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Abstract—This paper deals with the problem of badly posed
image classification. Although underestimated in practice,
bad-posedness is likely to affect many real-world image classifi-
cation tasks, where reference samples are difficult to collect (e.g.,
in remote sensing (RS) image mapping) and/or spatial autocor-
relation is relevant. In an image classification context affected
by a lack of reference samples, an original inductive learning
multiscale image classifier, termed multiscale semisupervised
expectation maximization (MSEM), is proposed. The rationale
behind MSEM is to combine useful complementary properties
of two alternative data mapping procedures recently published
outside of image processing literature, namely, the multiscale
modified Pappas adaptive clustering (MPAC) algorithm and the
sample-based semisupervised expectation maximization (SEM)
classifier. To demonstrate its potential utility, MSEM is compared
against nonstandard classifiers, such as MPAC, SEM and the
single-scale contextual SEM (CSEM) classifier, besides against
well-known standard classifiers in two RS image classification
problems featuring few reference samples and modestly useful
texture information. These experiments yield weak (subjective)
but numerous quantitative map quality indexes that are consistent
with both theoretical considerations and qualitative evaluations
by expert photointerpreters. According to these quantitative
results, MSEM is competitive in terms of overall image mapping
performance at the cost of a computational overhead three to six
times superior to that of its most interesting rival, SEM. More in
general, our experiments confirm that, even if they rely on heavy
class-conditional normal distribution assumptions that may not
be true in many real-world problems (e.g., in highly textured
images), semisupervised classifiers based on the iterative expecta-
tion maximization Gaussian mixture model solution can be very
powerful in practice when: 1) there is a lack of reference samples
with respect to the problem/model complexity and 2) texture
information is considered negligible (i.e., a piecewise constant
image model holds).

Index Terms—Badly posed image classification, data clustering,
generalization capability, image mapping, inductive learning,
remotely sensed images, semisupervised samples, supervised
learning, texture information, unsupervised learning.
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I. INTRODUCTION

RECENT years have seen substantial developments in new
approaches to (unsupervised) data clustering and (super-

vised) data classification in image processing, pattern recogni-
tion, data mining, and machine learning literature [1]–[11]. Un-
fortunately, the impact of these approaches on their potential
field of applications (e.g., the development of commercial image
processing software toolboxes) has been scanty [12]–[14]. This
lack of impact may be due to: 1) (subjective) functional, opera-
tional or computational limitations of the proposed approaches
and/or 2) the well-known lack of inherent (objective) superi-
ority of any (supervised) predictive learning classifier as well as
any (unsupervised) data clustering algorithm.1 In fact, on the
one hand, the well-known subjective nature of the data clus-
tering problem precludes an absolute judgement concerning the
relative efficacy of all data clustering systems [15], [16]. On
the other hand, in the supervised learning framework, “if the
goal is to obtain good generalization performance in predictive
learning” (from a finite labeled data set), “there are no con-
text-independent or usage-independent reasons for favoring one
learning or classification method over another” [17, p. 454].

Although well studied, one of the most critical issues in
real-world applications of predictive learning methods is the
so-called small sample size problem, also known as the Hughes
phenomenon or curse of dimensionality [2], [15]–[18]. This
problem arises when the size of the available set of reference
(labeled, supervised) samples is not sufficient to train an in-
ductive learning algorithm (inducer) effectively, thus causing
the induced classifier to be affected by poor generalization
capability. In the image classification field this problem be-
comes even more severe as spatial autocorrelation reduces the
informativeness of neighboring pixels by violating the assump-
tion of sample independence [19], which may give rise to the
so-called unrepresentative sample problem [2]. For example, in
recent years, when image understanding started encountering
tremendous spatial and spectral complexity, such as in second-
and third-generation remote sensing (RS) imagery, it became
increasingly difficult, expensive, and/or tedious to collect
reference samples having statistical properties appropriate for
first-generation classifiers (e.g., maximum likelihood classifiers
assuming class-specific normal densities) [2], [19], [20].

1The goal of data clustering (also known as exploratory data analysis) is to
separate a finite unlabeled data set at hand into a finite and discrete set of “nat-
ural,” hidden data structures, termed clusters, on the basis of an often subjec-
tively chosen measure of similarity, i.e., a distance measure chosen subjectively
based on its ability to create “interesting” clusters [23].
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A possible taxonomy of the bad-conditioning of predictive
learning problems is the following (adapted from [2], [21]).

• Ill-posed (and very ill-posed) predictive learning problems:
where data dimensionality, , exceeds the total number

of independent representative samples and, as a conse-
quence, is much greater than the number of per-class ref-
erence samples , , where is the number
of classes such that .

• Poorly posed predictive learning problems: where data di-
mensionality, , is greater than, or comparable to, the
number of (independent) per-class representative samples

, , but smaller than the total number of rep-
resentative samples .

To mitigate the small sample size problem, two (complemen-
tary nonalternative) strategies can be pursued: 1) input space di-
mensionality reduction (feature extraction/selection, which will
not be considered in the rest of this paper) and 2) develop-
ment of inductive learning classifiers capable of dealing with a
lack of reference samples. Within this second scientific frame-
work, one possible solution consists of exploiting semilabeled
samples (i.e., unlabeled samples after classification2) in adapted
versions of the well-known iterative expectation-maximization
(EM) maximum-likelihood estimator, such as the sample-based
(i.e., context-insensitive3) Semisupervised EM (SEM) classi-
fier recently proposed outside of image processing literature
[2]. SEM, which is theoretically well founded,4 as well as its
heuristic context-sensitive single-scale version (i.e., suitable for
dealing with images), hereafter referred to as contextual SEM
(CSEM) [22], appear to be particularly interesting owing to their
ability to mitigate the small sample size problem. Although they
rely on class-specific normal density assumptions that may be
not true in real-world image mapping problems (e.g., in highly
textured images) and may require supervision to separate mul-
timodal classes into unimodal subclasses [24], SEM and CSEM
provide interesting results in the classification of images fea-
turing only slightly useful texture information [2], [22]. More
specifically, SEM’s and CSEM’s parameter estimation strate-
gies combine the small set of labeled data, whose explicit class
labels feature full weights, with a large set of semilabeled sam-
ples (whose implicit class labels may be incorrect, refer to foot-
note 2) provided with reduced weights.

Unfortunately, it is well known that when the normal model
distribution estimated by the iterative (sub-optimal) semisuper-
vised mapping algorithms with EM does not match the true un-
derlying distribution, the large amount of unlabeled data may
have an adverse effect on classifier performance on labeled sam-
ples (i.e., while pursuing a cost function reduction, these algo-

2Thus, semilabeled samples are as many as the unlabeled samples and avail-
able at no extra classification cost. Their implicit class label, provided by the
classifier, may be incorrect. On the contrary, explicit class labels of reference
samples, provided by an external supervisor or oracle, are assumed to be (hard,
crisply) correct [2], [18], [22].

3Context-sensitive data mapping algorithms, either single- or multiscale,
are specifically developed for 2-(spatial) dimensional image mapping tasks,
whereas sample-based data mapping algorithms, employing no contextual
information, are applicable to any 1-(spatial) dimensional sequence of input
patterns.

4According to [22], a (suboptimal) iterative predictive learning classifier is
defined as theoretically well-founded if it is guaranteed to reach convergence at
a (local) minimum of a known cost function.

rithms do not guarantee a better error rate for labeled samples
in the next iteration) [25].

Moreover, in badly posed classification problems featuring a
very high-input space dimensionality (ranging from ten up
to a few hundreds [21], e.g., in the case of RS hyperspectral
data), semilabeled samples alone may not be sufficient to reduce
the variance of the covariance matrix estimation process where
the number of free parameters increases dramatically (approx-
imately to ). In such cases, recent works recommend
class-specific leave-one-out regularized covariance (LOOC) es-
timators initialized by training samples only. Next, these LOOC
estimators are iteratively updated using both semilabeled and
training samples until a convergence is reached when a quadratic
maximum likelihood (ML) classification output changes very
little [21]. Unfortunately, when the number of competing clas-
sifiers increases, the computational cost of leave-one-out esti-
mation methods may soon become unaffordable (refer also to
Section VI-C). Besides, this robust ML classification approach
is not designed to deal specifically with images (i.e., it is non-
contextual, neither multi- nor single-scale).

