiveness of the proposed technique can
be assessed quantitatively by analyzing the fused MS products
and the true MS images. A set of quality assessment measures,
which are currently used in the literature, has been selected for
quantitative analysis. It is worth noting that, in this paper, we do
not investigate the critical issue of quality assessment of fused
images. Interested readers are referred to [22].

A. Results on Landsat-7 ETM + Images

First of all, we consider the fusion of a Landsat-7 ETM+ MS
image with the corresponding coregistered Pan image. For this
experiment, we used a high spatial resolution Pan image and six
spectral channels acquired over the city of Trento, Italy. The MS
image include the visible, near-IR (NIR), and mid-IR bands,
while the Pan image covers the spectral range given by 520-
900 nm. The data are resampled to a ground resolution of
30 m x 30 m and 15 m x 15 m ground sample distance
(GSD) for MS and Pan, respectively, yielding a decimation
factor ¢ = 2 between them. They are then degraded in order
to obtain 60 m x 60 m and 30 m x 30 m, MS and Pan
images, respectively. These degraded images are then used for
fusion, using the proposed approach to estimate the 30 m x
30 m resolution fused MS images. The true Pan and the
MS images are of size 512 x 512 and 256 x 256 pixels,
respectively, and the corresponding degraded versions used in
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Fig. 5. RGB false-color composition 4, 3, and 2 of fusion results at 30 m x
30 m obtained from degraded ETM+ MS bands with the proposed model-based
approach (Landsat-7 data set).

the experiments are of size 256 x 256 and 128 x 128 pixels,
giving a decimation factor of two. The proposed method is
compared with the HPF, the THS, the Gram-Schmidt (GS),
and the Brovey transform (BT) techniques. A comparison is
also shown with the bicubically interpolated MS images. A
3 x 3 window size filter is exploited for the low-pass filtering
operation in the HPF technique. Concerning the GS method, we
adopted the algorithm implemented in the commercial Envi tool
[37]. The required input for the low-resolution Pan image was
a decimated version of the true Pan image. For the proposed
method, the AR parameters from the Pan image were estimated
and used in the cost-function minimization. The more proper
value of p in (3) for this experiment was equal to 0.0063.
The value of the regularization parameter A\, which tunes the
“smoothness” of the solution, was set to A = 0.5 through a
trial-and-error procedure. It is worth noting that one could use
a generalized cross-validation technique to identify the best
value of A, but this is computationally very demanding and is
specific to a given image only. A step size of 0.05 was used
in the gradient-descent algorithm, and the maximum number
of iterations was set to 100. However, the optimization process
converged much before the set limit. The processing time on
a Pentium IV 2.0-GHz machine was only a few seconds, a
little higher than for conventional fusion technique such as the
HPF-based method. However, our comparison does not include
the computational time required for coregistration of different
bands, which is a must for other literature techniques. For these
reasons, the proposed method compares very favorably with
other standard methods in terms of computational requirements.
The performance assessment task is accomplished according to
both a subjective visual inspection and a quantitative analysis
of the statistical properties of the fused images.

In order to assess the effectiveness of the proposed technique,
in the first set of experiments, we considered the fusion of
visible and NIR (VNIR) MS bands, whose total spectral range
is the same as that of the Pan image. Fig. 4(a) shows the RGB
false-color composition of VNIR spectral bands 4, 3, and 2 of
the original image at 30 m x 30 m resolution. From the spectral
characteristics of the ETM+ images [38], one can see that these
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TABLE 1
QUANTITATIVE ASSESSMENT OF THE FUSION RESULTS PROVIDED BY THE
CONSIDERED TECHNIQUES APPLIED TO THE LANDSAT-7 ETM+ DATA
SET: (a) BAND 2, (b) BAND 3, (¢) BAND 4 (THE IHS AND BT TECHNIQUES
HAVE BEEN APPLIED TO BANDS 2, 3, AND 4 FALSE-COLOR
COMPOSITIONS, WHEREAS THE OTHER TECHNIQUES
HAVE BEEN APPLIED TO EACH SPECTRAL
CHANNEL SEPARATELY)

