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Abstract—This paper presents the framework of kernel-based
methods in the context of hyperspectral image classification,
illustrating from a general viewpoint the main characteristics
of different kernel-based approaches and analyzing their prop-
erties in the hyperspectral domain. In particular, we assess
performance of regularized radial basis function neural networks
(Reg-RBFNN), standard support vector machines (SVMs), kernel
Fisher discriminant (KFD) analysis, and regularized AdaBoost
(Reg-AB). The novelty of this work consists in: 1) introducing
Reg-RBFNN and Reg-AB for hyperspectral image classification;
2) comparing kernel-based methods by taking into account the
peculiarities of hyperspectral images; and 3) clarifying their theo-
retical relationships. To these purposes, we focus on the accuracy
of methods when working in noisy environments, high input
dimension, and limited training sets. In addition, some other im-
portant issues are discussed, such as the sparsity of the solutions,
the computational burden, and the capability of the methods to
provide outputs that can be directly interpreted as probabilities.

Index Terms—AdaBoost, feature space, hyperspectral classifi-
cation, kernel-based methods, kernel Fisher discriminant analysis,
radial basis function neural networks, regularization, support
vector machines.

I. INTRODUCTION

THE information contained in hyperspectral data allows the
characterization, identification, and classification of the

land-covers with improved accuracy and robustness. However,
several critical problems should be considered in classification
of hyperspectral data, among which: 1) the high number of
spectral channels; 2) the spatial variability of the spectral signa-
ture; 3) the high cost of true sample labeling; and 4) the quality
of data. In particular, the high number of spectral channels
and low number of labeled training samples pose the problem
of the curse of dimensionality (i.e., the Hughes phenomenon
[1]) and, as a consequence, result in the risk of overfitting the
training data. In order to alleviate this problem and to enhance
numerical and algorithmical stability, a feature-selection step
is usually adopted before classification. However, design and
application of a feature-selection stage is time-consuming,
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scenario-dependent, and sometimes needs a priori knowledge.
For these reasons, a desirable property of hyperspectral data
classifiers should be to produce accurate land-cover maps
when working with high number of features, low-sized training
datasets, and in presence of different noise sources [2].

In the remote sensing literature, many supervised methods
have been developed to tackle the multi- and hyperspectral data
classification problem. A succesful approach to multispectral
data classification is based on the use of artificial neural net-
works [3] (e.g., multilayer perceptrons (MLP) [4]–[7], radial
basis function neural networks (RBFNNs) [8]–[10]). However,
these approaches are not effective when dealing with a high
number of spectral bands, since they are highly sensitive to
the Hughes phenomenon. In the recent years, support vector
machines (SVMs) [11], [12] have been successfully used for
hyperspectral data classification [13]–[17]. The properties of
SVMs make them well-suited to tackle the problem of hyper-
spectral image classification since they can: 1) handle large
input spaces efficiently; 2) deal with noisy samples in a robust
way; and 3) produce sparse solutions (i.e., the model that
defines the decision boundary is finally expressed as a function
of a subset of training samples) [18].1 Another interesting and
effective method recently introduced in the remote sensing
literature for hypespectral data classification is the kernel
Fisher discriminant (KFD) analysis [19], [20]. This method
takes advantage of the same concept of kernel used in SVMs
to obtain nonlinear solutions; however, it minimizes a different
functional, and thus the solution is expressed in a different way.

Both SVMs and KFD approaches can be integrated in the
so-called kernel methods framework. Kernel-based methods are
based on mapping data from the original input feature space to a
kernel feature space of higher dimensionality, and then solving
a linear problem in that space. These methods allow us to in-
terpret (and design) learning algorithms geometrically in the
kernel space (which is nonlinearly related to the input space),
thus combining statistics and geometry in an effective way. This
theoretical elegance is also matched by their practical perfor-
mance. In the last decade, a number of powerful kernel-based
learning classifiers (e.g., SVMs [21], KFD analysis [19], support
vector clustering (SVC) [22], regularized AdaBoost (Reg-AB)
algorithm [23]) have been proposed in the machine-learning
community. Successful applications of kernel-based algorithms
have been reported in various fields.2 However, in the remote

1See also http://www.support-vector.net.
2The reader interested in kernel-based methods can visit http://www.kernel-

machines.org, http://www.bosting.org, or http://www.support-vector.net/ for a
number of applications, introductory tutorials, publications, and software re-
sources.
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sensing literature, we still find few applications and compar-
isons of kernel-based methods different from standard SVMs
or KFD analysis paradigms [24]–[26].

In this paper, we present the kernel-based methods framework
from a general viewpoint, and illustrate the main characteristics
of different kernel approaches both theoretically and experimen-
tally under the light of hyperspectral data classification. In par-
ticular, we analyze performance of SVMs, KFD, Reg-RBFNN,
and Reg-AB methods. The novelty of this work consists in: 1)
introducing Reg-RBFNN and Reg-AB in the field of remote
sensing; 2) benchmarking the four aforementioned methods in
hyperspectral data classification; and 3) clarifying their rela-
tionships by taking into account the peculiarities of hyperspec-
tral images. For these purposes, we focus on the accuracy of
methods when working in noisy environments, high input di-
mension and limited number of training samples. In addition,
some other important issues are discussed, such as the sparsity
of the solutions, the computational burden, and the capability of
the methods to provide outputs that can be directly interpreted
as probabilities.

