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Abstract 
The automatic generation of land-cover inventories by using 
remote-sensing data is a very difficult task when complex ru- 
ral areas are involved. The main difficulties are related to 
the characterization of such spectrally complex and hetero- 
geneous environments and to the choice of an effective clas- 
sification approach. In this paper, the usefulness of spectral 
(Landsat-5 Thematic Mapper images), texture (grey-level co- 
occurrence matrix statistics), and ancillary (terrain elevation, 
slope, and aspect) data to characterize two complex rural ar- 
eas in central Italy is quantitatively demonstrated. A statisti- 
cal and a neural-network classification approach are applied 
to such a multisource data set, and their classification per- 
formances are assessed and compared. The classification 
performances of the two approaches are quantitatively evalu- 
ated in terms of global and conditional Kappa accuracies. 
The Zeta statistics is used to evaluate the statistical signifi- 
cance of the different classification accuracies obtained by 
the two approaches by using multisource data. 

Introduction 
Remote sensing techniques, with properties of being synoptic 
and objective, easily updated, and being relatively inexpen- 
sive, can be very useful in various applications such as envi- 
ronment monitoring, crop inventorying, and geological studies 
(Swain and Davis, 1978; Curran, 1985). In particular, satellite 
imagery has been shown to be suited for the automatic gen- 
eration of land-cover inventories, and several classification 
methods using such remote sensing data have been proposed 
(Swain and Davis, 1978; Richards, 1993; Maselli et al., 1992; 
Serpico and Roli, 1995). Most of these methods yield satis- 
factory classification accuracies when land-cover classes are 
spectrally separable. On the contrary, great difficulties are 
encountered in spectrally complex environments, where sev- 
eral factors (e.g., mixed terrain compositions, terrain irregu- 
larities, differences in substrates) affect spectral signatures. In 
such environments, which are very common in European ru- 
ral areas, the production of land-cover inventories based on 
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spectral data alone may be unfeasible. The exploitation of 
other sources of information becomes mandatory. For in- 
stance, texture features extracted from remote-sensing images 
have been proposed (Haralick et al., 1973). Another source of 
information is represented by ancillary data, in particular, 
environmental information related to the spatial distribution 
of the categories of interest (e.g., morphological, geological, 
climatological data) (Hutchinson, 1982). All these sources of 
information may be exploited to obtain more accurate land- 
cover inventories of complex rural areas. 

In the literature, several studies on the classification of 
multisource remote-sensing data have been reported (Lee et 
al., 1987; Benediktsson et al., 1990; NASA, 1990; IAPR, 
1992; Zhuang et al., 1991; Civco and Wang, 1994; Gong, 
1994; Wang and Howarth, 1994). Some of them investigated 
the use of neural-network (NN) classifiers and compared their 
performances with the ones of classical statistical methods. 
Benediktsson et al. (1990) demonstrated that a multilayer 
perceptron neural network performed better than statistical 
methods when applied to Landsat MSS data merged with geo- 
graphic data, including elevation, slope, and aspect. Zhuang 
et al. (1991) drew similar conclusions for a data set made up 
of Landsat Thematic Mapper (TM) data merged with land 
ownership data. In their experimentation, a neural-network 
classifier provided better classification accuracies than the 
ones obtained by maximum-likelihood and minimum-dis- 
tance classifiers. 

However, the above studies did not fully investigate to 
what extent the differences in classification accuracies ob- 
tained by statistical and neural-network classification meth- 
ods were statistically significant. In addition, the works re- 
ported in the literature did not consider complex rural areas, 
nor the exploitation of texture information merged with spec- 
tral and ancillary data. 

This paper is aimed at investigating the performances of 
statistical and neural-network classification approaches using 
spectral, texture, and ancillary data for land-cover inventory- 
ing of a complex rural area in central Italy. The different per- 
formances of the two classification approaches are evaluated 
in terms of global and conditional ~ a i ~ a  accuracies. The 
Zeta statistics is used to evaluate the statistical significance 
of results. 

The two approaches are based on a modified maximum- 
likelihood (MML) classifier and on a multilayer perceptron 
(MLP) neural-network classifier, respectively. The spectral 
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data are Landsat-5 TM scenes, from which texture features 
were extracted as grey-level co-occurrence matrix statistics 
(Haralick et al., 1973). The three layers of a digital terrain 
model (DTM) (i.e., the elevation, slope, and aspect layers) are 
considered as ancillary data. The use of a feature-selection 
technique to identify the best subset of multisource data is 
also illustrated. 