Image Std | Definition | Distortion | Deviation | Corr | MSE
Dev extent index coeff
MS-Band 2 | 13.204 3.426 - - - -
Bicubic 12.055 1.769 2.956 0.053 | 0.939 | 0.008
HPF 12.822 3.424 4.272 0.080 | 0.895 | 0.013
IHS 9.241 3.270 7.275 0.131 0.697 | 0.040
BT 9.009 3.114 7.185 0.128 | 0.694 | 0.041
GS 12.307 2.773 3.896 0.072 | 0.899 | 0.012
Proposed 12.410 2.113 2.848 0.052 | 0.946 | 0.006
(@)
Image Std | Definition | Distortion | Deviation | Corr | MSE
Dev extent index coeff
MS-Band 3 | 19.297 4.878 - - - -
Bicubic 17.694 2.549 4.136 0.082 | 0.943 | 0.017
HPF 18.266 3.979 5.230 0.111 0.922 | 0.024
THS 11.646 3.455 9.325 0.198 | 0.760 | 0.069
BT 12.823 3.186 7.490 0.141 0.853 | 0.058
GS 17.856 3.678 5.407 0.114 | 0.909 | 0.026
Proposed 18.192 3.022 3.893 0.079 | 0.952|0.014
(b)
Tmage Std | Definition | Distortion | Deviation | Corr | MSE
Dev extent index coeff
MS-Band 4 | 15.831 4.705 - - - -
Bicubic 14.497 2.605 4.016 0.064 | 0.944 | 0.006
HPF 15.291 3.987 5.040 0.080 | 0.912 | 0.009
IHS 18.779 4.261 7.857 0.127 | 0.861 | 0.024
BT 18.827 4.672 8.371 0.132 | 0.848 | 0.025
GS 15.280 4.475 5.616 0.090 | 0.884|0.011
Proposed 14.982 3.099 3.710 0.059 | 0.953 | 0.005
©

bands overlap very well with the Pan band, justifying the use of
AR parameters from the Pan image. As can be observed from
the analysis of the figure, the fused image obtained with the
proposed model-based approach (see Fig. 5) is very similar to
the original one, without any significant spectral distortion. In
particular, one can see that the degree of detail in the urban area
and in the roads is sharply increased compared to the original
degraded image [for reference, see the bicubically interpolated
MS image in Fig. 4(f)]. The IHS and BT fusion images shown
in Fig. 4(c) and (d) lack the spatial details and also reveal
significant spectral distortions. The results provided by the HPF
fusion technique [see Fig. 4(b)] are comparable to those yielded
by the proposed approach as far as spatial details are concerned.
In greater detail, the HPF method enhances the edges, resulting
in fused images that look sharper due to HPF on the Pan image.
However, this also increases the noise. On the contrary, the
proposed method does not enhance the noise; rather, it works
like a bandpass filter that boosts up the high-frequency content
without increasing the noisy components. Concerning the GS
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TABLE 1II
GLOBAL QUANTITATIVE ASSESSMENT OF THE FUSION RESULTS
IN TERMS OF RASE AND ERGAS FOR BANDS 4, 3, AND 2
OF THE LANDSAT ETM+ DATA SET

Tmage RASE | ERGAS
Bicubic | 0.645 | 3.178
HPF 0.645 | 3.522
BT 0.729 | 4418
1HS 0.724 | 4.499
GS 0.709 | 4.089
Proposed | 0.593 | 2473

method, it slightly improved detail modeling with respect to
the proposed method, but significantly increased spectral dis-
tortions. It is worth noting that in our approach, we apply the
fusion algorithm to each spectral channel separately and not to
the RGB color composition. We use the RGB composition only
to visualize the results and compare different fusion methods.