The paper is outlined as follows. Section II presents an intro-
duction to kernel-based methods and a discussion on the rela-
tionships among these methods in the context of hyperspectral
data classification. Experimental results are presented in Sec-
tion III. In Section IV, we conclude this paper with a discussion
and some final remarks.

II. KERNEL-BASED METHODS

In this section, we first state the general problem of learning
from samples, the need of introducing regularization in the clas-
sifiers, and the important concept of kernel space. After this, the
formulation and characteristics of each kernel-based method are
briefly reviewed. For a full theoretical description of these (and
other) kernel-based methods, the reader is referred to [27] and
[28]. The section is closed with a comprehensive comparison of
the benchmarked kernel-based methods with special emphasis
on the properties of hyperspectral data.

A. Learning From Samples, Regularization, and Kernel Space

Let us consider a two-class problem, where a labeled training
dataset , being and

, is generated independent and identically distributed
according to an (unknown) probability distribution . The
problem is to find a function that minimizes the expected error
(or risk)

(1)

where represents a predefined cost function of the errors
committed by . Since the risk cannot be minimized directly,
one follows an inductive principle. A common one consists in
approximating the minimum of the risk by the empirical risk

, i.e., the error in the training dataset

(2)

However, convergence of the empirical risk to the actual risk is
only ensured as goes to infinity and, since this is not possible in
real applications, the well-known problem of overfitting might
arise. This is specially significant in hyperspectral data classifi-
cation given the low ratio between the number of training sam-
ples and the size of the input feature space, and the high spatial
variability of the spectral signature.

In order to control the capacity (or excess of flexibility) of
a model and to avoid overfitting, the solution is usually reg-
ularized [29], which is carried out in practice by minimizing
an -norm of model parameters, . This is intuitively equiv-
alent to find the estimator which uses the minimum possible
energy of the data to estimate the output, i.e., by minimizing
this term one forces smooth solutions by using small weights,
which reduces the tendency of the model to overfit the training
data. The resulting functional should take into account both this
complexity term and an empirical error measurement term de-
fined according to an a priori determined cost function of the
committed errors. Hence, the regularized minimizing functional
can be written as

(3)

where the parameter tunes the tradeoff between model com-
plexity and minimization of training errors. It is worth noting
that different loss functions and -norms can be adopted for
solving the problem, involving completely different families of
models and solutions.

The problem of minimizing the regularized functional in (3)
can be solved following different minimization procedures.
Neural networks are trained in order to minimize the empirical
risk, and therefore, they follow the empirical risk minimization
(ERM) principle. However, on the one hand, to attain signif-
icant results on the test set, early-stopping criteria or pruning
techniques must be used [3]. On the other hand, the structural
risk minimization (SRM) principle [30] states that a better
solution (in terms of generalization capabilities) can be found
by minimizing an upper bound of the generalization error. Sta-
tistical learning theory points out that learning can be simpler if
one uses low complexity classifiers in high dimension (possibly
infinite) spaces instead of working in the original input
space , i.e., not the dimensionality but the complexity of the
function class (which maps input data into ) matters [31, Sec.
9.5, pp. 297 and 298]. Thus, all the potential and richness that a
classifier needs can be introduced by a mapping to the kernel
space . For instance, in an RBFNN, the Hilbert space is
expanded by the RBF centers, whereas in the case of SVMs it
is expanded by the training samples. In this paper, we consider
that these are different approaches to the general framework of
kernel-based methods.3

Recently, the aforementioned guiding principles have cap-
tured a great interest both from theoretical and practitionist re-
searchers, and many kernel-based methods have been presented
in the literature. In the following subsections, we briefly review

3It is worth noting, nevertheless, that in the machine learning community,
one only refers to kernel methods as those that take advantage of the “kernel
trick,” which allows us to work in the mapped kernel space without knowing
explicitly the mapping ��� but only the kernel function formed by the dot product
of mapping functions. Further detailed information on this issue can be found
in the next subsections.
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Fig. 1. (a) Representation of the optimal decision hyperplane (ODH) in a
linearly separable problem. Maximizing the margin between samples belonging
to different classes is equivalent to minimizing kwk. Only support vectors
(gray-squared samples) are necessary to define the ODH. (b) Linear decision
hyperplanes in nonlinearly separable data can be handled by including slack
variables � to allow classification errors.

the kernel-based methods compared in this paper in order to
make it possible to discuss their theoretical similarities and dif-
ferences at the end of the section. For all methods, we only re-
view the standard binary formulation for the sake of brevity and
clarity.