Study Area, and Ancillary, Ground, and Spectral Data 
The study area corresponds to the basins of the Piomba and 
Cigno rivers, in the Abruzzo region, in central Italy (Figure 
1). The first is a primary basin and covers about 100 km2; the 
second is a tributary of the Pescara river and covers an area 
of about 60 km2. The major axes of both basins extend from 
west to east, following most of the Adriatic hydrological net- 
work. The terrain is rugged, with elevations ranging from 10 
to 740 m and from 80 to 1440 m, respectively. The topogra- 
phies of the two basins were derived from 15 orthophoto- 
maps (eight for the Piomba basin and seven for the Cigno 
basin) produced by the Administration of the Abruzzo Re- 
gion at the scale 1:10,000. These maps were claimed to be of 
high quality and included contours at a 10-m elevation inter- 
val (Regione Abruzzo, 1987). 

The basins are mainly covered with agricultural lands, 
pasture lands, and coniferous and deciduous forests. The 
main crops are maize, winter wheat, alfalfa, and grape and 
olive groves, which are generally distributed in the lower ar- 
eas, whereas pasture lands and forests are distributed in the 
more rugged, less accessible areas. The ground reference data 
for the two basins were collected directly by making accurate 
ground surveys in the spring and summer of 1993. Small 

TABLE 1. LANDCOVER CATEGORIES CONSIDERED. FOR EACH CATEGORY, THE 

PIXELS OF THE TWO BASINS DIGITIZED FROM GROUND REFERENCES WERE DIVIDED 
INTO A TRAINING SET AND A TEST SET. 

Number of Number of 
Land-Cover Classes training pixels test pixels 

Winter wheat 
Root crop cultivation 
Meadow and pasture 
Vineyard and orchard 
Olive grove with cereals 
Bare soil 
Riparian forest 
Hilly forest 
Vegetated badland 
Bare badland 
Urban area 

plots of approximately 2 to 5 ha were identified during these 
surveys. Particular attention was paid to the selection of 
samples representative of the extent and distribution of the 
land-cover categories in the two basins. Eleven categories, 
representative of the land cover in the two basins, were iden- 
tified (Table 1). In addition to the agricultural, forest, and ur- 
ban classes, a "vegetated badland" class and a "bare badland 
class were also considered in order to characterize the envi- 
ronmental degradation phenomenon that occurs in both 
study areas. 

As spectral data, we used two Landsat-5 TM quarter 
scenes (the latitude and the longitude of the center of the 
quarter scenes were 42'20' and 13'50', respectively). Both 

Figure 1. (a) Geographical position of the study area corresponding to the basins of the Piomba (b) 
and Cigno (c) rivers. 

Piomba basin 
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Cigno basin 
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scenes were cloudless and of good quality. The first scene 
was taken in spring (26 May 1993), when the vegetation 
reached the peak of its photosynthetic activity, and the sec- 
ond in summer (14 August 1993), during the driest Mediter- 
ranean period. As an example, the two multitemporal Band-5 
images for both the Cigno and Piomba basins are shown in 
Figure 2. The multitemporal information in the scenes relat- 
ing to the same growing season was considered useful to dif- 
ferentiate the cover types in the study area. 

Preliminary Data Processing 
The preprocessing and information-extraction steps are illus- 
trated in Figure 3. The same preliminary processing was per- 
formed for both classification approaches (which were used 
by the Classification Module shown in Figure 3). 

The contour lines of the orthophotomaps were acquired 
by means of a digitizer table. A module (indicated as the 
DTM Generation Module in Figure 3) took as input such digi- 
tized orthophotomaps and provided as output the DTMs of 
the Piomba and Cigno basins (Geosystems, 1992). A 30- by 
30-m pixel size was selected for the DTM data to match the 
spatial resolution of the TM data. The ground references were 
digitized using the same pixel size (30 by 30 m). The refer- 
ence pixels of the two basins were then divided into a train- 
ing set and a test set by a stratified random sampling tech- 
nique (Table 1). 