An objective quantitative assessment of the quality of MS
images sharpened using Pan data is a difficult task. Even
when reference images are available for comparison, fidelity
to the reference usually requires the computation of a number
of statistical parameters. According to the existing literature,
in order to quantify performances obtained on each spectral
channel, we use the following set of statistical parameters:
1) standard deviation; 2) definition of the original image and
the fused images; 3) distortion extent; 4) deviation index; and
5) correlation coefficient between the fused and the MS images.
The mathematical descriptions of these performance indexes
can be found in [39]. The comparison is also made on the basis
of the mean squared error (mse) between the true MS images
and the fused images. The mse is defined as

Si(fi — fi)?
> f7

where f; represents the true MS image intensity value at the
ith pixel and fi is the corresponding fused MS image intensity.
The comparison is done considering each band separately. We
also evaluate the global spectral fidelity of the merged images
computed on different spectral channels in terms of the relative
average spectral error (RASE) index, expressed as a percent-
age, as well as the erreur relative globale adimensionnelle de
synthése (ERGAS) index [40].

The standard deviation and definition parameters indicate
the evidence of quality in terms of spatial details, while the
distortion extent, deviation index, and correlation values reflect
the fidelity of spectral information. For example, the mse,
distortion, and the deviation index should be as low as possible.
On the contrary, the higher the definition or correlation co-
efficient, the better is the fusion. The obtained results are
shown in Tables I and II. As can be observed from the tables,
the proposed approach shows better performances in terms of
spectral fidelity, by significantly reducing spectral distortion
compared to other methods. It is worth noting that the model-
based technique shows the maximum value of correlation, and
the minimum distortion and deviation values, as well as the

mse =

®)
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Fig. 6. RGB false-color composition 5, 3, and 1 of fusion results at 30 m x 30 m obtained from degraded ETM+ MS bands (Landsat-7 data set). (a) True MS
images. (b) HPF fusion. (c) IHS fusion. (d) BT fusion. (e) GS method. (f) Bicubically interpolated MS image.

lowest values of the RASE and ERGAS indexes. In addition,
it results in a substantial improvement in the mse compared to
other methods. Finally, the standard deviation and definition pa-
rameter values, even if not the best ones among those provided
by the considered techniques, are also reasonably close to the
true MS image statistics.

In the second set of experiments, we repeated the previous
trials in the case where the spectral range of the considered MS
bands was different from that of the Pan image. In particular,
we considered the Pan sharpening of ETM+ spectral bands
5, 3, and 1. This test is particularly critical for the IHS
technique, which explicitly assumes the use of MS bands in
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Fig.7. RGB false-color composition 5, 3, and 1 of the fusion results at 30 m x
30 m obtained from degraded ETM+ MS bands with the proposed model-based
approach (Landsat-7 data set).

the spectral range of Pan. However, band 5 (155-175 nm) is
outside the spectral range of Pan [38]. Concerning the proposed
technique, the AR parameters learnt from the Pan image were
used again in the optimization technique to minimize the cost
function. The various parameters used in the gradient-descent
algorithm are kept the same as in the previous experiment.
Fig. 6(a) shows the RGB false-color composition of original
spectral channels 5, 3, and 1 at 30 m x 30 m resolution.
Figs. 6(b)—(e) and Fig. 6(f) display the fusion results using the
reference techniques considered and bicubically interpolated
MS images, respectively. The results using the proposed ap-
proach are shown in Fig. 7. Quantitative measures are given
in Tables III and IV. As can be seen from the analysis of the
these figures and tables, the proposed method provides good
performances even when the estimated AR parameters derived
from the Pan image are used for Pan sharpening of the MS
bands that lie outside the spectral range of the Pan image.
As an example, a quantitative comparison of results obtained
by the proposed technique with those provided by the HPF
method for band 1 [see Table III(a)] shows that the correlation
coefficient and the deviation index for the proposed method are
0.941 and 0.039, respectively, while they are 0.886 and 0.061,
respectively, for the HPF technique. In addition, the RASE
and ERGAS values associated with the proposed approach
are the lowest ones among the considered techniques. This
confirms that the proposed method exhibits better capabilities
in preserving spectral properties. As regards the performances
in terms of standard deviation and definition (which are related
to spatial fidelity), the GS and the HPF methods gave slightly
better results (but a perfect alignment between Pan and MS
images is required). It may be noted here that the statistical
parameters for MS band 3 given in Tables I(b) and III(b) for
different methods are the same, except for the IHS and the BT
techniques, as these methods use color compositions 4, 3, and
2,and 5, 3, and 1, respectively, for fusion.

