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Abstract

This paper addresses the problem of detecting land-cover transitions by analysing multitemporal remote-sensing

images. In order to develop an effective system for the detection of land-cover transitions, an ensemble of non-para-

metric multitemporal classifiers is defined and integrated in the context of a multiple classifier system (MCS). Each

multitemporal classifier is developed in the framework of the compound classification (CC) decision rule. To develop as

uncorrelated as possible classification procedures, the estimates of statistical parameters of classifiers are carried out

according to different approaches (i.e., multilayer perceptron neural networks, radial basis functions neural networks,

and k-nearest neighbour technique). The outputs provided by different classifiers are combined according to three

standard strategies extended to the compound classification case (i.e., Majority voting, Bayesian average, and Bayesian

weighted average). Experiments, carried out on a multitemporal remote-sensing data set, confirm the effectiveness of the

proposed system.
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1. Introduction

One of the most interesting applications of

remote-sensing concerns the analysis of multitem-

poral images for detecting land-cover changes.
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This process involves the comparison of two co-

registered images acquired in the same geograph-

ical area at two different times. Two main

approaches to the change-detection problem can

be adopted: the supervised approach and the

unsupervised one (Richards, 1993; Bruzzone and

Serpico, 1997). The former is based on supervised

classification methods, which require the avail-
ability of a multitemporal ground-truth. The latter

performs change detection by making a direct

comparison of the two multispectral images
ed.
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considered, without relying on any additional

information. Despite the supervised approach

requiring the availability of ground truth infor-

mation for both considered dates, it exhibits some

important advantages over the unsupervised one:

(i) capability of explicitly recognising the kind of
land-cover transitions which occurred in the

investigated area; (ii) robustness to the different

atmospheric and light conditions at the two

acquisition times; (iii) ability to process multi-

sensor/multisource images (Bruzzone and Serpico,

1997). For these reasons, in the rest of the paper

we will focus our attention on the supervised ap-

proach.
In the supervised approach, the land-cover

transitions are usually detected by comparing the

thematic maps obtained by classifying indepen-

dently the two considered images. Consequently,

the accuracy yielded strongly depends on the

errors present in the classification maps. For this

reason, in the context of the detection of land-

cover transitions, it is of great importance to de-
velop effective classification approaches capable of

achieving classification accuracies as high as pos-

sible. In spite of the importance of this issue, in the

literature only few works addressed the above-

mentioned problem. A possible approach to in-

crease the accuracy in classification of multitem-

poral images is the direct multidate classification

(Bruzzone and Serpico, 1997). It allows one to
obtain the land-cover transition map by jointly

applying the classifier (directly trained for rec-

ognising land-cover transitions) to the two images

acquired at different dates. This approach has the

important advantage of fully exploiting the tem-

poral correlation existing between the multitem-

poral images, thus increasing the accuracy of the

classification process. However, it suffers from the
serious drawback of requiring complex multit-

emporal ground-truth information. In fact, the

training of the classifier requires the availability of:

(i) ground-truth information for the same pixels

(the same areas on the ground) at the two acqui-

sition dates; (ii) significant statistics for all the

possible land-cover transitions. In practical appli-

cations, it is often not possible to satisfy these
constraints. In (Bruzzone et al., 1999), the authors

proposed a method based on the compound clas-
sification of multitemporal data, which is able to

detect land-cover transitions by exploiting the

temporal correlation between images and remov-

ing the aforementioned critical constraints on the

necessary ground truth. Such a method appeared

to be effective on several remote-sensing data sets.
However, in order to address ever more complex

applications involving the detection of land-cover

transitions, it is necessary to study approaches

capable of further increasing the multitemporal

classification accuracy.

Recently, in the pattern-recognition literature

several authors have proposed the use of multiple

classifier systems (MCSs) to increase the accuracy
and reliability of single-date classifiers (Kittler

et al., 1998). In particular, it can be proven that

combining classifiers that are accurate and differ-

ent (i.e., classifiers that incur uncorrelated errors)

results in a more accurate and robust classification

system. For these reasons, the MCS seems to be a

promising methodology also in the field of multi-

date classification and consequently can represent
an effective approach to the detection of land-

cover transitions.