The TM scenes were georeferenced to the orthophoto- 
maps. Ground control points in the orthophotomaps were se- 
lected for the geometric correction of the Landsat TM data. A 
bilinear interpolation algorithm was used to resample and 
georeference the satellite data, with a final pixel size of 30 by 
30 m and RMSEs of approximately 1 pixel. 

The geometrically corrected and georeferenced TM im- 
ages were given as input to the Texture Feature Extraction 
Module, which computed a set of texture features. 

At this point of the processing chain, a large set of fea- 
tures (i.e., TM channels, texture features, and ancillary data) 
was available to characterize the areas to be classified. To re- 
duce the cost of the classification process, we employed the 
Feature Selection Module (Figure 3) to automatically select 
the most effective feature subset. The selection concerned 
spectral and texture features only. DTM data were not consid- 
ered in the selection process, as the MML approach needed 
all such data for the computation of the a p r i o r i  probabilities 
of the land-cover classes. 

Texture Analysis 
For the present study, we used texture features computed 
from the grey-level co-occurrence matrix (GLCM) (Haralick et 
al.. 19731. The GLCM constitutes a statistical auuroach to tex- 

I I 

ture computation that has been successfully tested on remote 
sensing images for applications such as land-cover mapping 
of forested and agricultural areas (Peddle and Franklin, 1989; 
Jacques et al., 1989; Marceau et al., 1990). 

The use of the GLCM approach requires the choice of a 
given number of parameter values for the computation of the 
grey-level co-occurrence matrix (e.g., the distance and the 
angle between two resolution cells) (Haralick et al., 1973). 
Owing to the fine textures of our TM images, we performed 
the GLCM computation by using one-pixel-distance grey-level 
spatial-dependence matrices and a 5 by 5 moving window. 
The texture was assumed to be isotropic and was computed 
for an angle of zero degrees only. The original 256 grey lev- 
els were mapped into 128 levels by an equal-probability 
quantizing algorithm in order to reduce the cost of the com- 
putation of the co-occurrence matrix. Among the features 
that can be derived from the GLCM, the whole set of 14 tex- 
ture features suggested by Haralick et al. (1973) was com- 
puted. 

In principle, all the 14 texture features could have been 
computed for each of the TM channels of our multitemporal 
data set, so obtaining a set of 196 texture features (14 texture 
features by seven TM channels by two scenes). In practice, in 
order to reduce the resulting computational cost, we com- 
puted the 14 texture features for only one of the seven TM 
channels. In order to automatically select this channel, for 
each TM band, we computed the mean value of the data class 
grey-level variance (i.e., the grey-level variance was com- 
puted for each land-cover class and the mean value was esti- 
mated). The channel with the maximum value of such a 
"mean variance" was selected. This was regarded as a sim- 
ple but reasonable strategy to automatically select the TM 
channel providing the largest amount of texture information, 
as grey-level variance is a simple measure of texture informa- 
tion. TM channel 5 (i.e., the infrared channel) was selected 
according to such a strategy. 

Feature Selection 
Several feature-selection criteria have been proposed in the 
literature (Fukunaga, 1990; Richards, 1993). For our study, 
we adopted the feature-selection criterion proposed by Ser- 
pic0 et al. (1994), as experimental comparisons with classical 
criteria proved its greater effectiveness (Serpico et al., 1994). 
Such a criterion does not transform the original feature 
space, thus preserving the physical meanings of the features 
selected. In this way, at the end of the selection, we had in- 
formation about the most useful original features to discrimi- 
nate among the land-cover classes considered. The criterion 
is based on the minimization of the following index: 

where f is the vector of the features to be selected, Cis  the 
number of classes considered, p(w,) and p(w,) are the a priori 
probabilities of the classes, Q(x) is defined as 

and d,,(f) is given by 

where m,, m, and 8,, 8, are the mean vectors and the covari- 
ance matrices for classes w,, and o,, respectively. 

A search algorithm is used to find a subset of features 
that minimizes the above criterion. In the literature, both op- 
timum search algorithms (e.g., branch and bound methods) 
and suboptimum ones (e.g., forward selection (FS) and back- 
ward selection (BS)) have been proposed (Fukunaga, 1990). 
In our case, the large set of features considered (42 features: 
14 texture features and seven TM channels for each of the 
two multitemporal scenes) would have made it very time 
consuming to apply an optimum search algorithm. Therefore. 
we chose the FS search. 