B. Results on Quickbird Images

In this section, we describe and analyze the results obtained
on a Quickbird data set consisting of four MS bands at a spatial
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TABLE III
QUANTITATIVE ASSESSMENT OF THE FUSION RESULTS PROVIDED BY THE
CONSIDERED TECHNIQUES APPLIED TO THE LANDSAT ETM+ DATA SET:
(a) BAND 1, (b) BAND 3, (¢) BAND 5 (THE IHS AND BT TECHNIQUES
HAVE BEEN APPLIED TO BANDS 1, 3, AND 5 FALSE-COLOR
COMPOSITIONS, WHILE THE OTHER TECHNIQUES HAVE
BEEN APPLIED TO EACH SPECTRAL
CHANNEL SEPARATELY)

Tmage Std | Definition | Distortion | Deviation | Corr | MSE
Dev cxtent index cocff
MS-Band 1 | 12.238 3.241 - - - -
Bicubic 11.153 1.548 2.801 0.040 | 0.935|0.004
HPF 11.923 3.313 4.141 0.061 0.886 | 0.008
IHS 7.273 3.203 11.739 0.165 | 0.205 | 0.062
BT 7.895 3.555 12.508 0.177 | 0.171 | 0.068
GS 11.220 2.209 3.437 0.049 | 0.903 | 0.006
Proposed 11.328 1.855 2.757 0.039 | 0.941 | 0.004
(@)
Image Std | Definition | Distortion | Deviation | Corr | MSE
Dev extent index coeff
MS-Band 3 | 19.297 4.878 - - - -
Bicubic 17.694 2.549 4.136 0.082 | 0.943 | 0.017
HPF 18.266 3.979 5.230 0.111 0.922 | 0.024
HS 10.413 3.383 11.178 0218 | 0.643 | 0.110
BT 9.965 2.749 10.305 0.188 | 0.790 | 0.102
GS 17.856 3.678 5.407 0.114 | 0.909 | 0.026
Proposed 18.192 3.022 3.893 0.079 | 0.952|0.014
(b)
Image Std | Definition | Distortion | Deviation | Corr | MSE
Dev extent index coeff
MS-Band § | 20.244 6.876 - - - -
Bicubic 17.912 3.426 5.887 0.090 | 0918 |0.012
HPF 18.621 4.586 6.707 0.101 0.894 | 0.015
IHS 16.855 4.139 12.914 0.177 | 0.700 | 0.059
BT 16.448 4.334 14.107 0.190 | 0.656 | 0.068
GS 19.221 6.008 8.127 0.125 | 0.843 | 0.023
Proposed 18.698 4.177 5.481 0.082 | 0.930 | 0.010
(c)
TABLE IV

GLOBAL QUANTITATIVE ASSESSMENT OF THE FUSION RESULTS
PROVIDED BY THE CONSIDERED TECHNIQUES IN TERMS OF
RASE AND ERGAS MEASURES FOR BANDS 5, 3, AND 1
OF THE LANDSAT-7 ETM+ DATA SET