In this paper, we propose to address the detec-

tion of land-cover transitions by means of an MCS

composed of an ensemble of multitemporal clas-

sifiers. In this context, the main problems to be

solved are related to the definition of an effective

ensemble of multitemporal classifiers and to the
use of combination strategies in the context of

multitemporal techniques. Concerning the ensem-

ble of multitemporal classifiers, it should be com-

posed of classifiers that: (i) are characterised by

high classification accuracy; (ii) do not require a

too complex ground-truth information; (iii) incur

approximately ‘‘uncorrelated’’ errors. In order to

meet the aforementioned requirements, we pro-
pose to develop multidate classifiers in the context

of the Bayesian rule for compound classification

(CC) (Bruzzone et al., 1999; Swain, 1978). To de-

fine classifiers that incur approximately uncorre-

lated errors, different non-parametric algorithms

are considered for estimating the statistical terms

required by the Bayesian CC decision rule. The

resulting classifiers are then integrated by using
standard combination procedures. As compared to

Bruzzone et al. (1999), the main novelties of the
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Fig. 1. Architecture of the proposed system.
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proposed approach are: (a) the compound classi-

fication method (based on multilayer perceptron

neural networks) presented in (Bruzzone et al.,

1999) is extended to other non-parametric multi-

temporal classifiers; (b) the change detection

problem is formulated within the framework of an

MCS approach, thus increasing the reliability of

the final map of land-cover transitions. Experi-
ments, carried out on a multitemporal remote-

sensing data set, confirm the effectiveness of the

proposed MCS approach.
2. Definitions and problem formulation

Let us consider two co-registered remote-sens-
ing images I1 and I2 acquired on the same geo-

graphical area at the times t1 and t2, respectively.
Let us address the problem of detecting land-cover

transitions which occurred in the considered geo-

graphical area by analysing I1 and I2. We cha-

racterise the pair of temporally correlated pixels

ðx1j ; x2j Þ (made up of a pixel x1j of image I1 and of the

spatially corresponding pixel x2j of image I2) by a
pair of feature vectors ðX 1

j ;X
2
j Þ. Let X ¼

fx1;x2; . . . ;xM1
g be the set of possible land-cover

classes at time t1, and let N ¼ ft1; t2; . . . ; tM2
g be

the set of possible land-cover classes at time t2. The
two setsX and N may differ in both the number and

the typology of land-cover classes. Let Y i denote

the set of pixels xij for which ground truth infor-

mation is available.

We formulate the problem of detecting land-

cover transitions in the framework of an MCS

approach. In particular, the MCS is composed of

an ensemble of multitemporal classifiers, whose
outputs are opportunely combined in order to

obtain the final decision (i.e., the ‘‘best’’ pair of

classes to be assigned to each couple of pixels

ðx1j ; x2j Þ, and hence the kind of land-cover transi-

tion occurred). The general architecture of the

system is shown in Fig. 1.
3. Design of the ensemble of multitemporal classi-

fiers

A major problem to be solved in the proposed

system is the choice of an appropriate ensemble of

multitemporal classifiers to be integrated in the

multiple classifier system. As stated in Section 1,

we propose to develop each classifier in the
framework of the Bayes rule for the compound

classification (Bruzzone et al., 1999, Swain, 1978).

Accordingly, the following decision rule should be

used:
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x1j 2 xs and x2j 2 tt such that P ðxs; ttjX 1
j ;X

2
j Þ

¼ max
xm2X
tn2N

fP ðxm; tnjX 1
j ;X

2
j Þg ð1Þ

Under the reasonable simplifying assumption of

class-conditional independence, the decision rule

(1) is equivalent to (Bruzzone et al., 1999):
x1j 2 xs and x2j 2 tt such that

P ðxsjX 1
j ÞP ðttjX 2

j ÞP ðxs; ttÞ
P ðxsÞP ðttÞ

¼ max
xm2X
tn2N

P ðxmjX 1
j ÞPðtnjX 2

j ÞPðxm; tnÞ
P ðxmÞP ðtnÞ

( )
ð2Þ

where P ðxmjX 1
j Þ is the conditional posterior

probability of class xm, given pixel x1j , P ðtnjX 2
j Þ is

the conditional posterior probability of class tn,
given pixel x2j , P ðxmÞ and P ðtnÞ are the prior