Potentially superior to sample-based SEM and context-sen-
sitive single-scale CSEM in detecting genuine but small image
details, an original multiscale heuristic adaptation of the SEM
classifier, hereafter identified as multiscale SEM (MSEM), is
proposed in this paper. The capability of mitigating the small
sample size problem while employing multiscale image anal-
ysis mechanisms makes MSEM potentially capable of detecting
genuine, but small, structures in piecewise constant or slowly
varying color images when little prior knowledge is available.
Thus, the potential applicability domain of MSEM is expected
to range from, say, mapping RS satellite imagery featuring low
( 1 km) and medium ( 30 m) spatial resolution collected in
massive amounts in recent years, to the analysis of biomedical
magnetic resonance images (MRIs) [26]. It is noteworthy that
to date, either the empirical or the well-founded adaptation of
existing sample-based semisupervised classification schemes
potentially superior to SEM (such as the recently published
cost-effective semisupervised classifier, , conceived as a
semisupervised adaptation of the Kernel Fisher’s Discriminant
(KFD) [25]) to a multiscale image analysis framework appears
as an open problem of difficult solution. For example, the
sample-based classifier employs three system parame-
ters (namely, the single-scale spread of Gaussian kernels in
measurement space, a regularization term and a weighting
coefficient in the two-term cost function to be user-defined
or estimated by cross-validation over the set of labeled training
samples) whose adaptation to a multiscale image classification
optimization framework seems quite difficult to conceive.

The rest of this paper is organized as follows. Some nota-
tion is introduced in Section II. To provide the paper with tuto-
rial value, context-sensitive image mapping algorithms are sur-
veyed in Section III. Section IV briefly reviews two existing
data mapping systems, namely, SEM and the modified Pappas
adaptive clustering (MPAC) algorithm [4], [27], [28], both re-
lated to MSEM. In Section V, MSEM is proposed as the orig-
inal contribution of this work. Section VI provides a compar-
ison of MSEM against nonstandard (namely, MPAC, SEM, and
CSEM), as well as standard, data mapping approaches in two
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badly posed image classification experiments. Conclusions are
reported in Section VII.

II. NOTATION

A general notation (mainly adapted from [2]) is established
and employed in the rest of this paper. Let us identify with

the th unlabeled data vector (sample, digital number, pixel
in an image), where is the input space dimensionality and
index , where is the total number of unlabeled
samples, such that is the observed unlabeled
data set. Processed by a data labeling (classification) system
(either supervised or unsupervised), each unlabeled sample ,

, can take one implicit (hard, crisp) label, or
discrete status, , where is the total number
of labels (equivalent either to the number of clusters in unsu-
pervised data analysis or to the number of thematic classes in
supervised data analysis), such that is an ar-
bitrary labeling of the unlabeled data set .

When a data mapping system provides an unlabeled sample
, , with a hard implicit label ,

then the unlabeled sample becomes a semilabeled sample (refer
to footnote 2), identified as . If represents the cardinality
of the set of semilabeled samples provided with implicit label ,
then .

A labeled data set, selected by an external agent (supervisor,
oracle), consists of supervised samples , ,

, where is the number of labeled samples
belonging to class , assumed to be correct, such that

, where is the reference sample set cardinality. In
general, inequality holds.

III. PREVIOUS WORKS IN CONTEXT-SENSITIVE

IMAGE LABELING

A possible categorization of context-sensitive image labeling
(i.e., image classification, clustering and segmentation5) algo-
rithms recently proposed in pattern recognition and image pro-
cessing literature is the following [28].

• Per-pixel (i.e., noncontextual) classifiers, either parametric
(e.g., Gaussian maximum likelihood) or nonparametric
(e.g., the -nearest neighbor classification rule [15], [16],
[29]), followed by a post-processing low-pass filtering
stage, capable of regularizing the classification solution
(i.e., the salt-and-pepper classification noise effect is

5Segmentation is the partititioning of image data into nonintersecting areas
of connected pixels such that: 1) each region (segment, object) is homogeneous
in terms either of color, texture or shape information and 2) the union of no
two adjacent regions is homogeneous. Thus, segmentation algorithms exploit si-
multaneously the pixels’ value and position information. Each segment is given
a unique digital number (DN) value (per-segment identifier) in the segmented
output map [42]. From image processing literature, it is well known that the
segmentation problem is ill-posed, i.e., it has a subjective nature [43], just like
exploratory data analysis (clustering) or predictive learning from a finite labeled
data set. To stress the difference between data clustering and image segmenta-
tion, it is worth mentioning that the same segmented map may be generated
from different cluster maps. Since the goal of image segmentation is to parti-
tion the image data at hand rather than provide an accurate characterization of
unobserved (future) samples generated from the same probability distribution,
the task of segmentation (like that of clustering) falls well outside the predic-
tive learning framework. It is important to stress that the rest of this paper deals
with no segmentation approach, but with image clustering and classification al-
gorithms exclusively.

reduced), based on some empirical criteria or morpho-
logical filtering [9], [30], [31]. Although inadequate in
detecting fine image details in many real-world problems,
this approach is widely adopted due to its conceptual and
computational simplicity.

• Artificial neural networks that employ sliding windows or
multiresolution banks of filters in the image domain (see,
for example, [32]–[36]). Neural networks are inductive
learning systems featuring important functional properties.
They are: 1) distribution-free, i.e., they do not require the
data to conform to a statistical distribution known a priori
and 2) importance-free, i.e., they do not require informa-
tion on the confidence level of each data source, which is
reflected in the weights of the network after training [10],
[37], [38]. But the dependence of their results on the shape
and size of the processing window (which is usually fixed
by the user on an a priori basis, i.e., these parameters are
neither data-driven nor adaptive) is a well-known problem
[33]. To avoid this dependence, a multichannel filtering
approach, which is inherently multiresolution, is adopted
before classification, e.g., to provide a (nearly) orthogonal
decomposition/reconstruction of the raw image [34]–[36].
Proposed applications of multiscale multiorientation filter
batteries embrace image analysis and synthesis [39],
texture analysis and synthesis [40], [41], texture classifi-
cation [34], image database retrieval [1] and, therefore,
are outside the scope of this paper.

• Bayesian contextual image labeling systems where max-
imum a posteriori (MAP) global optimization is pursued
by means of Markov random field (MRF)-based local
computations [44]. Because of the local statistical de-
pendence (autocorrelation) of images, there has been an
increasing emphasis on the use of statistical techniques
based on MRFs capable of modeling image features such
as textures, edges and region labels [4], [17], [44], [45].
In MRFs, each pixel—conditioned by its neighbors—is
statistically independent of any other pixel. In MAP classi-
fication, to enforce spatial continuity in label assignment,
an MRF model is imposed on the prior probability term
(regularization term), which is combined with a class-con-
ditional probability term. To avoid the computational cost
of a simulated annealing technique capable of providing
optimal minimization [46], context-sensitive labeling ap-
proaches are often combined with the iterative conditional
mode (ICM) suboptimal minimization [4], [17], [45].
Based on the assumption that observed pixel gray values
are conditionally independent and identically distributed
(i.i.d), given their (unknown) labels, the posterior joint
probability, , can be expressed as [17], [47]