Tmage RASE | ERGAS
Bicubic | 0.618 | 2951
HPF 0.744 | 3.482
BT 1.282 | 5712
THS 1.229 | 5.624
GS 0.965 | 4.399
Proposed | 0.425 | 2.076

resolution of 2.4 m x 2.4 m and a coregistered Pan image
with a spatial resolution of 0.6 m x 0.6 m (giving a spatial
resolution difference by a factor of four). The images have size
128 x 128 pixels and 512 x 512 pixels for MS bands and
Pan, respectively, and were acquired at the same time over the
Malpensa area, Italy. Since the MS bands cover a total spectral
range of 450-900 nm, in this case, for fusion, we use the three
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(e)

(/)

Fig. 8. Fusion results at 24 m X 2.4 m obtained from the degraded
bands 4, 3, and 2 images shown as a color composite (Quickbird data set).
(a) Image formed from true bands 4, 3, and 2. (b) HPF fusion. (c) IHS fusion.
(d) BT fusion. (e) GS method using the standard Envi package. (f) Bicubically
interpolated image.

MS NIR, blue, and green bands, i.e., bands 4, 3, and 2, as they
all are within the spectral range of the Pan image [41]. The Pan
image decimated by a factor of four was used to learn the AR
parameters, and the original MS images were used as reference
(true) data for comparisons. In order to make a quantitative
assessment of performances possible, as in the previous data
set, all trials were carried out on degraded versions of the
images (decimated by a factor of four).

We report the color composition of fused images obtained for
the bands 4, 3, and 2 by standard fusion methods [Fig. 8(b)—(e)],
bicubical interpolation [Fig. 8(f)], and the proposed model-
based method [Fig. 9(a)]. Fig. 8(a) shows the true-color com-
posite image for bands 4, 3, and 2 at 24 m x 24 m
resolution. Upon comparison of the figures, it can be seen
that the details in the fused image obtained with the proposed
approach are very similar to those in the true MS image, while
in the other methods, the texture only resembles that of the
Pan image. The reason is that all the other methods use the
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Fig. 9. Fusionresult at 2.4 m x 2.4 m obtained from the degraded MS bands
4, 3, and 2 images by the proposed model-based approach with. (a) Symmetric
AR model (eight parameters). (b) Asymmetric model (24 parameters).

specific digital numbers (DNs) of the Pan image for fusion,
while the proposed approach works on the principle of spatial
relationship on a neighborhood by learning the AR parameters
rather than using the DNs of the Pan data. The quantitative mea-
sures given in Tables V(a)—(c) and VI confirm the superiority
of the proposed approach in all cases as regards spectral fidelity
[see the last four columns of Table V(a)—(c)]. Concerning the
spatial fidelity, in the case of perfect geometrical alignment
between the MS and Pan images, the statistics given in the first
two columns of the table point out that the proposed approach
provides either the best results or results quite close to the
best, the best figure being obtained by different methods for
different bands. These results are particularly promising for the
proposed method, especially considering that it does not require
an accurate spatial registration between the Pan and the MS
images, and that the learning phase of the AR model parameters
could also be carried out on a Pan image acquired in a slightly
different area than that showed in the MS image.

In order to better understand the properties of the proposed
approach, experiments were carried out to assess the robustness
of the presented model-based method with respect to misreg-
istration errors in very high geometrical resolution images. To
this purpose, we simulated a misregistration of (2, 2) pixels for
all the MS images and analyzed the performances provided by
the presented model-based method with respect to other meth-
ods (see Table V). The results related to misregistered images
are indicated with the term “misregistered” in the tables. It is
worth noting that the fused images obtained by the proposed
approach do not change with misregistration as the algorithm
adopted does not take into account the spatial correspondence
between pixels (and thus the alignment between images). On
the contrary, all the other standard techniques are strongly
affected by misregistration errors. For example, Table V shows
that the HPF technique applied to misregistered images sig-
nificantly degraded its performance, resulting in poor fusion
results. Similar results were obtained by the other standard
methods.