B. Support Vector Machines

The classification methodology of SVMs attempts to sep-
arate samples belonging to different classes by tracing max-
imum margin hyperplanes in the kernel space where samples
are mapped [see Fig. 1(a)]. Maximizing the distance of samples
to the optimal decision hyperplane is equivalent to minimizing
the norm of , thus this becomes the first term in the mini-
mizing functional. For better manipulation of this functional,
the -norm of weights is preferred. Therefore, following pre-
vious notation, the SVM method solves

(4)

constrained to

(5)

(6)

where is the normal to the optimal decision hyperplane and
represents the closest distance to the origin of the coordi-

nate system. These parameters define a linear classifier
in the kernel feature space . The non-

linear mapping function is defined in accordance with Cover’s
theorem [32], [52], which guarantees that the transformed sam-
ples are more likely to be linearly separable. The regularization
parameter controls the generalization capabilities of the clas-
sifier and are positive slack variables allowing to deal with
permitted errors [see Fig. 1(b)].

Since vector variable lies in a (possibly infinite) kernel fea-
ture space , one is forced to solve primal function (4) through
its Lagrangian dual problem, which consists of maximizing

(7)

constrained to and , ,
where auxiliary variables are Lagrange multipliers corre-
sponding to restrictions in (5). In this way, one gets rid of the
explicit usage of and optimizes (7) with respect to variables

instead. It is worth noting that all mappings used in the
SVM learning occur in the form of inner products. This allows
us to define a kernel function

(8)

and then, without considering the mapping explicitly, a
nonlinear SVM can be defined. Note that the pair will
only exist if the kernel function fullfils Mercer’s conditions.4

The following are some popular kernels implementing these
conditions.

• Linear kernel:

(9)

• Polynomial:

(10)

• Radial Basis Function kernel (RBF):

(11)

After dual problem (7) is solved, , and the
decision function for any test vector is given by

(12)

where is calculated using the primal-dual relationship [12],
and where only samples with nonzero Lagrange multipliers
account in the solution. This leads to the very important concept
of sparsity, i.e., the solution is expressed as a function only of
the most critical training samples in the distribution, namely
support vectors (SV). For deeper analysis and application of
SVMs to hyperspectral image classification see [13], [14], [16],
and [17].

C. Kernel Fisher Discriminant Analysis

The idea of the KFD analysis is to solve the well-known
problem of Fisher’s linear discriminant in a kernel feature
space, which produces a nonlinear discriminant classifier in
the input space [36]. In the linear case, Fisher’s discriminant
aims at finding linear projections such that the classes are well
separated, i.e., maximizing the distance between means of the
classes and minimizing their intraclass variances (see Fig. 2).
This can be achieved by maximizing the Rayleigh coefficient
with respect to

(13)

4According to Hilbert-Schmidt theory, K(x ;x ) can be any symmetric
function satisfying Mercer’s conditions. This was firstly stated in [33]. The
same idea was used in [34] for the analysis of the convergence properties of the
method of potential functions, and happened at the same time as the method of
the optimal hyperplane was developed by Vapnik and Chervonenkis [35]. Full
details on the Mercer’s conditions can be obtained from [31].
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Fig. 2. Illustration of Fisher’s discriminant for two classes. One searches for
a direction w such that both the difference between the class means projected
onto this directions (� and � ) is large and the variance around these means
(� and � ) is small. The kernel Fisher discriminant performs this operation in
a kernel space. Picture taken from [38].

where

(14)

is the between-class variance and

(15)

is the within-class variance, and where and denote the
sample mean and the index set for class , respectively. To for-
mulate the problem in a kernel feature space one can use a sim-
ilar expansion as (8) in SVMs for , i.e., to express the solution
in terms of mapped training samples, as follows:

(16)

Substituting (14)–(16) in (13), the optimization problem for the
KFD in the feature space can then be rewritten as [36]

(17)

where , the components of are 1 for
and 0 for , ,

, , and represents the kernel matrix
(see (8)). The projection of a test point onto the discriminant
is computed by

(18)

which is almost identical to (12). The difference is that, in order
to use these projections for classification, one needs to find
a suitable threshold which can be chosen as the mean of the
average projections of the two classes. The dimension of the
feature space is equal to, or higher than, the number of training
samples, which makes regularization necessary. Since KFD
analysis minimizes the variance of data along the projection
and maximizes the distance between average outputs for each

class, one can equivalently solve this quadratic programming
(QP) problem [37]

(19)

constrained to

(20)

(21)

This minimization procedure can be intuitively interpreted by
noting that KFD attempts to obtain a regularized solution [term

in (19)] in which the output for each sample is forced
to move forward its corresponding class label [restriction (20)],
the variance of the errors is minimized [term in (19)], and
the average output for each class is forced to be the class label
[restriction (21)]. Also, note that one can easily join together
constraints (20) and (21) into restriction

(22)

which has been previously illustrated in [38]. Minimizing func-
tional (19) restricted to (22) leads to a nonsparse solution, i.e.,
all training samples are taken into account and weighted in the
obtained solution. As we will see, this is a dramatic problem
when working with moderate or high number of labeled sam-
ples, inducing problems of high computational cost and memory
requirements.