The minimization for our feature selection criterion was 
obtained for a set of 17  features. 

The selected features are given in Table 2. It is worth 
noting that several texture features were selected; this con- 
firms their importance for the application considered. 

Classification Approaches 
Two different classification approaches were used. The first 
was a parametric statistical approach modified by including 
nonparametric a p r i o r i  probabilities. The second was a non- 
parametric approach based on a multilayer perceptron neural 
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Figure 2. Band 5 of TM for both the Cigno (a and b) and Piomba (c and d) basins. The scenes were acquired in 
spring (a and c) and summer (b and d). 



1 network. In the following, the main characteristics of both 
approaches are outlined. 

The Modified Maximum-Likelihood Approach 
The parametric classifier adopted for the present study is 
based on the Gaussian maximum-likelihood (GML) approach. 
This method is widely used, especially for practical applica- 
tions (Swain and Davis, 1978; Curran, 1985), and can be re- 
garded as a reference for comparing the performances of 
different classification ap~roaches. The classical GML ap- 
proach was modified byhcluding nonparametric a priori 
probabilities [Maselli et al.. 19921. This modification makes 
;he classification process more flexible and more effective in 
the presence of non-Gaussian spectral distributions, like 
those related to complex rural areas. The modified a priori 
probabilities were computed as suggested by Skidmore and 
Turner (1988), that is, they were derived from the grey-level 
frequency histograms of the land-cover classes considered. In 
particular, the method devised by Skidmore and Turner (1988) 
was improved by using ancillary information for the compu- 
tation of the a priori probabilities (Strahler, 1980; Hutchin- 
son, 1982; Maselli et al., 1994). For each pixel, we calculated 
the product of the frequencies of the spectral and ancillary 
data on the land-cover classes considered (Maselli et al., 
1992; Maselli et a]., 1994). 

Because the a priori probabilities were computed as the 
product of the frequencies related to different sources of in- 
formation (i.e., spectral, texture, and ancillary data), a statis- 
tical independence was necessary (Maselli et al., 1994). The 
statistical independence of the ancillary data used in this 
study can be reasonably assumed. For the spectral and tex- 
ture features, the independence was achieved by assuming 
nearly Gaussian distributions and performing a principal 
component transformation (PCT) on the original features, 
which had already proved effective for this purpose (Maselli 
et al., 1992). It is worth noting that the PCT was used only to 
remove the correlation among the original features, and that 
no transformed component was disregarded, that is, the PCT 
was not used to perform feature selection. 

TABLE 2. THE SETS OF SPECTRAL AND TEXTURE FEATURES lDENTlflED BY THE 

FEATURE-SELECTION ALGORITHM. THE SELECTED FEATURES ARE ORDERED 
ACCORDING TO THE AMOUNT OF ~NFORMAT~ON PROVIDED. THE NAMES OF THE 

TEXTURE FEATURES ARE THE SAME AS USED BY HARALICK ETAL. (1973). 

Scene 
Selected Features Acquired in 

TM channel 1 Spring 
TM channel 7 Summer 
TM channel 5 Spring 
TM channel 7 Spring 
TM channel 4 Summer 
texture feature "Sum of Averages" Summer 
texture feature "Difference of Variances" Summer 
texture feature "Correlation" Spring 
texture feature "Contrast" Spring 
texture feature "Sum of Variances" Summer 
TM channel 4 Spring 
texture feature "Variance" Spring 
texture feature "Sum of Averages" Spring 
TM channel 2 Summer 
TM channel 3 Summer 
TM channel 1 Summer 
texture feature "Difference of Entropy" Summer 

The Neural-Network Approach 
In this study, we used multilayer feedforward networks (also 
called "multilayer perceptrons" (MLPS)), trained by means of 
the error backpropagation learning algorithm (Benediktsson 
et al., 1990; Hertz et al., 1991; Serpico and Roli, 1995; Foody 
et al., 1995; Chen et al., 1995). 