An additional experiment was carried out in order to assess
the sensitivity of the proposed approach to the use of a sym-
metric or an asymmetric AR model. The quantitative evaluation
of the results obtained replacing the symmetric model with an
asymmetric one (in which all the 24 parameters are considered
for learning the spatial details from the Pan image) are reported
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TABLE V
QUANTITATIVE ASSESSMENT OF THE FUSION RESULTS PROVIDED BY THE
CONSIDERED TECHNIQUES APPLIED TO THE QUICKBIRD DATA SET:
(a) BAND 2, (b) BAND 3, (¢) BAND 4 (THE IHS AND BT TECHNIQUES
HAVE BEEN APPLIED TO BANDS 2, 3, AND 4 FALSE-COLOR
COMPOSITIONS, WHILE THE OTHER TECHNIQUES HAVE
BEEN APPLIED TO EACH SPECTRAL
CHANNEL SEPARATELY)

Image Std [Definition[Distortion|Deviation| Corr | mse
Dev extent | index | coeff
MS-Band2 95.098| 26.292 - - - -
Bicubic (coregistered) |74.458| 8.785 | 37.514 | 0.107 |0.824(0.022
Bicubic (misregistered)({74.145| 8,747 | 51.268 | 0.147 |0.645(0.041
HPF (coregistered) 81.762| 21.972 | 33.893 | 0.096 |0.859(0.017
HPF(misregistered)  [79.487| 20.786 | 47.83 0.137 |0.705 (0.035
BT (coregistered) 96.173| 31.066 | 33.321 | 0.098 |0.876(0.017
BT (misregistered) 97.022| 31.001 | 36.352 | 0.108 |0.852(0.021
THS (coregistered) 90.367| 27.304 | 30.857 | 0.090 |0.8917(0.014
[HS (misregistered)  (88.872| 27.033 | 33.774 | 0.099 |0.872(0.017
GS(coregistered) 78.767| 23.327 | 31.558 | 0.091 |0.8860.015
GS(misregistered) 83.079| 21.022 | 33.638 | 0.097 |0.870(0.016
Proposed (symmetric) |88.910| 24.310 | 27.256 | 0.078 |0.917(0.011
Proposed(asymmetric) |88.765| 22.960 | 26.580 | 0.075 |0.920(0.010
@
Image Std |DefinitionDistortionDeviation| Corr | mse
Dev extent | index |coeff]
MS-Band3 82.169| 22.579 - - - -
Bicubic (coregistered) |64.933| 7.627 | 32.222 | 0.138 |0.834{0.030
Bicubic (misregistered)(64.688| 7.639 | 44.242 | 0.191 |0.659|0.057
HPF (coregistered) 70.182| 17.577 | 28.934 | 0.123 |0.867|0.024
HPF(misregistered)  |68.174| 16.186 | 41.27 | 0.178 |0.715/0.0497
BT (coregistered) 78.488| 22.509 | 25.077 | 0.108 |0.900{0.019
BT (misregistered) 76.507| 22.059 | 27.674 | 0.121 |0.881(0.022
[HS (coregistered) 81.160| 26.751 | 35.608 0.164 (0.859]0.032
[HS (misregistered)  [81.592| 26.746 | 36.432 | 0.170 |0.850|0.034
GS(coregistered) 69.243| 21.007 | 26.994 | 0.117 |0.890|0.020
GS(misregistered) 72.993| 19.023 | 29.033 | 0.126 |0.873|0.023
Proposed (symmetric) |81.848| 23.543 | 25.018 | 0.113 |0.916|0.017
Proposed(asymmetric) | 80.05 I 22.06 22.64 | 0.098 |0.921/0.015
(b)
Image Std |Definition Distortion/Deviation| Corr | mse
Dev extent index |coeff]
MS-Band4 01.441| 25.718 - - - -
Bicubic (coregistered) (72.218| 7.534 | 35.920 | 0.122 0.833|0.020
Bicubic (misregistered)|73.490| 7.839 | 45.490 | 0.157 |0.705(0.033
HPF (coregistered) 77.209| 18.137 | 32.700 | 0.109 |0.861(0.017
HPF(misregistered)  [68.174| 16.186 | 41.27 | 0.178 |0.715/0.0497
BT (coregistered) 05.814| 28.308 | 32.951 | 0.103 |0.880{0.016
BT (misregisterd) 08.443| 29.040 | 40.262 | 0.124 |0.830|0.025
THS (coregistered) 04.504| 27.461 | 32.275 | 0.102 |0.878/0.016
THS (misregistered)  [95.785| 27.965 | 38.742 | 0.122 |0.834|0.023
GS(coregistered) 76.883| 20.641 | 32.236 | 0.107 [0.873|0.015
GS(misregistered) 80.422| 18.561 | 32.879 | 0.110 |0.871|0.016
Proposed (symmetric) (86.320 24.084 | 30.323 | 0.096 |0.891|0.014
Proposed (asymmetric)| 86.27 | 22.09 28.81 0.093 |0.898(0.013
(©
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TABLE VI
GLOBAL QUANTITATIVE ASSESSMENT OF THE FUSION RESULTS
PROVIDED BY THE CONSIDERED TECHNIQUES IN TERMS OF
RASE AND ERGAS MEASURES FOR BANDS 4, 3, AND 2
OF THE QUICKBIRD DATA SET