probabilities of classes xm and tn, respectively, and
P ðxm; tnÞ is the prior joint probability of the pair

of classes ðxm; tnÞ.
In order to carry out the multitemporal classi-

fication, it is necessary to estimate the terms in-

volved in (2) (in particular, in our case, we have to
define different multitemporal classifiers to obtain

an effective ensemble of algorithms). The same

procedure is adopted for estimating the prior

probabilities of classes PðxmÞ and P ðtnÞ for all

multitemporal classifiers considered. The condi-

tional posterior probabilities P ðxmjX 1
j Þ and

P ðtnjX 2
j Þ are estimated in a different way for each

specific multitemporal approach. The strategy
used to compute the prior joint probabilities

P ðxm; tnÞ is the same for all the multitemporal

classifiers composing the ensemble (however dif-

ferent estimates can be obtained for the considered

classifiers since they are computed on the basis of

the conditional posterior probabilities P ðxmjX 1
j Þ

and P ðtnjX 2
j Þ). The techniques used for estimating

the aforementioned parameters are described in
the following.

3.1. Estimation of the prior probabilities of classes

As it is usually done in the classification of re-

mote-sensing images, the prior probabilities of

classes P ðxmÞ and P ðtnÞ are estimated from the
training sets by computing the relative frequencies

of the patterns belonging to the different classes.

For example, concerning the image t1, we can

write:

P ðxmÞ

¼ no: of pixels of the training set t1 that belong to xm

total no: of pixels in the training set t1
ð3Þ

It is worth noting that the accuracies of these

estimates depend on the strategy adopted for the

collection of the training samples.
3.2. Estimation of the conditional posterior prob-

abilities of classes

In order to develop an effective system being

able to classify multitemporal/multisensor data, we

propose to use non-parametric algorithms to esti-

mate the single-date conditional posterior prob-

abilities P ðxmjX 1
j Þ and PðtnjX 2

j Þ. In particular, for

defining different multitemporal classifiers, we
propose to use three different estimation algo-

rithms, i.e., multilayer perceptron (MLP) neural

networks, radial basis function (RBF) neural net-

works, and the k-nearest neighbours (k-nn) tech-

nique.

3.2.1. Estimation procedure based on MLP neural

networks

To obtain an MLP-based multitemporal clas-

sifier, the posterior probabilities of classes involved

in (2) are estimated by means of MLP neural

networks. The architecture of such kind of neural

networks is composed of three or more layers (an

input layer, an output layer, and one or more

hidden layers). The input neurons are in number

equal to the input features. The output layer is
composed of as many neurons as the classes to be

recognized. Each neuron is characterized by a

sigmoid activation function. All the connections

between neurons are associated with weights. The

MLP neural networks, if properly trained by the

error back-propagation (EBP) algorithm, provide

estimates of the conditional posterior probabilities

of classes PMLPðxmjX 1
j Þ and PMLPðtnjX 2

j Þ optimised
according to a predefined criterion (Bishop, 1996).
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In our case, we adopt the minimum square error

(MSE) criterion (Serpico et al., 1996; Bruzzone

and Serpico, 1997).

3.2.2. Estimation procedure based on RBF neural

networks

RBF neural networks are composed of three

layers (an input, a hidden, and an output layer).

Input neurons (as many as input features) just

propagate input features to the next layer. Each

neuron in the hidden layer is associated with a

kernel function ui (usually a Gaussian function)

characterised by a centre pi and a width ri. The

output layer is composed of as many neurons as
the classes to be recognised. Each output neuron

computes a simple weighted average of the re-

sponses of the hidden neurons to a given pattern

described by the input feature vector (Bishop,

1996; Bruzzone and Fern�andez Prieto, 1999). If

properly trained (see Moody and Darken, 1989;