D. Regularized Radial Basis Function Neural Network

The traditional model of a feedforward neural network is
composed of a fully connected layered arrangement of artificial
neurons in which each neuron of a given layer feeds all the
neurons of the next layer [3]. The first layer contains the input
nodes, which are usually fully connected to hidden neurons and
these are, in turn, connected to the output layer. In a standard
RBFNN, the output of the network is computed as a linear
combination

(23)

where represent the weights of the output layer, is the
number of hidden nodes in the network, and the radial basis
functions are usually defined using Gaussian functions

(24)

where and denote means and variances, respectively. In-
tuitively, constitutes a distance measure in which each pat-
tern is compared to an adjustable center . Note that, in
this paper, we consider the general case of regularized RBFNN
(Reg-RBFNN) in which centers and variances are tunable for
each hidden node [27]. This is important in order to alleviate
the problem of locality by increasing the flexibility of the stan-
dard RBFNN. However, as commented before, model capacity
must be controlled to avoid overfitting and to produce smoother
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solutions. This can be accomplished by introducing a regular-
ization term into the functional to be minimized

(25)

which involves a tradeoff between the minimization of the em-
pirical error and of the 2-norm of the output-layer weights. By
comparing (4) and (25), one can notice that plays the same
role as . In practice, the value of is selected through cross-val-
idation methods.

The minimization of (25) can be done by using a conjugate
gradient descent with line search, where the optimal output
weights are optimized at each evaluation of the error func-
tion during the line search [27]. The optimal output weights

in matrix notation can be computed in
closed form by

(26)

where , denotes the
(training) output vector, and represents the identity matrix.
For , this corresponds to the calculation of a pseudo-
inverse of . In practice, an initial clustering step using -means
is performed to get an estimation of the initial centers. After
that, the output weights and the RBF centers and variances are
optimized, as explained before.

It is worth noting that Reg-RBFNN are intrinsically oriented
to the analysis of binary classification problems and are signifi-
cantly different from multiclass RBFNN architectures generally
used in classification of multispectral remotely sensed data [8].
Full details on the Reg-RBFNN can be found in [27].

E. Regularized AdaBoost

Boosting is a general method for improving the performance
of any learning algorithm [39]. It consists of generating an en-
semble of weak classifiers (which need to perform only slightly
better than random guessing) that are combined according to
an arbitrarily strong learning algorithm. A recent and promising
boosting algorithm is AdaBoost [40], which has been applied
with great success to several benchmark machine-learning prob-
lems using rather simple learning algorithms such as decision
trees or linear regression.

The AdaBoost algorithm takes as input a labeled training
set , where and

, and calls a weak or base learning algorithm
iteratively, . In this paper, we use Reg-RBFNN as
base classifiers. At each iteration , a certain confidence weight

is given (and updated) to each training sample . The
weights of incorrectly classified samples are increased so that
the weak learner is forced to focus on the hard patterns in the
training set. The task of the base learner reduces to find a hy-
pothesis for the distribution . At each iteration,
the goodness of a weak hypothesis is measured by its error

(27)

Once the weak hypothesis has been calculated, AdaBoost
chooses a parameter that measures

the importance assigned to . Note that if ,
and that gets larger as gets smaller. The distribution
is next updated in order to increase the weight (or importance)
of samples misclassified by , and to decrease the weight of
correctly classified patterns [40]

(28)

where is a normalization constant. As a consequence, algo-
rithm tends to concentrate on difficult samples, which reminds
somewhat support vectors of SVMs and that are called here sup-
port patterns. The final hypothesis (decision) is a weighted ma-
jority vote of the weak hypotheses where are the weights
assigned to . Consequently, for each instance , the weak
hypothesis yields a prediction whose sign is the
predicted label

(29)

and whose magnitude gives a measure of confi-
dence in the prediction, which is specially interesting in some
applications.

SVMs and a particular form of regularized AdaBoost (Reg-
AB), also known as Arc-GV [41], are explicitly related by ob-
serving that any hypothesis set implies
a mapping and therefore
also a kernel ,
where . In fact, any hypothesis set spans a
feature space , which is obtained by some mapping and
the corresponding hypothesis set can be constructed by

[28]. The Reg-AB [23] can be thus expressed as the
maximization of the smallest margin w.r.t. and constrained
to

and

(30)

F. Analysis of the Relationships Among Kernel-Based Methods

In this subsection, we briefly analyze the theoretical relation-
ships among the presented kernel-based methods both in general
and under the light of hyperspectral data analysis.

1) Reg-RBFNN and SVMs. Fig. 3 illustrates the architecture
of SVMs from a neural-network perspective. On the one
hand, neural networks work in the primal space and thus,
one needs to select the number of hidden neurons and to
estimate the weights , . On the other hand,
SVMs are solved in the dual space of Lagrange multipliers
after applying the kernel trick, leading to the estimation of
the number and values of directly from the minimization
procedure. In this way, one can implicitly work in high-
dimensional kernel spaces (hidden layer space) without
doing computations in that space. Relationship is readily
observed by inspecting decision functions in (25) and (4).
This interpretation is discussed in detail in [42, Secs. 2.2
and 2.3, pp. 36–39] and [31, Sec. 5.6, pp. 138–146].