MLPS are artificial neural-network models resulting from 
an interconnection of very simple processing elements called 
network units (or, more simply, neurons). Typically, an MLP 
network topology consists of multiple layers of neurons with 
connections only between neurons in neighboring layers. 
Every connection in the network has a numerical value at- 
tached to it that is called "weight." Information is processed 
starting from one side of the network called "input layer" 
and moving through successive "hidden layers" to the "out- 

DTM 

Multitemporal TM Thematic 
Images 

Ground 
References 

Figure 3. Scheme of the overall data-processing chain. 
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Figure 4. An example of MLP neural-network topol- 
OgY. 

put layer." In MLPS, the flow of information is in one direc- 
tion only (from the input to the output layer); therefore, they 
are called "feedforward networks." As an example, Figure 4 
shows the topology of a n  MLP neural network with only one 
hidden layer. 

Each neuron is a simple processor which usually has 
many different input connections, coming from other neu- 
rons in the MLP network, and only one output which is usu- 
ally sent to many other neurons. A neuron i computes a net 
input (net,) from the outputs o, of other neurons and from the 
weights of the connections. Typically, such a net input is a 
weighted sum, and a numerical value, called "bias" (b,), is 
added to the net input. In MLPS, a function S, called "activa- 
tion function," is applied to the net input. Formally, denot- 
ing by w,, the weight of the connection from neuron i to 
neuron j, the computation performed by each neuron, except 
the input ones, can be expressed as follows (Figure 5): 

In our experiments, we used a sigmoid function as the 
activation function: i.e., 

as is usually done for MLPs (Hertz et a]., 1991). 
One of the most commonly used training schemes for 

MLPs is the error backpropagation (EBP) learning algorithm. It 
is a learning algorithm by examples. In the most commonly 
used version, called "training by patterns," a set of training 
samples representative of each of the data classes to be rec- 
ognized is selected and repeatedly given as input to the net- 
work (each training iteration is called "epoch"). The EBP 
algorithm adjusts the values of the network connections so 
that the activations of the output neurons matches more 
closely the desired output values. This allows a correct clas- 
sification of each training sample. Typically, there is an out- 
put neuron for each data class, and an input sample is 
classified as belonging to a given class if the related output 
neuron has the highest activation among all the output neu- 
rons. Therefore, for each input sample, the EBP algorithm 
aims to maximize the activation value of the neuron related 
to the correct class and to minimize the activation values of 
all the other output neurons. This is usually performed by 

minimizing iteratively the following summed squared error 
(sSE) function: 

SSE = (oPk - tpkl2 (7) 

where p indexes the training samples and k indexes the out- 
put neurons of the network. In many cases, the mean SSE, 
called MSE, is used; it is computed by averaging the s sE  
function over the training samples. For each training sample, 
the terms t,,, called "targets," represent the desired activa- 
tion values for the output neurons (typically, just one target 
is set to one and the others to zero). The EBP algorithm mini- 
mizes the above error function by a gradient descent tech- 
nique which changes the weight values according to the 
following rule: 

where Aw,, is the weight change and E is the so-called "learn- 
ing rate." 

Detailed discussions of the equations implementing such 
a minimization technique and of the complete derivation of 
the weight updating rule can be found in Hertz et al. (1991). 

Experimental Results 
Experimentation Planning 
Experiments were performed in order to assess both the im- 
portance of texture and ancillary data to characterize com- 
plex rural areas and to evaluate the degrees of effectiveness 
of both classification approaches in exploiting such multi- 
source information. Therefore, classification accuracies were 
evaluated by characterizing the data set in Table 1 using the 
following sets of features: 

spectral features [i.e., the nine TM channels in Table 2); 
spectral and texture features (i.e., the features in Table 2); 
spectral and ancillary features (i.e., the nine TM channels in 
Table 2 and elevation, slope, and aspect features); and 
spectral, texture, and ancillary features (i.e., the 1 7  features 
in Table 2 and the elevation, slope, and aspect features). 

The application of the MML approach was preceded by a 
PCT on the spectral and texture data in order to produce un- 
correlated features. It is worth noting that the ancillary data 
were used only to modify the a priori probabilities of the 
land-cover classes (Maselli et al., 1994), as the statistical dis- 
tribution of such data was very far from normal. 
Consequently, a maximum number of 17 features were used 
as input to the MML classifier. 

For the NN approach, several MLP architectures were 
considered to select the best for each of the above sets of fea- 
tures. In all cases, the number of input units was equal to 
the number of input features. All the networks had eleven 

Wi I 

oi = #(net,) 
* 

Figure 5. Neuron computation. 
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Figure 6. Mean-square-error (MSE) decay as a function of 
the number of training epochs. Three curves are shown 
that are related to three MLP networks with no hidden 
units, 20 hidden units, and 30 hidden units, respectively. 
All the networks had 20 input units and 11 output units. 