Miller and Uyar, 1998), the RBF neural net-

works can be used for estimating the conditional
posterior probabilities of classes PRBFðxmjX 1

j Þ and
PRBFðtnjX 2

j Þ. Consequently, an RBF-based multi-

temporal classifier can be obtained.
3.2.3. Estimation procedure based on the k-nn

technique

The k-nn technique can be used for estimating

in a supervised way the posterior probabilities of
classes (Fukunaga, 1990). To simplify the nota-

tion, let us consider the case in which we are

analysing the first image I1 (the generalization to

image I2 is straightforward). To estimate the con-

ditional probabilities Pk-nnðxmjX 1
j Þ, the k proto-

types nearest to pixel xij are identified among all

the patterns of the training set Y i. The available

ground-truth information gives us information
about the land-cover class that each of these k
patterns represents. It can be proven that a local

and simple estimate of the posterior probabilities

Pk-nnðxmjX 1
j Þ can be derived as follows:

Pk-nnðxmjX 1
j Þ ffi

km
k

ð4Þ

where km is the number of prototypes belonging to

class xm among the k-nearest neighbouring sam-

ples.
3.3. Estimation of the joint prior probabilities of

classes

Once the estimates of the posterior probabilities

of classes are obtained, the expectation–maximi-
sation (EM) algorithm (Dempster et al., 1977;

Moon, 1996) can be applied to estimate the joint

prior probabilities of classes. In particular, on the

basis of the estimates of the posterior probabilities

provided by the three proposed techniques (i.e.,

MLP neural networks, RBF neural networks, k-nn
technique), it is possible to derive different esti-

mates of the joint prior probabilities of classes. It
can be proven that the recursive equation to be

used to estimate Pðxm; tnÞ is the following (Bruz-

zone et al., 1999):

Ptþ1ðxm; tnÞ

¼ 1

SPðxmÞP ðtnÞ

�
XS

j¼1

Ptðxm; tnÞP ðxmjx1j ÞPðtnjx2j ÞP
xp2X

P
tq2N

Ptðxp ;tqÞ
PðxpÞPðtqÞ P ðxpjx1j ÞP ðtqjx2j Þ

ð5Þ

where t and t þ 1 are the current and the next

iterations, Ptðxm; tnÞ is the joint probability of

classes estimated at the tth iteration and S is the

total number of pixels to be classified.

Eq. (5) can be used with the posterior prob-

abilities estimated according to the different pro-

posed non-parametric algorithms. We refer the
readers to (Bruzzone et al., 1999) for greater de-

tails on the procedure for the estimation of the

joint probabilities of classes Pðxm; tnÞ.
4. Combination strategies for multitemporal clas-

sifiers

Let us consider a set of C multitemporal clas-

sifiers capable of estimating the joint posterior

probabilities P ðxm; tnjX 1
j ;X

2
j Þ, xm 2 X, tn 2 N , for

each pair of pixels ðx1j ; x2j Þ (see Section 3 for the

design of each single multitemporal classifier with

the simplifying assumption of conditional inde-

pendence in the time domain). We propose to

combine the different classifiers by applying three
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standard combination strategies modified for tak-

ing into account the multitemporal nature of our

classifiers: the Majority voting (Lam and Suen,

1997), the combination by Bayesian average (Diet-

terich, 2000), and the Weighted average strategies.

The first two strategies are unsupervised (they do
not require the availability of a training set for

defining the combination rule), whereas the third

strategy is supervised (the combination strategy

exploits the available training set).

4.1. Multitemporal majority-voting strategy

The Majority voting procedure faces the com-
bination problem by considering the results of

each single multitemporal classifier in terms of the

pair of class labels assigned to the patterns. A

given input pattern receives C classification labels

from the MCS: each label corresponds to one of

the M1 �M2 pairs of classes ðxm; tnÞ considered.

The combination method is based on the inter-

pretation of the classification label resulting from
each classifier as a ‘‘vote’’ to one of the possible

M1 �M2 pairs of land-cover classes. The class pair

that receives the largest number of votes is taken as

the kind of land-cover transition related to the

input pattern. When more than one class pair re-

ceives the maximum number of votes, the pair with

the maximum posterior probability is selected.