2) KFD and SVMs. KFD algorithm is defined as the mini-
mization of the Rayleigh coefficient [see (13)] in a kernel-
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Fig. 3. Neural network interpretation of SVMs (using RBF kernel, SVM-RBF)
by means of the kernel trick. In the case of SVMs, one works in the dual space
by applying transformations f(x) to the samples in the original input space.
Thus, the problem is not solved in this primal weight space but in the dual
space of Lagrange multipliers � (i = 1; . . . ; ]SVs) after applying the kernel
trick. The kernel trick enables us to work in high-dimensional feature spaces
without needing to do explicit computations in this space. By means of the SVM
methodology, one obtains implicitly and automatically: 1) the architecture of
the two-layer machine determining the number of hidden units (the number of
support vectors, ]SVs); 2) the vectors describing the centers in the RBF neurons
of the first (hidden) layer (the support vectors, x , i = 1; . . . ; ]SVs); and 3)
the vector of weights for the second layer (values of � , i = 1; . . . ; ]SVs).
Note that, however, the functions implemented by neural networks and SVMs (f
and g, respectively) are not explicitly the same because of the different guiding
principle (ERM or SRM) that each of them implements.

TABLE I
STRUCTURAL COMPARISON OF THE PRIMAL AND DUAL FUNCTIONALS TO

BE SOLVED BY THE DIFFERENT KERNEL-BASED CLASSIFIERS

CONSIDERED IN THIS WORK. TABLE ADAPTED FROM [38]

generated space. However, one can also state the KFD
problem as minimizing a quadratic loss function of the
errors subject to equality constraints [see (19)–(21)] [43].
Then the geometrical interpretation reveals that KFD dif-
fers from SVMs in that it maximizes the average margin
instead of the smallest margin [28]. This forces KFD to
include in the solution all the training samples and thus
the important property of sparsity is lost.

3) Reg-AB and SVMs. On the one hand, Reg-AB can be
thought as an SVM approach in a high-dimensional fea-
ture space spanned by the base hypothesis of some func-
tion set [see (30)]. It uses effectively an -norm regular-
izer, which induces sparsity. On the other hand, one can
think of SVMs as a “boosting approach” in a high-dimen-
sional space in which, by means of the “kernel trick,” we
never work explicitly in the kernel feature space.

Relationships among methods are easily observed by com-
paring (25), (4), (19), and (30). In addition, we provide in Table I
a structural comparison among methods in their primal and dual
formulations. The KFD problem and the primal SVM problem
differ in the way errors are penalized (squared and linear cost
functions, respectively), and in that KFD substitutes unequality

by equality constraints. The dual SVM problem and the dual
Reg-AB problem differ in the way the length of is penal-
ized, yielding to different forms of regularization. Finally, Reg-
RBFNN minimizes the regularized functional with regards to
the committed errors through gradient-descent procedures. It
can be seen that, in the primal perspective, the way of penal-
izing and computing the slack (or error) variables is important,
while, in the dual domain, the way of measuring the length of

is a determinant factor.
The latter analysis reflects two interesting issues to be taken

into account in the hyperspectral data classification problem.

1) Since the use of a squared loss function does not en-
sure a robust solution to outliers, SVMs are preferred
theoretically.

2) Sparsity is not provided by KFD but only by SVMs
and Reg-AB in the input space, or alternatively by
Reg-RBFNN in the hidden space.

It is worth noting that sparsity in hyperspectral data classifica-
tion is an important property of a kernel method given the spe-
cial characteristics of the problem, i.e., high input dimension
per low number of samples. Intuitively, one can think of spar-
sity as the property that indicates the complexity of a model. A
kernel method that ensures sparsity includes lower number of
parameters in the model than a method does not achieve spar-
sity. These parameters are the weights associated to the most rel-
evant training samples for classification. In addition, the lack of
sparsity also poses the problem of computational burden, which
turns to be dramatic when moderate to high number of training
samples are used.

III. EXPERIMENTAL RESULTS

In this section, we present the experimental results obtained
in our analysis. We first overview the characteristics of the data
used and the experimental setup that we follow in our compar-
isons. After that, several experiments are presented in order to
compare the effectiveness of models in different conditions, i.e.,
1) considering a coarse feature selection before the classification
phase; 2) introducing different amounts and sources (Gaussian,
uniform and impulsive) of noise in the test set; and 3) using dif-
ferent amounts of training labeled samples. Models are com-
pared numerically (overall, users, producers accuracies), statis-
tically (kappa test, Wilcoxon rank sum test), and with regards to
the sparseness of the solution.

A. Data Description and Experimental Setup

Experiments are carried out using a portion of an AVIRIS
image taken over northwest Indiana’s Indian Pine test site in
June 1992.5 From the 16 different land-cover classes available
in the original ground truth, seven were discarded since insuf-
ficient number of training samples were available and thus,
this fact would dismiss the planned experimental analysis. The
remaining nine classes were used to generate a set of 4757
training samples (for the learning phase of the classifiers)
and 4588 test samples (for validating their performance). See
Table II for details.