(1)
where is the scene reconstruction in neighborhood
centered on pixel . Equation (1) shows that (image-wide)
posterior probability never decreases at any th
pixel-based maximization step. In particular, suboptimal
convergence to a local maximum of is guaranteed
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if, for each pixel , ICM estimates label
that maximizes the right side of (1), where only the

class-conditional probability and labels of the
pixel neighbors are required. An ICM optimization
procedure that scans the image iteratively relates the “hat”
in (1) to the use of estimated label assignments from
the previous iteration in the current iteration, such that
batch label updating can be enforced at the end of each
raster scan. In other words, ICM alternates between pixel
labeling, based on (1), and category-specific model param-
eter estimation [17], [47]. An interesting ICM algorithm
is the MRF-based contextual version of the SEM classifier
(CSEM, see Sections I and IV-B), capable of mitigating the
small training sample size problem [22]. In [45], different
texture regions are modeled by Gauss-MRFs (GMRFs)
whose parameters are approximated at various resolutions
although the Markov property is lost under such resolution
transformation. Unfortunately, GMRFs are good at de-
scribing a variety of smooth textures, but perform poorly
when sharp edges or small isolated features are to be pre-
served [48]. In [4], after speculating that an MRF model
of the labeling process is not very useful unless it is com-
bined with a good model for class-conditional densities,
Pappas presents an ICM-based context-sensitive algorithm
for quantization error minimization, hereafter referred to
as the Pappas adaptive clustering (PAC) algorithm. PAC
adopts a context-sensitive single-scale class-conditional
intensity average estimate based on a slowly varying or
piecewise constant image intensity model. Unfortunately,
PAC tends to remove genuine but small image details. To
improve PAC in terms of genuine but small region detec-
tion capability, the MPAC algorithm adopts a multiscale
class-conditional intensity average estimate [17].

IV. REVIEW OF THE MPAC AND SEM
DATA MAPPING ALGORITHMS

To make this paper self-contained (refer to Section I), this
section briefly sketches existing sample-based SEM and multi-
scale MPAC data mapping approaches to highlight their legacy
to MSEM (to be presented further in Section V).

A. The MPAC Contextual Clustering Algorithm

To overcome PAC’s well-known limitation, which is that
of removing genuine, but small, image regions (refer to Sec-
tion III, last paragraph), MPAC pursues a multiscale adaptation
of the single-scale category-specific intensity average esti-
mation strategy proposed by PAC (see Fig. 1), where texture
(correlation) information is assumed to be negligible. In other
words, MPAC (like PAC) is exclusively applicable to piecewise
constant or slowly varying color images, possibly affected
by an additive white Gaussian noise field independent of the
scene [4]. Let us consider pixel and identify
with symbol the slowly varying intensity function
estimated as the average of the gray levels of pixels that be-
long to region type and fall inside an adaptive
(local) window , centered on pixel at spatial
scale , where the nonadaptive window ,
representing the global scale of analysis, may overlap with

Fig. 1. Multiscale MPAC intensity averages estimation strategy, whose soft-
competitive adaptation is employed by the novel MSEM technique (see Sec-
tion V). In this example, category-conditional intensity averages are extracted
from adaptive neighbors within windows Wj,s at spatial scale s 2 f1; 2g, cen-
tered on pixel j 2 f1; . . . ; Ng, where window width WW2>WW1; refers to
the textured area with horizontal lines at spatial scale 1, to be added to the gray
area at spatial scale 2, for label types i and h 2 f1; . . . ; Lg, with i 6= h.

the whole image . The width of window , ,
, is identified with symbol , such that the

window width increases with spatial scale ,
i.e., . Symbol

identifies a user-defined (free) parameter (MRF two-point
clique potential) enforcing spatial continuity in pixel labeling,
such that , where is the additive white Gaussian noise
standard deviation [4], [17]. Given these symbols, the MPAC
cost function to be minimized becomes

(2)
where the second-order MRF-based cross-aura measure

computes the number of 8-adjacency neigh-
bors of pixel whose label is different from pixel status ,
whereas

(3)

where any local estimate is (empirically) considered
unreliable if the number of pixels of type , within window

is less than window width . In cascade to the hard
label assignment rules (2) and (3), the second stage of MPAC,
which performs multiscale estimation of category-conditional
intensity averages , , ,

, is shown in Fig. 1. According to (2) and (3) and
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to the multiscale intensity averages estimation stage shown in
Fig. 1, MPAC may tolerate the same label type to feature dif-
ferent intensity averages in parts of the image separated in space
by more than , i.e., half of the width of the investiga-
tion window that works at the finest resolution (i.e., at spatial
scale ). While this property guarantees that MPAC is less
sensitive to changes in the user-defined number of input clusters
than traditional noncontextual (i.e., sample-based) clustering al-
gorithms, such as the hard c-means (HCM) vector quantizer [4],
when MPAC reaches convergence, separate image areas fea-
turing different spectral responses may be associated with the
same label type. This may lead MPAC to detect artifacts, i.e., to
generate an oversegmented output map [28].

B. The SEM Classifier

To mitigate the small training sample size problem, SEM re-
lies on an original EM-based iterative algorithm for maximum
likelihood (ML) estimation of Gaussian mixture parameters,
where (few) labeled samples are given full weight, and (many)
semilabeled samples are given partial weight (refer to Sections I
and II). SEM is theoretically well founded (refer to footnote 4)
[2]. The description of SEM is summarized as follows.

. Initialize Gaussian mixture parameters ,

. Set .

. E-Step: compute class-conditional probabilities,
, , , and weighting factors

, equivalent to relative memberships (which
employ neither global nor local priors), ,

(4)

. Hard sample labeling based on the ML assignment
rule

(7) (8)

(5)

. M-Step: maximize the mixed log-likelihood

(6)

Thus, the Gaussian mixture parameter update equations be-
come

(7)

and see also (8), shown at the bottom of the page.
Check for convergence. If convergence is reached,

stop. Otherwise: , and goto Step 1) .
Limitations of SEM, shared with its heuristic context-sensi-

tive single-scale adaptation, CSEM [22], are pointed out in Sec-
tion I.

V. NOVEL MSEM ALGORITHM FOR IMAGE

CLUSTERING AND CLASSIFICATION

Alternative to the existing context-sensitive single-scale
empirical CSEM classifier specifically developed for image
mapping applications, MSEM is proposed as an original
heuristic MPAC-based (i.e., adjustive multiscale) adaptation
of the context-insensitive well-founded SEM classifier. On
the one hand, as inherited from MPAC, multiscale parameter
estimation capabilities should allow MSEM to perform better
than SEM in detecting genuine but small image details while
avoiding the oversegmentation phenomena that occasionally

(8)
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affect MPAC (see Section IV-A). On the other hand, MSEM
should inherit from SEM: 1) an applicability domain extended
to supervised as well as unsupervised classification problems;
2) the capability of mitigating the small sample size problem
by exploiting supervised as well as semisupervised samples;
and 3) an EM-driven guarantee to reach convergence. By em-
ploying no (wishful ad-hoc) user-defined parameter different
from MPACs, MSEM exhibits a data-driven parameter adap-
tivity (ease of use) equivalent to that of MPAC and superior to
those of several competing context-sensitive classifiers, such
as CSEM and ICM-MAP-MRF (see Section VI-D), which
depend heavily on an empirical smoothing coefficient required
to enforce label continuity.

In mathematical terms, MSEM is conceived as an empirical
combination of (4), (7), and (8) of SEM (see Section IV-B)
with a soft-competitive version of the multiscale objective func-
tion adopted by MPAC [refer to (2) and (3)]. Let us identify
with the adaptive window chosen at spatial scale

and centered on the th pixel, (refer
to Fig. 1). In place of symbol adopted by the hard-com-
petitive MPAC algorithm (see Section IV-A), symbol
is adopted herein to identify a neighborhood centered on pixel
, at spatial scale , featuring soft (relative), rather than hard

(e.g., binary), membership values. The proposed MSEM algo-
rithm consists of the following blocks.

. Initialize Gaussian mixture parameters ,
. Set .