Image RASE|ERGAS
Bicubic (coregistered) |0.974| 4.156
Bicubic (misregistered)|1.190| 5.118
HPF (coregistered) 1.038| 4.567
HPF (misregistered) 1.176| 5.083
BT (coregistered) 0.682| 2.883
BT (misregistered) 1.705| 7.329
THS (coregistered) 0.699| 2.979
IHS (misregistered) 1.726| 7.426
GS (coregistered) 0.571] 2.385
GS (misregistered) 0.804| 3.528
Proposed (Symmetric) [0.372] 1.580
Proposed (Asymmetric)|0.452| 1.896

in Table V [see “Proposed (asymmetric)”’]. The corresponding
fusion result is shown in Fig. 9(b). As one can see, the differ-
ences between the symmetric and the asymmetric models on
this data set are not particularly significant. For this reason, it
does not seem reasonable to increase the computational load by
replacing the symmetrical AR model with an asymmetric one.

Finally, we show the results of the experiments carried out
using the spectral bands 3, 2, and 1 for the Quickbird data set.
The obtained fused images and the related quantitative assess-
ment are reported in Figs. 10(a)—(f) and 11, and Table VII (for
simplicity, here, we only present the quantitative assessment
for Pan sharpening of MS band 1). By analyzing Table VII,
we can observe that, unlike the case of the ETM+ images,
the quantitative results point out that both the spectral and
spatial distortions obtained with the proposed technique on the
channel outside the range of the Pan data slightly increases
with respect to the use of spectral channels inside the range
of the Pan image. However, looking at the measures given for
other approaches, and taking into account the properties of
the proposed approach, it may be concluded that the proposed
method yielded satisfactory results.

VI. DISCUSSION AND CONCLUSION

In this paper, a novel model-based approach to multireso-
Iution fusion of Pan and MS images has been presented. The
spatial dependence in the MS images is learnt from the Pan ob-
servations by using an AR model, and a suitable regularization
technique is defined to enhance the resolution of MS data.

Experimental results obtained on coregistered and misregis-
tered MS and Pan images acquired by Landsat-7 ETM+ (1:2
fusion ratio) and Quickbird satellite (1 : 4 fusion ratio) sensors
confirm that, in general, the proposed approach significantly
increased the spectral fidelity of the fused images (with respect
to other reference techniques considered), by maintaining good
properties in terms of spatial enhancement. In particular, it is
very effective in modeling the texture of the analyzed scene.
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(f)

Fig. 10. True-color composite for fusion results at 2.4 m x 2.4 m obtained
from the degraded bands 3, 2, and 1 (Quickbird data set). (a) True bands 3, 2,
and 1 image. (b) HPF fusion. (c) IHS fusion. (d) BT fusion. (e) Results of the
GS method. (f) Bicubically interpolated bands 3, 2, and 1 image.