5See D. Landgrebe AVIRIS NW Indiana’s Indian Pines 1992 dataset, 1992:
http://dynamo.ecn.purdue.edu/~biehl/MultiSpec/documentation.html.
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TABLE II
NUMBER OF TRAINING AND TEST SAMPLES USED IN THE EXPERIMENTS

The experimental analysis considers SVMs, KFD,
Reg-RBFNN, and Reg-AB. In addition, we include the linear
discriminant analysis (LDA) as baseline method for comparison
purposes. Note that LDA corresponds to the solution of KFD if
a linear kernel is adopted and no regularization is used .
In the case of Reg-RBFNN, the number of Gaussian neurons
was tuned between 2 and 50, and was varied exponentially
in the range . The width and centers of the
Gaussians are computed iteratively in the algorithm. In the
case of SVMs and KFD, we used the Gaussian kernel (RBF)
[see (11)]. Furthemore, we tested the polynomial kernel [see
(10)] for SVMs, given the good results obtained in previous
applications to hyperspectral data [13], [14]. Therefore, only
the Gaussian width, , the polynomial order , together with
the regularization parameter should be tuned. We tried
exponentially increase sequences of and

, and tuned in the range 1–15. For the
case of Reg-AB algorithm, the regularization term was varied
in the range , and the number of iterations
was tuned to . The width and centers of the Gaussians
are also computed iteratively in the algorithm.

We developed one-against-all schemes to deal with the multi-
class problem for all considered classifiers. This approach con-
sists in solving a problem of classes by defining classi-
fiers, each one designed to classify samples of a given class.
A winner-takes-all rule across the classifiers is then applied to
classify a new sample. Despite this strategy usually leads to sub-
optimal solutions, it allows us to fairly compare all methods by
using the same basic multiclass strategy. Other multiclass strate-
gies are available in the literature such as one-against-one [44],
puncturing [45], or output-correcting-codes [46], which may re-
sult in better classification accuracies. Also, it is worth noting
here that no preprocessing stage (feature extraction, whitening,
PCA) was included in the learning scheme in order to compare
methods only in terms of classification capabilities.

B. Results After a Coarse Feature Selection

In the original dataset, a total of 20 channels (104–108,
150–163, 220) can be easily identified as noisy bands and
then discarded because these are regions of water absorption
where the atmosphere is opaque. This constitutes the standard
experimental setup in which, before developing a classifier, a
(coarse) feature selection is performed. Table III (top) shows
the results obtained when training the models in this standard
case (200 bands). The best overall accuracy (OA[%]) and
values are provided by the SVM-Poly, closely followed by the

SVM-RBF and Reg-AB, yielding an overall accuracy equal to
94.44%.

When looking at producers/users accuracies, it is note-
worthy that kernel-based methods obtain higher scores on
classes C3, C4, C5, and C9, and that the most troublesome
classes are C1, C6, C7, and C8. This has been also observed
in [17], and can be explained because grass, pasture, trees,
and woods are homogeneous areas which are clearly defined
and labeled. Contrarily, corn and soybean classes can be par-
ticularly misrecognized because they have specific subclasses
(no till, min till, clean till).

C. Results in Noisy Situations

In this subsection, different experiments dealing with noise
are presented. In particular, we analyze performance when: 1)
all available bands are given as input to the classifiers and when
2) different amount of Gaussian, uniform, or impulsive noise are
added to the test set.

1) Original Dataset: In this experiment, we assess the ro-
bustness of the different kernel-based methods to the presence
of completely noisy spectral channels. For this purpose, the
noisy bands excluded in the previous section are not withdrawn
here. Table III (bottom) shows the results obtained. One can
notice that although also in this case there are no signifi-
cant numerical or statistical differences among the different
methods, SVM-Poly shows again the best overall performance
and SVM-RBF provided similar results. SVM-Poly was taken
as reference model for the Wilcoxon test [47], and revealed
that only LDA was statistically different .
Reg-RBFNN , KFD , and Reg-AB

did not reject the null hypothesis at a 99% level of
significance.

Again, accuracy per class was very similar for all models.
However, although KFD and Reg-AB showed a dominant
position class by class in users/producers scores, SVMs
offered a more balanced performance, which resulted in the
best overall accuracy. By comparing models in Table III, it
is worth noting that KFD becomes relatively less affected
than the other methods with the inclusion of these 20 noisy
bands, but differences are neither numerically nor statistically
significant.

As a first conclusion, SVMs show the best overall accuracy
and score. This could be explained by the use of the 1-norm
cost function, which allows to deal efficiently with the most
critical samples in the distribution, and thus, results in a ro-
bust and balanced solution. On the other hand, Reg-AB, Reg-
RBFNN and KFD minimize a squared loss function. Penalizing
the squared deviation from the label via is often consid-
ered to be nonrobust in the sense that a single outlier may have
an inappropriately strong influence on the solution [48].