. E-Step: compute class-conditional probabilities,
, , , and weighting fac-

tors , equivalent to relative memberships (which
employ neither global nor local priors), ,

, computed via (4) of SEM.
. Per-pixel hard labeling based on an objective

function maximization where multiscale, class-specific in-
tensity averages are weighted by their reliability factors.
Compute

(9)

where the absolute membership function (9) is widely
employed in pattern recognition literature, e.g., [49]–[52],
such that

(10)

where symbol identifies the Euclidean distance
( -norm), and

(11)

where is the neighborhood centered on pixel at
spatial scale , variable identifies a relative member-

ship value computed according to (4), while the normal-
ization factor is computed as

(12)

where is the cardinality of neighborhood
. Moreover, reliability factors of multiscale

class-specific intensity averages are computed as

(13)

Equations (9) and (13) are combined into the MSEM ob-
jective function as follows:

(7) (8)

(14)

Thus, the MSEM objective function (14) consists of a soft
(weighted) combination of multiscale category-specific
intensity average estimates, where weighting coefficients
are the estimates’ reliability factors. These reliability
factors take their inspiration from those adopted in multi-
temporal/multisource optimization problems, where data
sources are weighted depending on their different discrim-
ination ability (e.g., refer to [53]). In the case of the MSEM
objective function, the role of reliability factors is to mea-
sure the degree of compatibility of class-specific statistics
estimated at local spatial scales, inherently prone to the
small sample size problem, with class-specific statistics
estimated at the global (image-wide) spatial scale. In other
words, during pixel labeling, MSEM requires multiscale
class-specific intensity averages to be consistent through
scale. It is noteworthy that objective function (14) employs
absolute, rather than relative, memberships [computed by
(4)] to avoid the well-known “probabilistic (relative)
membership problem.” From fuzzy set theory, it is well
known that an outlier tends to have small “possibilistic”
(absolute) membership values with respect to all category
prototypes (models), while its “probabilistic” (relative)
membership values may be high [49]–[52].

. M-Step: update Gaussian mixture parameters ac-
cording to SEM’s (7) and (8).

. Check for convergence. If convergence is
reached, stop. Otherwise: , and goto Step
1) .
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To summarize, MSEM shares with SEM (4), (7) and (8) ex-
clusively. A first competitive advantage of MSEM over MPAC
is that objective functions (9)–(14), consisting of a weighted
combination of class-specific multiscale intensity average es-
timates, should avoid the detection of artifacts (this phenom-
enon affecting MPAC as it requires no consistency between
inter-scale category-specific mean intensity estimates, see Sec-
tion IV-A). A second competitive advantage of MSEM over
MPAC is that the former applies to both unsupervised and super-
vised image labeling tasks, i.e., MSEM can be employed with
or without a reference labeled data set [in the latter case, no
labeled sample with full weight is passed on to (7) and (8)].
In the case of supervised learning tasks, MSEM is expected to
mitigate the small sample size problem, in line with SEM and
CSEM, by adopting Gaussian distribution parameter update (7)
and (8). Another interesting feature of MSEM is that by com-
bining MPAC’s with SEM’s learning strategies, it pursues ro-
bust statistics estimation at local as well as global (image-wide)
spatial scales. In particular: 1) at local scales (see Fig. 1), MSEM
employs intensity averages which are less sensitive than vari-
ance to the small sample size problem, in line with MPAC and
2) MSEM exploits semilabeled samples to mitigate the small
sample size problem in the estimation of Gaussian mixture pa-
rameters at the global (image-wide) scale, in line with SEM.

A first disadvantage of MSEM with respect to SEM, CSEM
and MPAC is its superior computational load. A second draw-
back of MSEM is that unlike SEM, it benefits from no rigorous
statistical foundation, i.e., it is not well-founded (refer to foot-
note 4). In fact, per-pixel hard labeling equations, (9)–(14), as
well as the Gaussian mixture parameter update rules, (7) and
(8), are based on heuristics rather than derived from an objective
function minimization, e.g., see (6). Since class-specific normal
density assumptions adopted by the iterative EM-based semisu-
pervised mapping algorithms are clearly not flexible enough
to capture complex image structures encountered in some
real-world images, the application domain of MSEM is the
same as CSEMs (consisting of two–dimensional (2-D) images
where texture information is negligible), equivalent to a subset
of SEMs (which is extended to generic one–dimensional (1-D)
sequences of multivariate data samples, see Section IV-B).

VI. BADLY POSED CLASSIFICATION SESSION

DESIGN: TEST IMAGES, EVALUATION MEASURES

AND COMPETING CLASSIFIERS

This section mainly focuses on the assessment of competing
nonstandard MPAC, SEM, CSEM and MSEM classifiers em-
ployed in the badly posed classification of images. To satisfy
the experimental session validity criteria proposed in [55] and
[56],6 at least two real and standard image classification prob-
lems, a battery of measures of success and at least one existing
(well-known) data labeling algorithm ought to be selected for
comparison purposes [54].

6Quite surprisingly, not only 78% of the articles published in the top neural
network journals until 1995 [55], but also a large segment of the papers recently
published in pattern-recognition literature, e.g., [25], do not satisfy these rather
low experimental standards.

A. Empirical Rules to Avoid the Badly Posed Classification
of RS Images

Let us first consider the problem of badly posed classification
in RS data understanding. In recent years, enhanced spectral,
temporal, and spatial resolutions of RS sensors have increased
the number of detectable land cover classes. These develop-
ments have dramatically increased the size of the ground-truth
regions of interest (ROIs) required to be representative of the
true class-conditional distributions. Unfortunately, representa-
tive samples are expensive, difficult, and/or tedious to digitize
from up-to-date reference data acquired from topographic maps,
manually interpreted aerial photographs and/or by ground ob-
servations. Thus, in RS data mapping, heuristic rules are tradi-
tionally adopted to avoid the reference data sampling scheme
affected by bad-posedness.

Training (Learning) Phase:
• To avoid the curse of dimensionality, given the number of

spectral bands , general rules of thumb, irrespective of
the classifier’s free parameters, require that the minimum
number of independent training samples belonging to
each class , where is the total number of
classes, be:
• [18], [24], [57]. For example,

this rule ensures an adequate estimation of nonsingular/
invertible class-specific covariance matrices [18];

• , so that, according to a special case
of the central limit theorem, the distribution of many
sample statistics becomes approximately normal [19],
[20], [58].

• To avoid poor generalization capability of an induced clas-
sifier related to model complexity, the minimum number of
independent training samples should be proportional to the
number of the learning system’s free parameters to be op-
timized during training. For example, for a two-layer net-
work of threshold units, an approximate worst-case bound
on generalization is that correct classification of a fraction

of new examples requires a number of training pat-
terns at least equal to , where is the total
number of the system’s free parameters. If , we
need around ten times as many training patterns as there
are free parameters in the network [15].

• Representative samples should be capable of representing
all possible variations in spectral response in each land
cover type of interest.

Testing Phase: When overall classification accuracy,
, with an error tolerance of is given as a project require-

ment, it is possible to estimate the (unobserved) testing sample
set size as [59]

(15)
In this context, if a holdout resampling method is adopted

for the generalization capability assessment of competing clas-
sifiers where 1/3 of the reference data set is employed for testing
[60], then the overall reference sample set size becomes

.
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(a) (b)

Fig. 2. (a) Test case 1. False color composition (B: VisBlue, G: NearIR, R: VisRed) of the SPOT image of Porto Alegre, Brazil, 512� 512 pixels in size, four-band,
20-m spatial resolution, acquired on Nov. 7, 1987. (b) Test case 2. True color composition (B: VisBlue, G: VisGreen, R: VisRed) of the seven-band Landsat TM
image provided by the GRSS Data Fusion Committee, 750 � 1024 pixels in size, 30 m spatial resolution.

B. Test Set of RS Images

According to [54], a test set of RS images, suitable for com-
paring the performance of algorithms employed in image un-
derstanding tasks, should be: 1) as small as possible; 2) con-
sistent with the aim of testing; 3) as realistic as possible; and
4) such that each member of the set reflects a given type of
image encountered in practice. In this work, the test set of RS
images consists of two real-world satellite images, character-
ized by different sizes and dimensionalities, fragmentation (i.e.,
visual complexity, related to the presence of genuine but small
image details), and levels of prior knowledge, ranging from ill-
to poorly posed (refer to Section I).