- - 

class 1 c b  11 

11 output units 

----- 30 hidden units 

20 inputs units 

feature 1 feature 20 input features 

Figure 7. The MLP neural network selected to classify 
the data set characterized by spectral, texture, and 
ancillary features (i.e., the 17 features in Table 2 and 
three ancillary features). An architecture with 20 input 
units (one for each input feature), 30 hidden units, 
and 11 output units (one for each land-cover class) 
was adopted. 

output units, one unit for each data class. All the architec- 
tures were such that the number of weights was much 
smaller than the number of pixels in the training set, in ac- 
cordance with the simplified rule suggested in Baum and 
Haussler (1989). All the neural networks were trained by the 
EBP learning algorithm according to a "training by pattern" 
criterion and using different "learning rates" (i.e., 0.1, 0.05, 
and 0.01) (Hertz et al., 1991). As a convergence criterion, an 
MSE smaller than 0.05 was required. Training was stopped 
when convergence was reached, or after 400 "epochs." Some 
examples of MSE decay are given in Figure 6: they are related 
to the networks used to classify the data set composed of the 
20 multisource features. For classification purposes, each test 
pixel was assigned to the class corresponding to the output 
unit with the highest activation. Concerning the data set 
characterized by the whole feature set (i.e., spectral, texture, 
and ancillary features), the best classification performances 
for the considered test set (Table 1) were achieved by using a 
three-layer architecture with 30 hidden units and at a learn- 
ing rate equal to 0.01 (Figure 7). 

The performances of both classification approaches were 
assessed by using error matrices. The overall and conditional 
Kappa coefficients of agreement were derived from such ma- 
trices as described by Congalton et al. (1983), Hudson and 
Ramm (1987), and Rosenfield and Fitzpatrick-Lins (1986). 
The Kappa coefficient was regarded as an effective measure 
to assess the degrees of usefulness of the different types of 
features used and the degrees of effectiveness of the two 
classification approaches in exploiting them (Rosenfield and 
Fitzpatrick-Lins, 1986). The Zeta statistics was used to assess 
quantitatively if the differences in the Kappa values obtained 
in our experiments were statistically significant (Congalton et 
al., 1983). In particular, this statistical test was carried out to 
compute the significance of the differences in classification 
accuracy when texture and ancillary data were used. The 
Zeta statistics was also used to assess the significance of the 
differences in classification accuracy between the NN and 
MML approaches. 

Experimental Results 
The classification accuracies obtained for the test set contain- 
ing only the spectral data were unsatisfactory (Table 3a), 
with a Kappa coefficient less than 0.6 for both classification 
approaches. Several land-cover classes were poorly classi- 
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fied. The MML approach suffered from the high spectral com- 
plexities of the rural areas considered, so it yielded larger 
differences among data-class accuracies than the ones pro- 
vided by the NN approach. 

Considerable improvements were obtained by adding an- 
cillary or texture data to the spectral-feature set. As an exam- 
ple, the value of the Kappa coefficient for the NN approach 
increased from 0.590 to 0.681 when ancillary features were 
added (Table 3a). For both classification approaches, each of 
these two types of data increased the values of the Kappa co- 
efficients by approximately 0.1, as compared with the values 
obtained by using spectral data only (Table 3a). A large in- 

TABLE 3. VALUES OF THE KAPPA COEFFICIENTS AND OF THE ZETA STATISTICS 
RELATED TO THE APPLICATIONS OF THE TWO CLASSIFICATION APPROACHES USING 

DIFFERENT FEATURE SETS TO CHARACTERIZE THE SELECTED DATA SET. (A) VALUES 
OF THE GLOBAL KAPPA COEFFICIENT AS A FUNCTION OF THE CLASSIFICATION 

APPROACH AND OF THE FEATURE SET USED. (B) VALUES OF THE ZETA STATISTICS 
TO ASSESS THE SIGNIFICANCE OF THE DIFFERENCES IN KAPPA ACCURACY WHEN 
USING DIFFERENT FEATURE SETS (THE SPECTRAL FEATURE SET IS UTILIZED AS A 

REFERENCE SET). (c) VALUES OF THE ZETA STAT~ST~CS TO ASSESS THE 

~ ~ G N ~ F ~ C A N C E  OF THE DIFFERENCES IN KAPPA ACCURACY BETWEEN THE NN AND THE 

MML APPROACHES USING DIFFERENT FEATURE SETS. ALL DIFFERENCES ARE 
SIGNIFICANT AT THE 99 PERCENT CONFIDENCE LEVEL. 