2) Additive Noise to the Test Set: In this experiment, we in-
troduce different amounts and sources of noise (Gaussian, uni-
form, and impulsive) in the test set (not in the training set) in
order to benchmark how models trained with the original data
adapt to changing environments. It is worth noting that this
experiment can be fairly conducted since in our data, training
and test sets are unavoidably quite correlated given the small
study area considered. This trial tries to simulate real situations
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TABLE III
(TOP) RESULTS AFTER A COARSE FEATURE SELECTION (200 INPUT BANDS). (BOTTOM) RESULTS IN THE ORIGINAL (NOISY) DATASET (220 INPUT BANDS).
SEVERAL ACCURACY MEASURES ARE INCLUDED: USERS, PRODUCERS, OVERALL ACCURACY (OA[%]), AND KAPPA STATISTIC (�) IN THE TEST SET FOR

DIFFERENT KERNEL CLASSIFIERS: LINEAR DISCRIMINANT ANALYSIS (LDA), REGULARIZED RBF NEURAL NETWORK (REG-RBFNN), SVMS WITH RBF
KERNEL (SVM-RBF) AND WITH POLYNOMIAL KERNEL (SVM-POLY), AND KERNEL FISHER DISCRIMINANT (KFD) ANALYSIS (WITH RBF
KERNEL). THE COLUMN “FEATURES” GIVES SOME INFORMATION ABOUT THE FINAL MODELS. THE BEST SCORES FOR EACH CLASS ARE

HIGHLIGHTED IN BOLDFACE FONT. THE OA[%] BEING STATISTICALLY DIFFERENT (AT 95% CONFIDENCE LEVEL) FROM THE BEST MODEL

ARE UNDERLINED, AS TESTED THROUGH PAIRED WILCOXON RANK SUM TEST

(a) (b)

Fig. 4. Behavior of the overall accuracy in the test set versus different amounts of (a) Gaussian or (b) uniform (b) noise added to input features.

in which acquired data are subject to spatial variability of the
spectral signature, uncertainty on the ground truth, noise at the
sensor, observation noise, etc.

Fig. 4 shows the evolution through different signal-to-noise
ratios (SNRs) of the overall accuracy of the models in the test
set when either Gaussian or uniform noise is added to the spec-
tral channels. We varied the SNR between 16 and 40 dB, and
100 realizations were averaged for each value, which consti-
tutes a reasonable confidence margin for the least measured
OA[%]. We can observe that SVM-Poly yields the best per-
formance through the whole signal-to-noise domain. It is also
noticeable that, when moderate noise SNR dB is in-
troduced, SVM-RBF also shows higher overall accuracy than

KFD. However, as complex situations SNR dB are sim-
ulated, KFD exhibits better accuracy than SVM-RBF, but infe-
rior than SVM-Poly. The superiority of the polynomial kernel
to the RBF kernel was previously noticed in [16] with different
hyperspectral datasets and amounts of noise. This behavior is
observed both for Gaussian and uniform additive noise, but it
is more evident in the former. Certainly, when a high amount
of Gaussian noise is introduced, the squared cost function min-
imized by KFD becomes more appropriate from a maximum
likelihood viewpoint. However, it should be noted here, that dif-
ferences appear only at a very low SNR, whenever the amount
of noise is extremely high, which does not represent realistic
situations.
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Fig. 5. Behavior of the overall accuracy in the test set when spikes of P =

�5 dB are added in different number of bands.

Fig. 5 shows the evolution of the overall accuracy in the test
set when spikes of high impulsive noise dB are
added in different number of bands (1, 5, 10, 25, 50, 100, and
150). Once again, the experiment was repeated 100 times and
the averaged results are shown for each model. A similar ef-
fect to that observed in the previous experiments is obtained.
SVM-Poly shows the best accuracy in the whole domain. As
we increase the number of outlying bands, the accuracies of
SVM-RBF and Reg-AB become slightly more degraded than
those exhibited by KFD. However, situations with too many out-
lying bands are uncommon. Both SVMs and KFD show better
performance than Reg-RBFNN or LDA, but statistical differ-
ences were only observed with respect to LDA in
all cases.

D. Results With Low-Sized Datasets

In this experiment, we test models regarding their ability to
deal with a limited number of labeled training samples. This is
an important problem in hyperspectral remote sensing applica-
tions, given the economical cost of true labeling and the high
dimension of the input feature space. Five different situations
are analyzed in this setup: 0.25%, 5%, 10%, 25%, and 100%
of the original training samples were randomly selected to train
the models and to evaluate their accuracy on the total test set.
These situations correspond to training sets containing 12, 229,
459, 1147, and 4588 samples, respectively. The experiment was
repited 100 times to avoid biased estimations.

Fig. 6 shows the evolution of the overall accuracy as a func-
tion of the percentage of training samples used. The first case (12
samples) constitutes an example of strongly ill-posed problem,
in which LDA cannot be developed since the input dimension
is higher than the number of available training samples. In this
limit situation, SVMs (both kernels) shows a better performance
than the other methods although these results are in a very low
range of accuracy OA . As the rate of training samples
is increased, and more common situations are tested, nonlinear
kernel methods follow a similar trend, but SVMs and Reg-AB

Fig. 6. Behavior of the overall accuracy in the test set versus different rates of
samples used for training.

Fig. 7. Illustration of the sorted density of Lagrange multipliers � for the
best SVM and KFD classifiers in the 200-band dataset. The concept of sparsity
in SVMs and the nonsparse solution offered by KFD is evident.

always keep a clear advantage of 3% to 8% with respect KFD
and Reg-RBFNN. Moreover, KFD shows a poor performance in
the major part of situations and requires an expensive computa-
tional cost as more samples become available which, for some
practical applications, is certainly a critical constraint.