4.2. Multitemporal Bayesian average strategy

When the combination by Bayesian average

strategy is used, the final joint posterior probabil-

ities of the MCS are obtained by averaging the

outputs provided by the different multitemporal

classifiers. In particular, given the estimates of the

joint posterior class probabilities P iðxm; tnjX 1
j ;X

2
j Þ

(xm 2 X, tn 2 N ) provided by the ith classifier of

the ensemble for the pair of pixels ðx1j ; x2j Þ, the final
values of the posterior class probabilities P aveðxm;
tnjX 1

j ;X
2
j Þ are computed as follows:

P aveðxm; tnjX 1
j ;X

2
j Þ ¼

1

C

XC
i¼1

P iðxm; tnjX 1
j ;X

2
j Þ ð6Þ

According to the Bayesian approach, each pair of

pixels is assigned to the pair of classes for which

the average posterior probability is maximised.
4.3. Multitemporal Bayesian Weighted average

strategy

The rationale of this strategy consists in using

the information present in the training set for
evaluating and taking into account the effective-

ness of each classifier on the different classes.

Accordingly, a weighted average of the posterior

probabilities of classes is considered instead of the

simple average computed in the previous strategy.

The adopted combination rule is the following:

Pw-aveðxm; tnjX 1
j ;X

2
j Þ

¼
PC

i¼1 a
i
m;nP

iðxm; tnjX 1
j ;X

2
j ÞPM1

m¼1

PM2

n¼1

PC
i¼1 a

i
m;nP

iðxm; tnjX 1
j ;X

2
j Þ

ð7Þ

where aim;n is the weight associated with the esti-

mation of the posterior class probability related to

the pair of classes ðxm; tnÞ provided by the ith
multitemporal classifier. As for the combination
by Bayesian average strategy, the final decision is

taken according to the maximisation of the esti-

mated weighted posterior probability. The weights

aim;n are computed by minimising a cost function

(i.e., the minimum square error) on the training

samples with a procedure based on a pseudo-

inverse matrix (it is worth noting that aim;n must be

non-negative so that Pw-aveðxm; tnjX 1
j ;X

2
j Þ repre-

sents a probability).
5. Experimental results

In order to assess the effectiveness of the pro-

posed approach, different experiments were carried

out on a data set made up of two multisensor

images acquired by the Thematic Mapper (TM)

multispectral sensor of the Landsat 5 satellite and

by the Synthetic Aperture Radar (SAR) of the

ERS-2 satellite. The selected test site was a section
of a scene related to the delta of the Po river, Italy.

The two images used in the experiments were ac-

quired in April 1994 (t1) and May 1994 (t2). Four
land-cover classes (i.e., urban area, bare soil, wet

rice field, and woodland) were considered for the

April image, whereas five land-cover classes (i.e.,

urban area, dry rice field, wet rice field, cereals,

woodland) were considered for the May image.



Table 1

Training and test sets utilised for the experiments: (a) April

1994; (b) May 1994

Number of pixels

Training set Test set

(a) Land-cover classes (April 1994)

Bare soil 9565 4319

Wet rice-fields 5867 2955

Wood 16,008 9269

Urban area 801 334

Total 32,241 16,877

(b) Land-cover classes (May 1994)

Dry rice-fields 1919 866

Wet rice-fields 10,812 5062

Wood 16,008 9269

Cereals 2701 1346

Urban area 801 334

Total 32,241 16,877
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The available ground truth was used to derive a
training set and a test set for each image (see Table

1). (It is worth noting that the portion of the

images and the distributions of classes considered

in this paper are different from the ones considered

in (Bruzzone et al., 1999).)

The three proposed multitemporal classifiers

(i.e., k-nn, RBF, MLP based classifiers) were

trained using all the spectral channels of the TM
(but the band six) and the intensity of the SAR

image. For each classifier, different architectures/

parameters (i.e., the value of the parameter k in the

k-nn technique, the number of hidden nodes in the

RBF neural networks, the number of layers and

hidden nodes in the MLP neural networks) were

investigated.