The raw image adopted in test case 1 is shown in Fig. 2(a).
This is a four-band SPOT image of the city area of Porto
Alegre (Brazil), 512 512 pixels in size, featuring a spa-
tial resolution of 20 m [17]. The image employed in test
case 2 is shown in Fig. 2(b). It is a seven-band Landsat TM
image, 750 1024 pixels in size, with a spatial resolution of
30 m, depicting a country scene in Flevoland (The Nether-
lands). This second test image is extracted from the standard
grss_dfc_0004 data set provided by the GRSS Data Fusion
Committee [61]. In visual terms, the presence of nonstationary
image structures, such as step edges and lines, combined with
many genuine but small image details, makes the town scene
more fragmented than the country scene. Both test images
are considered as piecewise constant or slowly varying in-
tensity images featuring little useful texture information, i.e.,
reference ROIs localized and identified in test cases 1 and 2
correspond to spectrally, rather than texturally, uniform areas
of interest. Moreover, in both test cases 1 and 2, each refer-
ence ROI identifies a distinct surface class of interest (which
is a rather common practice in real-world RS applications
[6]). Twenty-one ROIs/classes are identified in Fig. 2(a) [see
Table I(a)], and 12 ROIs/classes are identified in Fig. 2(b) [see

Table I(b)], respectively. It is noteworthy that, according to
Sections I and VI-A, if class-specific mean and covariance
matrix parameters are to be employed, then test problem 1,
where the minimum number of i.i.d. samples per-class would
be

, is rather ill-posed, while test problem 2,
where , is rather
poorly posed (ill-posed if the image autocorrelation, superior to
that in test case 1, were considered in violating the hypothesis
of i.i.d. samples). The complexity of the classification problem
is also increased by the partial overlap between spectral signa-
tures. In test case 1, the minimum Jeffries-Matusita distance
between ROI pairs [62], , is that between classes
vegetated area 1 and vegetated area 2, equal to 0.50. In test
case 2, the minimum Jeffries-Matusita distance is that between
classes scrub 1 and scrub 2, equal to 1.80.

C. Set of Measures of Success

When the small/unrepresentative sample problem occurs (as
in test cases 1 and 2), traditional classification error estimation
methods soon become unsuitable [15], [16], [29], [57], [59]. In
particular, the following.

• The resubstitution method increases its optimistic bias with
the small sample size. For example, in [28], the resubstitu-
tion error was not in line with qualitative results by expert
photointerpreters.

• The holdout method is inefficient in exploiting the avail-
able data set for training, i.e., it is unfitted to deal with the
small sample size problem.

• The leave-one-out method requires a large computational
cost even when the classification problem is badly posed.
When the number of competing classifiers increases, the
computational cost of the leave-one-out method may soon
become unaffordable.



2216 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 15, NO. 8, AUGUST 2006

TABLE I
(a) TEST CASE 1: 21 ROIS SELECTED ON THE SPOT IMAGE

DEPICTED IN FIG. 2(a). (b) TEST CASE 2: 12 ROIS SELECTED ON THE

LANDSAT TM IMAGE DEPICTED IN FIG. 2(b)

(a)

(b)

• In the -fold cross validation, the computational load,
which increases linearly with the number of competing
classifiers by an factor, may soon become unaffordable.

• The bootstrap method has the largest computational cost,
which soon becomes prohibitive with the number of com-
peting classifiers.

Last, but not least, none of these reference data set resampling
methods allows estimation of the spatial distribution of classifi-
cation errors (known as location accuracy [58]).

To avoid the aforementioned limitations of traditional resam-
pling techniques, the recently published data-driven map quality
assessment (DAMA) strategy can be employed [59]. To mit-
igate the small and unrepresentative sample problems in esti-
mating and comparing competing classifiers with a mimimum
of human intervention, DAMA integrates the available (small)
labeled data set, if any, with many semilabeled samples gener-
ated ad hoc from cluster analysis. As a consequence, the small
labeled data set can be efficiently (fully) exploited in training the
inducer. In deeper detail, DAMA computes quantitative indexes
of labeling and segmentation consistency between the classifi-
cation map at hand, made from a digital input image, and ref-
erence cluster maps properly generated from several blocks of
the input image that are clustered separately to detect genuine,
but small, image details.

In test cases 1 and 2, candidate representative areas are
(subjectively) selected as, respectively, three image subsets
of Fig. 2(a) (100 300 pixels each), and two image subsets
of Fig. 2(b) (400 400 pixels each) (for implementation
details, refer to [59]). In combination with the unsupervised
DAMA strategy, additional measures of classification success
can be conveniently computed in badly posed image classi-
fication problems. Since small reference ROIs are available
and efficiently exploited for training the inducer, a confusion
matrix, computed between the map under investigation and
each reference cluster map, allows estimation of the so-called
resubstitution error (upon the training data set). A necessary
(although not sufficient) condition to have good generalization
capabilities (i.e., to keep the combination of bias with variance
low [15]) is that the optimistically biased resubstitution error
be small, i.e., prior knowledge must be successfully passed on
to the image mapping system.

A fourth feature that may be considered important in the as-
sessment of competing classifiers is computation time, which
affects the application domain of RS image mapping systems
[6], [28], and may determine whether an algorithm is capable of
enriching a commercial image processing software toolbox, as
required by Zamperoni [12].

D. Set of Classifiers to Be Compared

Based on their functional properties, existing classifiers
can be partitioned into [15], [29], [50], [57]: 1) context-sen-
sitive (i.e., specialized to deal with images, based on either
single-scale or multiscale image analysis mechanisms) and
sample- (i.e., pixel-)based; 2) supervised learning, unsu-
pervised learning (clustering methods), and semisupervised
learning (see Sections I and IV-B); 3) parametric and nonpara-
metric (also called memory-based [29], whose computational
complexity increases with the cardinality of the representative
data set); and 4) adaptive and nonadaptive (also called plug-in,
where the spectral response for each land cover category of
interest is determined off-line, in the training stage, prior to the
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TABLE II
TAXONOMY OF THE DATA LABELING ALGORITHMS ADOPTED FOR COMPARISON

Legend: Y: Yes, N: No. Single-scale�: MRF-Based 8-adjacency neighborhood. P: Parametric. M: Memory-based (nonparametric). ICM: Iterative Conditional
Mode. EM: Expectation-Maximization.

classification stage, by an external analyst who replaces the
unknown parameters in the class-specific densities with their
estimated values [57]). According to this terminology, labeling
systems are either supervised (e.g., multilayer perceptrons [15],
radial basis functions [5], probabilistic neural network [63]) or
unsupervised (e.g., HCM, enhanced Lloyd–Buzo–Gray [7]),
whereas plug-in approaches (like the Bayesian plug-in clas-
sifiers, either Bayes-normal-quadratic or Bayes-normal-linear
[57]) must be supervised and parametric.

To make the assessment of competing nonstandard map-
ping systems (namely, MPAC, SEM, CSEM, and MSEM)
comprehensive, their comparison must involve well-known
(standard) classification algorithms, selected from pattern
recognition literature (not necessarily from image processing
literature) and/or implemented in commercial image analysis
software toolboxes capable of covering a wide range of func-
tional characteristics (see Table II). The standard classifiers
selected for comparison purposes are: the iterative conditional
mode (ICM)-based maximum a posteriori (MAP)-Markov
random field (MRF) classifier [64], the nearest prototype (NP)
classifier (also termed mimimum-distance-to-mean classifier
[24], implemented in commercial image processing software
toolboxes [42]), and the Gaussian maximum likelihood (ML)
classifier [15] (it, too, implemented in commercial image
processing software toolboxes [42]). Overall, seven different
algorithms (implemented in ten versions, see Section VI-D-1)
are compared. A rough taxonomy of the compared classifiers is
proposed in Table II.