E. Sparseness of the Solutions

Given the particular characteristics of hyperspectral data
(small value of the ratio between number of training samples
and number of spectral bands), sparse solutions are usually
prefered because, in the training process, the algorithm selects
the most relevant samples for the classification and assigns
them a weight in the solution. As discussed in Section II-F,
sparsity is essential to accomplish kernel methods with low
number of parameters, since the number of parameters of the
classifiers are the weights of the most relevant samples. In this
way, the method selects the most important information from
a training set in order to describe efficiently the underlying
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TABLE IV
QUALITATIVE COMPARISON OF THE ANALYZED KERNEL-BASED METHODS. DIFFERENT MARKS ARE PROVIDED: “H” (HIGH), “M” (MEDIUM), OR “L” (LOW)

system that generated the data and provides good results in the
test set.

All methods compared here express their solutions in a
completely different way since they minimize different loss
functions and regularization terms [cf. (3)]. The solution given
by SVMs is intrisically sparse. However, in our case study
we needed at least 40% of training samples (i.e., SVs) to
obtain good results. In the case of Reg-RBFNN and Reg-AB,
sparsity is imposed by selecting the most suitable number of
weights given by the number of hidden neurons and hypoth-
esis, respectively. The selection of 48 nodes and 80 (10
8) hypotheses provided the best results. SVMs and Reg-AB
work in very high-dimensional feature spaces and both lead
to sparse solutions although in different spaces (see discus-
sion in Section II-F). Contrarily, KFD takes into account all
training samples and hence, all samples have nonzero Lagrange
multipliers associated. In Fig. 7, the distribution of nonzero
Lagrange multipliers is depicted to illustrate the concept of
sparsity with respect to SVMs and KFD. One can observe that
the solution offered by SVMs is sparse in the sense that there is
a high number of null multipliers and hence the corresponding
training samples are considered irrelevant for the classification.
Contrarily, KFD considers all samples as relevant for the clas-
sification. This results in a higher number of parameters to be
estimated in the classification model.

Moreover, the issue of sparsity poses the question of the
computational burden. For large datasets, the evaluation of

in KFD is very computational demanding, and thus
the optimization becomes more difficult. In fact, clever tricks
like chunking [49] or sequential minimal optimization (SMO)
[50] cannot be applied, or only at a much higher computational
cost. This problem has been previously pointed out and sparse
versions of the KFD have been recently proposed [36]. It is
worth noting that the computational problem of KFD has been
also noted in hyperspectral data classification [20].

IV. DISCUSSION AND CONCLUSION

In this paper, we have addressed the framework of kernel-
based methods in the context of classification of hyperspec-
tral data. In particular, we have analyzed and compared four
kernel-based techniques both theoretically and experimentally.
All the techniques have been trained using a standard AVIRIS
dataset consisting of nine classes and several thousands of la-
beled samples. Comparison has been carried out in terms of ro-
bustness to high input dimension, low number of training sam-
ples, and noisy environments.

Table IV shows some qualitative aspects of the kernel-based
methods used in this paper in terms of computational burden,
sparsity, capability to provide probabilistic outputs, accuracy,

robustness to noise, to input space dimension, and to few labeled
samples. The table does not intend to be an exhaustive analysis
of methods but only to provide some guidelines. The following
conclusions can be drawn for each method.

1) SVMs (both kernels) revealed excellent in terms of com-
putational cost, accuracy, robustness to common levels of
noise (i.e., Gaussian, uniform, or impulsive), and ensures
sparsity. The only drawback is that they cannot provide
probabilistic outputs directly. However, this difficulty can
be alleviated by linking a logistic sigmoid at the output
[51].

2) Reg-AB showed very good results (almost comparable
to those offered by SVMs), improving the robustness of
Reg-RBFNN, and working efficiently with low number
of labeled samples. In addition, model simplicity was en-
sured in the form of a few number of hypothesis.

3) KFD exhibited good accuracies but, in normal situations,
they were in average inferior to those obtained with SVMs
and Reg-AB. In addition, an important drawback of KFD
is the computational burden induced in its training, which
is related to the lack of sparsity of the solution. This is a
particularly relevant impairment for hyperspectral remote
sensing applications. Its main advantage is the ability to
directly estimate the conditional posterior probabilities of
classes.

4) The Reg-RBFNN offered an acceptable tradeoff between
accuracy and computational cost. Nevertheless, accura-
cies in all tests were lower than those provided by the other
nonlinear models. Simplicity of the model, given by a low
number of hidden neurons, was achieved.

In conclusion, we can state that, in the standard situation
and in our case study, the use of SVMs is more beneficial,
yielding better results than the other kernel-based methods,
ensuring sparsity, and at a much lower computational cost. Our
future work is tied to the use of sparse versions of KFD and
related kernel-based methods. In addition, we are interested
on the theoretical relation between KFD and least squares
SVMs (LS-SVMs) [43], since it allows embedding learning
in a Bayesian framework in which confidence intervals for
predictions can be drawn naturally.
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