First of all, two k-nn classifiers were trained on
the April and May images, respectively, in order to

estimate the posterior probabilities Pk-nnðxmjX 1
j Þ
Table 2

Best, worst, and average accuracies in detecting the land-cover transit

The standard deviation of the accuracy in the different trials is also g

k-nn based classifier

Best accuracy (%) 95.58

Worst accuracy (%) 94.62

Average accuracy (%) 95.40

Standard deviation 0.32
and Pk-nnðtnjX 2
j Þ. Trials with values of the para-

meter k of the k-nn classifiers ranging from 3 to 100

were carried out (12 different values were consid-

ered). Then the EM algorithm was applied to

estimate the joint prior probabilities of classes

Pk-nnðxm; tnÞ.
A similar procedure was applied to derive

the RBF and MLP based multitemporal classifiers.

In particular, the estimates of PRBFðxmjX 1
j Þ,

PRBFðtnjX 2
j Þ, PRBFðxm; tnÞ, and PMLPðxmjX 1

j Þ,
PMLPðtnjX 2

j Þ, PMLPðxm; tnÞ were carried out. Con-

cerning the RBF neural networks, 24 different

architectures were analysed by varying the number

of hidden neurons from 50 to 200. Concerning the
MLP-based classifier, seven different architectures

were investigated. Such architectures were ob-

tained by varying (i) the number of hidden nodes

(20 and 40 neurons); (ii) the initial conditions; and

(iii) the numbers of iterations used for the training

phase.

Table 2 gives the maximum, the minimum, the

average and the standard deviation of the accu-
racies in detecting the land-cover transitions

exhibited by the three aforementioned multitem-

poral classifiers in our experiments. As one can see,

the accuracies yielded by all the proposed classifi-

ers were very high (i.e., the k-nn-based, the RBF-

based and the MLP-based classifiers exhibited an

average accuracy equal to 95.40%, 94.69%, and

94.17%, respectively).
For the sake of comparison, Table 3 shows the

results obtained by applying a standard post-

classification comparison (PCC) technique to the

corresponding single-date classifiers (for each pair

of single-date classifiers, the best-performing

architecture was considered). By comparing Table

2 with Table 3, it can be observed that, as ex-

pected, the use of multitemporal classifiers allows
one to significantly increase the change-detection
ions exhibited by the three considered multitemporal classifiers.

iven

RBF-based classifier MLP-based classifier

95.44 95.93

90.55 85.83

94.69 94.17

0.91 3.68



Table 5

Increase in the accuracies in detecting the land-cover transitions exhibited by the proposed combination strategies in the different trials

versus (Panel a) the worst-performing and (Panel b) the best-performing classifiers composing the ensemble

Increase (%) Majority voting Bayesian average Bayesian weighted average

(Panel a)

Maximum 9.67 10.17 10.04

Minimum 1.13 1.30 1.57

Average 2.53 2.89 3.04

(Panel b)

Maximum 0.55 0.91 1.16

Minimum )0.15 0.35 0.29

Average 0.24 0.60 0.75

Table 4

Best and average accuracies in detecting the land-cover transitions exhibited by the proposed MCS approach with the three considered

combination strategies. The standard deviation of the accuracy in the different trials is also given

Majority voting Bayesian average Bayesian weighted average

Best accuracy (%) 96.04 96.53 96.69

Average accuracy (%) 95.86 96.22 96.37

Standard deviation 0.22 0.15 0.28

Table 3

Accuracies in detecting the land-cover transitions exhibited by a standard PCC technique applied to the best-performing single-date

classifiers considered

k-nn based classifier RBF-based classifier MLP-based classifier

Accuracy in detecting land-cover transitions (%) 92.86 92.58 92.78
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accuracy with respect to the accuracy achieved by

the standard PCC technique. This is obtained by

exploiting the temporal correlation between class-

labels in the two considered images.
At this point, the three multitemporal classifiers

(i.e., the k-nn-based, the RBF-based, and the

MLP-based multitemporal classifiers) were inte-

grated in the MCS by means of the consid-

ered combination strategies (i.e., Majority-voting,

Bayesian average, and Bayesian weighted aver-

age). In order to statistically analyse the effective-

ness and the stability of the three combination
strategies, different ensembles of multitemporal

classifiers were considered. In particular, each

ensemble was defined by varying the architectures/

parameters of the composing multitemporal clas-

sifiers (it is worth noting that the considered

ensembles also included the worst-performing

architectures of each multitemporal classifier). The
obtained results are reported in Table 4. As one

can see, the average change-detection accuracies

obtained were very high for all the combination

strategies proposed (i.e., 95.86%, 96.22%, and
96.37% for the Majority-voting, Bayesian average,

and Bayesian weighted average strategy, respec-

tively).