However, the main theoretical and practical advantage of the
proposed method over the techniques reported in the literature
is that it does not require any pixel-to-pixel correspondence
(registration) between the MS and the Pan data. This avoids the
introduction of artifacts due to residual misalignment between
images in the fusion process. It is worth noting that this is a
very important property, since it is often not possible to obtain
a perfect registration between Pan and MS images (especially
when Pan and MS data are acquired by different sensors).
Another important intrinsic property of the proposed approach
is that it can be applied to Pan and MS images acquired (also
by different sensors) in slightly different geographical areas.
Although we obtained very good results on both the con-
sidered data sets, by analyzing the method from a theoretical
viewpoint, we expect that, in general, it is more effective on
moderately high resolution images rather than on very high
resolution images, since the finer details present in high res-

Fig. 11. Fusion results at 2.4 m X 2.4 m obtained from the degraded MS bands
3,2, and 1 by using the proposed model-based approach (Quickbird data set).

TABLE VII
QUANTITATIVE ASSESSMENT OF THE FUSION RESULTS OBTAINED WITH
THE CONSIDERED TECHNIQUES APPLIED TO BAND 1 OF THE
QUICKBIRD DATA SET (THE IHS AND BT TECHNIQUES
WERE APPLIED TO BANDS 3, 2, AND 1 FALSE-COLOR
COMPOSITIONS, WHILE THE OTHER TECHNIQUES
WERE ONLY APPLIED TO BAND 1)

Image Std |DefinitionDistortion|Deviation| Corr | mse
Dev extent index |coeff

MS-Band1|53.166| 14.461 - - - -

Bicubic  |41.771] 4.927 | 20.554 | 0.080 [0.8250.015
HPF 46.656| 13.427 | 19.385 | 0.076 [0.851/0.012
BT 61.881 23.036 | 46.453 | 0.197 |0.696(0.047
IHS 68.230| 26.200 | 51.866 | 0.222 |0.669/0.061
GS 43.530] 12.183 | 18361 | 0.074 |0.875/0.011
Proposed |64.152| 22.830 | 23.919 | 0.098 |0.850/0.018

olution data are difficult to model using AR parameterization.
Nonetheless, on the considered Quickbird data set, the proposed
approach resulted in very good spectral and spatial fidelity with
respect to standard techniques. These performances (which are
due to the stationarity of AR parameters in the considered
scene) are particularly relevant and should be emphasized in
the light of the aforementioned attractive properties of the
technique presented.

Concerning the effectiveness of the presented algorithm on
the fusion of spectral channels outside the range of the Pan
image, it depends on the level of correlation of the texture or
of the spatial features between the Pan and the considered MS
channel.

As a final remark, it is worth noting that the quality of the
fused images provided by the proposed method also depends on
the stationarity of the values of AR parameters along the spatial
domain of the images. For this reason, in order to increase the
effectiveness of the proposed algorithm, in future developments
of this paper, we plan to study the definition of a measure of
stationarity for the AR parameters capable of driving a split
of the considered scene into different subblocks, for which
different values of the AR parameters can be computed from
the Pan image. This seems particularly promising to further
increase the spatial fidelity of the fused images, especially when
very high resolution images are considered.

Others interesting future developments of this paper relate
to: 1) the assessment of the performance of the model-based
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approach in the fusion of Pan and MS images acquired by
different sensors at different times (e.g., to fuse the SPOT Pan
and the Landsat ETM+ MS images) and 2) the assessment
of the effectiveness of the proposed approach in very critical
cases in which the Pan image for the investigated region is not
available, but a Pan image of similar textured (vegetation, urban
structures) regions is given.
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