1) Initialization Strategies Exploiting A Small Representa-
tive Data Set: In order to guarantee a fair comparison between
competing image mapping systems, prior knowledge, having
the initial form of reference ROIs, must adapt its maximally in-
formative representation to the learning properties of the system
at hand. In our experiments involving many parametric algo-
rithms (either supervised or unsupervised), the number of tem-
plate vectors (also called reference vectors) is assumed to be co-
incident with the number of surface types of interest (in a classi-
fication framework, these systems are known as one-prototype
classifiers [65]). This means that each distribution of class-spe-
cific representative samples is assumed to match the class-spe-
cific spectral distribution model adopted by the labeling algo-

rithm at hand (e.g., piecewise constant intensity image model
for MPAC). For parametric mapping systems, such as ML, ICM-
MAP-MRF, SEM, CSEM, and MSEM, this hypothesis implies
that there is no need to split multimodal class-specific densities
into unimodal normal densities. This assumption, which is typ-
ical of first-generation classifiers [20], is likely to hold in low-
to medium-spatial resolution satellite images like those adopted
in our experiments (see Section VI-B), whereas it would nat-
urally fail in very high spatial resolution (third generation) RS
imagery (featuring multimodal distributions in color space and
relevant texture information in the 2-D image domain).

Let us model each supervised ROI (corresponding to a
spectrally uniform surface area, see Section VI-C) with a
Gaussian distribution, parameterized by a (mean vector, co-
variance matrix) pair, identified as , .
Thus, NP is plugged-in with estimates , . The
MPAC clustering algorithm is initialized with mean template
vectors , . With regard to parametric plug-in
classifiers (e.g., ML) or iterative learning systems that employ
class-specific Gaussian distributions (which is the case of
ICM-MAP-MRF, SEM, CSEM and MSEM), the empirical
rules proposed in Section VI-A recommend that a number of
class-specific training samples equal, or possibly superior, to

be
selected to ensure an adequate estimation of a per-class (mean
vector, covariance matrix) pair.

To ensure estimation of nonsingular-invertible class-specific
covariance matrices from unrepresentative training samples,
parametric ML and ICM-MAP-MRF, altogether with a spe-
cific implementation of the partially semisupervised classifiers
SEM, CSEM and MSEM (identified as version SEM2, CSEM2,
and MSEM2, where labeled samples with full weight as well as
semilabeled samples with partial weight are passed on to their
learning phase), as well as their purely semisupervised versions
(identified as SEM1, CSEM1, and MSEM1, respectively, where
semilabeled samples with partial weight exclusively are passed
on to their learning phase, i.e., no labeled sample with full
weight is employed during training), employ the following
semisupervised initialization strategy (at iteration 0). First, su-
pervised ROI-driven mean vector estimates , ,
are passed on to a nearest-prototype classification step, NP.
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(a) (b)

Fig. 3. (a) Test case 1. MPAC clustering of the four-band SPOT image, number of classes L = 21, shown in pseudocolors (refer to footnote 7). (b) Test case 1.
MSEM1 clustering of the four-band SPOT image, number of classes L = 21, shown in pseudocolors (refer to footnote 7).

Next, the hard output map generated from NP provides sta-
tistically meaningful image-wide category-specific estimates

, , which are finally adopted, at iteration
1, by the iterative learning system at hand. It is noteworthy
that in the case of poorly posed classification problems, due
to the presence of many semilabeled samples (provided with
partial weight) and of few labeled samples (provided with
full weight, whose contribution to the system’s free parameter
estimation may become negligible), partially semisupervised
implementations SEM2, CSEM2, and MSEM2 are expected
to behave somewhat similarly to their purely semisupervised
counterparts SEM1, CSEM1, and MSEM1, sharing the same
semisupervised initialization strategy.

2) User-Defined Parameter Setting: Context-sensitive multi-
scale image mapping algorithms (namely, MPAC, MSEM1 and
MSEM2), adopt a battery of three local window sizes, equal
to 3 3, 7 7, 11 11, to be employed in combination
with the global (image-wide) scale, e.g., 512 512 in test case
1 (see Sections IV-A and V). MPAC employs a spatial conti-
nuity parameter in (2), to inhibit its MRF-based contex-
tual mechanism, such that its context-sensitivity is exclusively
due to multiscale intensity averages estimation. The maximum
number of iterations is set equal to ten in the entire set of it-
erative algorithms. Context-sensitive single-scale MRF-based
algorithms (namely, CSEM1, CSEM2, and ICM-MAP-MRF),
employ two-point clique potential parameters ,

. It is obvious that optimal smoothing parameters
, , are both class- and application-dependent. 2To

avoid a time-consuming, class-specific, trial-and-error param-
eter selection strategy that would represent a degree of user’s su-
pervision superior to that required by the rest of the algorithms
involved in our comparison, we set two-point clique potential

TABLE III
TEST CASE 1. OVERALL RESUBSTITUTION ACCURACY (SUM OF

DIAGONAL ELEMENTS OF THE CONFUSION MATRIX) BETWEEN

LABELING RESULTS AND REFERENCE DATA (ROIS). NUMBER OF

LABEL TYPES (= number of reference ROIs) = 21

�: without supervised (training) samples. ��: with supervised (training)
samples. Rank1 is best when smallest

parameters , , independent of the
class. This choice is in line with [64], where , in-
dependent of the data set because larger values of would lead
to excessive smoothing of regions.

VII. EXPERIMENTAL RESULTS

Of the systems compared in this experimental session,
plug-in NP and ML are expected to perform well in min-
imizing the resubstitution error (where bias must be low),
while parametric iterative (adaptive) labeling algorithms, ei-
ther unsupervised (MPAC), supervised (ICM-MAP-MRF),
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TABLE IV
TEST CASE 1. RESULTS OBTAINED BY THE DAMA STRATEGY FOR MAP QUALITY ASSESSMENT

�: without supervised (training) samples. ��: with supervised (training) samples. Rank2 is best when smallest

purely semisupervised (namely, SEM1, CSEM1, and MSEM1),
or partially semisupervised (namely, SEM2, CSEM2, and
MSEM2), where all semilabeled samples contribute to the
adaptation of category-specific template vectors, are expected
to improve their generalization ability upon unobserved image
areas (when the combination of bias with variance must be kept
low) at the cost of a possible increase in their resubstitution
error on reference ROIs (due to an increase in bias). Based on
model complexity, adaptive MPAC should employ plug-in NP
as a reference, whereas purely and partially semisupervised
implementations of SEM, CSEM, and MSEM should employ
plug-in ML as a reference.

All our experiments are conducted on a workstation SUN
Ultra 5 with operating system SunOS 5.6, 64 MB of RAM, and a
CPU UltraSPARC-IIi at 270 MHz. No optimization is employed
at code compilation.

A. SPOT Image Test Case

As two interesting examples of the mapping results obtained
with the proposed parameter setting, Figs. 3(a) and 3(b) show
(in pseudocolors7) the maps generated with, respectively, clus-
tering algorithms MPAC and MSEM1 (the other output maps
are omitted to save presentation space). According to percep-
tual quality criteria adopted by expert photointerpreters, MPAC
and MSEM1 appear to perform better than several other com-
peting systems (in terms of genuine but small image details
detection), although their maps look rather different (e.g., in
Figs. 3(a) and 3(b), note the different spatial distributions of
water types).In the framework of a resubstitution error estima-
tion method, Table III reports the overall accuracy (sum of di-

7Every class index is associated with a pseudocolor chosen to mimic the true
color of that surface class (e.g., three shades of blue are adopted to depict labels
belonging to classes sea water 1 to sea water 3, etc.), to enhance human inter-
pretability of mapping results.

agonal elements of the confusion matrix) between labeling re-
sults and reference ROIs. Table III shows that in line with the-
oretical expectations the resubstitution accuracy of some of the
parametric iterative labeling algorithms (namely, MPAC, SEM,
CSEM, and MSEM), is largely inferior to that of traditional
parametric plug-in classifiers (NP and ML). Partially semisu-
pervised classifiers SEM2, CSEM2, and MSEM2 perform better
than their purely semisupervised counterparts, in line with the-
oretical expectations. Although a low resubstitution error is a
desirable property, optimistically biased estimates, provided by
Table III, are counter-intuitive for expert photointerpreters em-
ploying perceptual quality criteria.