In order to analyse the behaviour of the MCS as

compared with the one of the single multitemporal

classifiers composing the ensemble, in Table 5 the

increase in the change-detection accuracy led by

the three proposed combination strategies with
respect to both the worst-performing and best-

performing multitemporal classifiers composing

the ensembles are given. In all the trials carried

out, all the combination strategies significantly

increased the accuracy as compared with the

worst-performing multitemporal classifier com-

posing the ensemble (an average increase of 2.53%,
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2.89%, and 3.04%, was observed with the Major-

ity-voting, the Bayesian average, and Bayesian

weighted average strategies, respectively). This is

a very important aspect (especially when classifi-

ers whose performances strongly depend on the

architecture definition are considered) since it con-
firms that the MCS approach increases the

robustness in detecting land-cover transitions,

mitigating the effects introduced by not-optimally

designed classifiers. Furthermore, in almost all the

trials carried out, the considered combination

strategies increased the accuracy with respect to the

best-performing multitemporal classifier compos-

ing the ensemble (an average increase of 0.24%,
0.60% and 0.75% was achieved with the Majority-

voting, the Bayesian average, and Bayesian weigh-

ted average strategies, respectively).

It is worth noting that the robustness of the

proposed MCS is also confirmed by the analysis of

the standard deviations computed on the change-

detection accuracy, which reveals that the overall

performances are not significantly dependent on
the particular architecture of the classifiers com-

posing the ensemble. In particular, the standard

deviations of the accuracy obtained by the k-nn-
based, the RBF-based, and the MLP-based multi-

temporal classifiers were equal to 0.32%, 0.91%,

and 3.68% (see Table 2) whereas the standard

deviations of the accuracies exhibited by the MCS

with the Majority voting, Bayesian average, and
Bayesian weighted average strategies were equal to

0.22%, 0.15% and 0.28%, respectively (see Table 4).
6. Conclusions

In this paper, a novel approach to the super-

vised detection of land-cover transitions has been
proposed. Such an approach is based on a multiple

classifier architecture composed of different multi-

temporal classifiers developed in the framework of

the compound classification decision rule. In par-

ticular, MLP neural networks, RBF neural net-

works and the k-nn technique have been used to

define three different multitemporal classifiers to

be included in the MCS.
The results obtained on a real multitemporal

remote sensing data set confirmed the effectiveness
of the proposed approach. In particular, different

ensembles of classifiers were considered in the

MCS by varying the architectures/parameters of

the single multitemporal classifiers. In all the trials

carried out, the three combination strategies pro-

posed resulted in a significant increase of the
accuracy with respect to the worst-performing

classifier composing the ensemble. As already ob-

served, this is a very important aspect since it

points out that the MCS approach increases the

robustness of the process of detection of land-

cover transitions, mitigating the effects introduced

by non-optimally designed classifiers. The analysis

of the standard deviations of the change-detection
accuracies also reveals that the overall perfor-

mance is not significantly dependent on the par-

ticular architecture of the classifiers composing the

ensemble. Thus, the results obtained confirm the

MCS approach as a well-founded way of increas-

ing the robustness of the system for detecting land-

cover transitions.

As a final remark, it is worth noting that in
remote-sensing applications the training and the

test sets used for the learning and the selection of

the classifier architectures, respectively, often do

not represent completely the variability of classes

in the investigated scene; consequently, they do

not allow one a reliable evaluation of the gener-

alization capabilities of each classifier architecture.

For this reason, it is important to define robust
systems based on an ensemble of classifiers that

can intrinsically overcome the possible unexpect-

edly poor generalization performance of a single

classification algorithm.
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