To compare the generalization capabilities of predictive
learning methods according to the DAMA assessement
strategy, Table IV shows the maximum sum (after reshuffling)
of diagonal elements of the overlapping area matrix computed
between the output map, , and the multiple cluster maps
generated from the raw image, . In line with qualitative
photointerpretation of mapping results, Table IV reveals that
labeling fidelities to multiple cluster maps of the MPAC’s
and MSEM’s output maps appear to be superior to those
of the other labeling approaches, including NP and ML (as
theoretically expected). MSEM performs better than SEM, in
line with theoretical expectations, while SEM performs better
than CSEM in preserving genuine but small image details,
which is theoretically plausible but in contrast with conclusions
found in [22]. Overall, in line with theoretical expectations
(see Section VI-B), the poor correlation between Rank1 (from
resubstitution) and Rank2 (from generalization) reveals the
presence of the Hughes phenomenon.

To investigate the spatial fidelity of segmentation results to
reference data according to the DAMA strategy, Table V re-
ports the mean of the edge map difference computed as the ab-
solute point-by-point difference between the 4-adjacency edge
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TABLE V
TEST CASE 1. MEAN AND STANDARD DEVIATION OF THE DIFFERENCE EDGE MAP COMPUTED

BETWEEN THE TWO EDGE MAPS MADE FROM x AND x , i = 1; . . . ; 3

�: without supervised (training) samples. ��: with supervised (training) samples. Rank3 is best when smallest

map extracted from the output map and the one extracted from
every multiple cluster map. Table V shows that multiscale la-
beling algorithms (namely, MPAC and MSEM), context-insen-
sitive adaptive SEM and nonadaptive ML are superior to the
other algorithms in preserving genuine but small image details,
irrespective of their labeling. In particular, MPAC outperforms
the other competing systems, whereas SEM performs better than
MSEM, which is, in turn, better than CSEM. These spatial fi-
delity results appear to be in moderate agreement with the la-
beling accuracy results shown in Table IV, as confirmed by the
Spearman correlation coefficient computed between Rank2 and
Rank3, equal to 0.6835 (revealing moderate agreement [19]).

Computation time of the competing algorithms is proposed
in Table VI, which shows that in this experiment the quality of
mapping results appears to be inversely proportional to compu-
tation time. In particular, SEM seems to guarantee an interesting
compromise between labeling and spatial fidelity of output re-
sults to reference data, with computation time.

Overall, these conclusions appear to be consistent with those
by expert photointerpreters and in line with the theoretical ex-
pectations of the algorithms’ potential utility.

B. Landsat Image Test Case

This test image is less fragmented than test case 1. As a conse-
quence, in this experiment, functional benefits deriving from the
use of the context-sensitive single-scale ICM-MAP-MRF and
CSEM algorithms (provided with an MRF-based mechanism to
enforce spatial continuity in pixel labeling) are expected to be
superior to those in test case 1. User-defined parameters are the
same as those selected in test case 1. As in test case 1, inter-
esting examples of the mapping results obtained with this pa-
rameter setting are shown in Figs. 4(a) and (b), where two maps
generated by MPAC and MSEM1 respectively, are depicted (in
pseudocolors). In test case 2, due to its large fragmentation and
to the absence of easy-to-recognize built-up areas, it is rather
difficult for expert photointerpreters to determine whether, for

TABLE VI
COMPUTATION TIMES OF THE INDUCTIVE LEARNING ALGORITHMS

IN THE SPOT IMAGE TEST CASE

�: 21 label types, 1328 training pixels (0.5%). ��: 10 max iterations. Rank4
is best when smallest

example, MPAC [see Fig. 4(a)] performs better than MSEM1
[see Fig. 4(b)].

In the framework of a resubstitution error estimation method,
Table VII shows the overall accuracy (sum of diagonal ele-
ments of the confusion matrix) between labeling results and ref-
erence ROIs. In this experiment, the performance of nontradi-
tional algorithms (namely, MPAC, SEM, CSEM, and MSEM) is
more competitive with those of traditional labeling approaches
(namely, NP, ML and ICM-MAP-MRF) than in test case 1 (refer
to Table III).

To compare the generalization capabilities of competing clas-
sifiers, Table VIII shows the maximum sum (after reshuffling)
of diagonal elements of the overlapping area matrix computed
between the reference cluster map (generated by the ELBG
vector quantizer) with the corresponding submap ,

with (see Section VI-C). In Table VIII, where ML
shows the worst performance (as expected), the labeling fideli-
ties to multiple cluster maps of output results provided by purely
semisupervised algorithms SEM1, CSEM1, and MSEM1, as
well as their partially semisupervised implementations SEM2,
CSEM2, and MSEM2, are superior to those of the other labeling
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(a) (b)

Fig. 4. (a) Test case 2. MPAC classification of the seven-band Landsat TM image, number of classes L = 12, shown in pseudocolors (refer to footnote 7). (b)
Test case 2. MSEM1 classification of the seven-band Landsat TM image, number of classes L = 12, shown in pseudocolors (refer to footnote 7).

approaches, which is consistent in part with test case 1 (refer to
Table IV). It is noteworthy that in line with theoretical expec-
tations, MPAC (which is prone to detecting artifacts) performs
more poorly in the less fragmented test case 2 than in test case
1. In test case 2, MPAC performs even worse than plug-in NP.

Overall, in line with theoretical expectations (refer to Sec-
tion VI-B) and in line with test case 1 (refer to Section VII-A),
the slight correlation between Rank5 (from resubstitution) and
Rank6 (from generalization) reveals the presence of the Hughes
phenomenon.

To investigate spatial fidelity of segmentation results to ref-
erence data, Table IX reports the mean of the edge map differ-
ence computed between a 4-adjaceny edge map extracted from
the system’s output map and the one extracted from every refer-
ence cluster map. In contrast with results shown in Table VIII,
Table IX reveals that although SEM1, CSEM1 and MSEM1 per-
form better than ML (in line with theoretical expectations), they
are ranked average in preserving genuine but small image de-
tails irrespective of their labeling. These clustering algorithms
are outperformed by MPAC, which also performs better than NP
(in line with theoretical expectations). Single-scale MRF-based
contextual algorithms, ICM-MAP-MRF and CSEM, perform
better than in test case 1 (refer to Table V), in line with the-
oretical expectations, which proves the strong application-de-
pendency of MRF-based image mapping approaches on the op-
timization of class-specific clique potentials. The Spearman cor-
relation value between Rank6 and Rank7 is 0.257, revealing
poor agreement [19] (which justifies the separate, independent
computation of indexes of labeling and segmentation fidelity of
a map to reference data pursued by DAMA).

Computation time of the labeling algorithms is reported in
Table X. These results are in line with those shown in Table VI.

Overall, conclusions in test case 2 seem rather consistent with
those of test case 1 and with theoretical expectations about the
algorithms’ potential utilities.

VIII. RESULT ASSESSMENT

In the (subjective) assessment of quantitative experimental re-
sults proposed in this section, the evaluation criterion proposed

TABLE VII
TEST CASE 2. OVERALL RESUBSTITUTION ACCURACY (SUM OF

DIAGONAL ELEMENTS OF THE CONFUSION MATRIX) BETWEEN LABELING

RESULTS AND REFERENCE DATA (ROIS). NUMBER OF LABEL TYPES

(= number of reference ROIs) = 12

�: without supervised (training) samples. ��: with supervised (training)
samples. Rank5 is best when smallest

in [12], where Zamperoni considers any new image processing
algorithm worth disseminating among a broad audience if it
may enrich a commercial image processing software toolbox,
is taken into consideration.

Let us collect results of test cases 1 and 2 in Table XI,
where column Total (Tot., best when smallest) is computed as

. Score1 is the rank of column Total.
Column Accuracy (Acc., best when smallest) is computed as

,
i.e., Accuracy ignores the computational costs of the compared
algorithms and accounts for both learning and generalization
ability. Score2 is the rank of column Accuracy. Column Gen-
eralization ability (Gen.Ab., best when smallest) is computed
as . Score3 is the rank of
column Gen.Ab. It is noteworthy that Score3 is closely related
to map quality indexes and , which seem highly
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TABLE VIII
TEST CASE 2. RESULTS OBTAINED BY THE DAMA STRATEGY FOR MAP QUALITY ASSESSMENT

�: without supervised (training) samples. ��: with supervised (training) samples. Rank6 is best when smallest

TABLE IX
TEST CASE 2. MEAN AND STANDARD DEVIATION OF THE DIFFERENCE EDGE MAP COMPUTED BETWEEN THE TWO EDGE MAPS MADE FROM x AND x , i = 1,2

�: without supervised (training) samples. ��: with supervised (training) samples. Rank7 is best when smallest

correlated to the qualitative map assessment criteria adopted
by human photointerpreters featuring high generalization capa-
bility.

The arbitrary and problem-specific nature of map quality
measures Score1, Score2, and Score3 does not allow the
reaching of any final conclusion about the accuracy and effi-
ciency of the competing classifiers involved in the comparison.
Nonetheless, the analysis of Table XI yields some relative (sub-
jective) conclusions about the potential usability of the tested
classifiers in dealing with the badly posed classification of
piecewise constant or slowly varying color images (i.e., where
texture information is negligible) whose fine image details are
captured by multiple reference cluster maps. These relative
conclusions can be considered interesting as they are based on
weak (arbitrary, subjective), but numerous measures of image
mapping quality that reasonably approximate the real-world

TABLE X
COMPUTATION TIMES OF THE INDUCTIVE LEARNING ALGORITHMS

IN THE LANDSAT IMAGE TEST CASE

�: 12 label types, 20431 training pixels (2.6%). ��: 10 max iterations. Rank8
is best when smallest
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TABLE XI
SUMMARY OF EXPERIMENTAL RESULTS

Tot. (best when smallest) = Rank1 + . . . + Rank8. Score1 is the rank of column Tot. Accuracy (best when smallest) =
Rank1 + Rank2 + Rank3 + Rank5 + Rank6 + Rank7. Score2 is the rank of column Accuracy (best when smallest). Generalization Ability
(Gen:Ab:; best when smallest) = Rank2 +Rank3 + Rank6 + Rank7. Score3 is the rank of column Gen.Ab.

characteristics of new generation image mapping applications
featuring little ground truth knowledge.

• Subjective but numerous measures of image mapping
quality, collected as Score2 and Score3, reveal that when
computational costs are ignored (which may be reason-
able in a technological scenario where processing speed
increases dramatically each year):
• Nontraditional semisupervised and/or multiscale la-

beling approaches (namely, SEM, CSEM, MSEM and
MPAC) seem capable of guaranteeing image mapping
performance superior (on average) to those of first-gen-
eration classifiers. MSEM is (on average) superior to
or competitive with the other competing approaches,
especially when considering map quality indexes Rank2
and Rank6, which seem to be highly correlated to the
qualitative map assessment criteria adopted by human
photointerpreters (related to generalization capability).
In particular, MSEM appears to be largely superior to
CSEM, but only slightly superior to SEM, which is
in clear contrast with results reported in [22] (where
CSEM outperforms SEM in several image mapping
tasks). It is noteworthy that theoretical limitations of
MPAC (artefact generation, see Section IV-A), known
from existing literature, are confirmed by these exper-
imental results (e.g., MPAC labeling accuracy is low
when dealing with the raw image featuring coarser
spatial details, see Rank6).

• Among the tested traditional algorithms, none is ranked
high.

• Subjective but numerous measures of image mapping
quality, collected as Score1, reveal that:
• Among nontraditional labeling strategies, the noncon-

textual iterative semisupervised SEM classifier provides
an interesting compromise between labeling and spatial
fidelity of results to reference data, with ease of use
and low computational overhead. Moreover, SEM fea-
tures a rigorous statistical foundation (unlike MPAC,
CSEM, and MSEM), it can be employed in either par-
tially semisupervised or purely semisupervised (where
labeled samples with full weight are not employed)
learning modes, and it does not apply exclusively to
(2-D) images.

• Traditional plug-in classifiers, namely, ML and NP, pro-
vide an acceptable tradeoff between labeling and spatial
fidelity of results to reference data, ease of use and com-
putational costs. This consideration justifies their diffu-
sion in commercial image processing software toolboxes
[42].

To summarize, results collected by DAMA (refer to Score1,
Score2, and Score3 in Table XI) in two badly posed image clas-
sification problems:

1) show that, although they rely on heavy class-conditional
normal distribution assumptions that are not true in many
real-world problems (causing a deterioration in the error
rate for labeled samples), semisupervised classifiers using
EM can be very powerful in practice;

2) appear always consistent with both theoretical consider-
ations and subjective (perceptual) evaluations of output
maps by expert photointerpreters (whereas results reported
by optimistically biased resubstitution errors, see
and , appear to be counter-intuitive). On an a poste-
riori basis, the consistency between DAMA’s map quality
measures, qualitative evaluations by photointerpreters and
several theoretical considerations appears to confirm the
efficacy of the adopted DAMA strategy.

IX. CONCLUSIONS

The original heuristic multiscale semisupervised MSEM al-
gorithm is proposed as a potential improvement over existing
nonstandard data mapping systems, namely, SEM, CSEM, and
MPAC, in the badly posed classification of piecewise constant or
slowly varying color images (where texture information is neg-
ligible). To adequately compare MSEM against competing stan-
dard and nonstandard data mapping systems, subjective but nu-
merous quantitative map quality measures are collected in badly
posed image classification experiments where small image de-
tails are captured by multiple reference cluster maps. Experi-
mental results reveal that, overall, MSEM is competitive with
or superior to the other competing mapping systems (refer to
Score2 and Score3 in Table XI), with special regard to quality
indexes Rank2 and Rank6 that are highly correlated to empir-
ical map quality criteria adopted by expert photointerpreters,
at the cost of a computational overhead three to six times su-
perior to that of its most competitive alternative, SEM, which
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outperforms CSEM (in contrast with [22]). Overall, these ex-
periments confirm that although they rely on heavy class-condi-
tional normal distribution assumptions that are not true in many
real-world problems, semisupervised classifiers using EM can
be very powerful in practice.

Additional realistic, useful and relative conclusions about
competing sample-based (i.e., context-insensitive) classifica-
tion systems (unlike MSEM, MPAC, etc., refer to Table II),
capable of processing generic 1-spatial dimensional sequences
of multivariate data samples, can be derived from the collected
quantitative results in the light of Zamperoni’s recommen-
dations [12]. In particular, SEM, which is provided with a
rigorous statistical foundation and whose limitations are well
known from existing literature [25], appears to be worthy
of being disseminated among commercial data processing
all-purpose software toolboxes, in that it is presumably useful
to a broad audience dealing with pattern recognition problems,
which may or may not involve images, either partially or purely
semisupervised, either well- or badly posed. Finally, traditional
noncontextual classifiers (namely, NP and ML), appear able to
justify their diffusion among commercial data processing soft-
ware toolboxes, owing to their theoretical simplicity, acceptable
performance and competitive computational load.

As a future development of this work, a semisupervised
learning approach, inspired by [2], should be combined with
the supervised EM-based learning strategy developed for RBF
network classifiers, proposed in [62].
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