Spectral and 
Kappa Spectral Spectral and Spectral and Anci l lary and 

Coefficient Data Anci l lary Data Texture Data Texture Data 

MML 
NNs 

Zeta 
Statistics 

Spectral and Spectral and 
Anci l lary Data Texture Data 

Spectral and 
Anci l lary and 
Texture Data 

MML using 6.91 7.70 11.09 
Spectral Data 

NNs using 8.33 10.07 16.70 
Suectral Data 

(b) 
Spectral and 

Zeta Spectral Spectral and Spectral and Anci l lary and 
Statistics Data Anci l lary Data Texture Data Texture Data 



TABLE 4. ERROR MATRICES FOR THE MML (a) AND THE N N  (b) CLASSIFICATION APPROACHES WHEN APPLIED TO THE DATA SET WITH ALL FEATURES. 

(a) Commission 
Class 1 2 3 4 5 6 7 8 9 10  11 Row total error (%) 
- 

1 790 6 134 37 5 3 38 16  27 1 4  8 5 1128 30.0 
2 5 62 3 4 3 1 1 0 0 0 0 79 21.5 
3 29 7 304 5 34 44 0 30 3 6 12 4 74 35.9 
4 47 2 1 18  424 46 10  1 2 1 4 23 597 29.0 
5 72 14  46 32 296 2 1 7 13 5 8 14  528 43.9 
6 4 0 42 1 2 459 6 76 4 1 0 595 22.9 
7 1 0 0 4 1 1 5 1 39 1 0 0 98 48.0 
8 3 1 7 2 7 1 9  4 1  548 4 2 0 634 13.9 
9 7 0 1 2 5 1 7  6 9 5 3 2 1 9 130 59.2 

10  16  0 0 5 2 8 1 8 18  138 38 234 41.0 
11 5 0 8 5 2 3 0 0 2 11 145 181  19.9 

Columntotal 979 111 563 521 451  621 130 752 105 199 246 4678 
Omission 19.3 44.1 46.0 18.6 34.4 26.1 60.8 27.1 49.5 31.7 41.1 
error (%) 

(b) Commission 
Class 1 2 3 4 5 6 7 8 9 10  11 Row total error (%) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

1 0  
11 

Column total 
Omission 
error (%) 

crease in the Kappa coefficient was obtained for the NN ap- 
proach when texture features were added to the spectral 
feature set (0.699 vs. 0.590). 

The independence of the information provided by the 
texture and ancillary features was indicated by the increase 
in the Kappa accuracy obtained when such features were si- 
multaneously added to the spectral feature set (Table 3a). For 
both classification approaches, the classification accuracies 
improved over the ones obtained by using either ancillary 
and texture features separately. The increase in accuracy was 
smaller for the MML approach, for which the Kappa value 
was 0.653. The NN approach benefited more from the use of 
the whole multisource data set and reached a Kappa value of 
0.765 (Table 3a). 

The statistical significance of the differences in classifi- 
cation accuracy due to the texture and ancillary features (Ta- 
ble 3a) was assessed by the Zeta statistics test (Table 3b). All 
the differences in classification accuracy given in Table 3a 
were highly significant (Table 3b). This proved both the use- 
fulness of texture and ancillary data in characterizing com- 
plex rural areas and the capabilities of both approaches to 
exploit multisource information. It should be noted that the 
increases in classification accuracy due to the simultaneous 
use of ancillary and texture features were highly significant 
for both classification approaches (11.09 and 16.70 for the 
MML and NN approaches, respectively). 

The Zeta statistics was also used to assess the statistical 
significance of the greater efficiency of the NN approach in 
terms of classification accuracy (Table 3c). For all the types 
of features considered, the greater efficiency of this approach 
was highly significant (Table 3c). The Zeta values increased 
when the texture and ancillary features were considered. In 
particular, the difference in classification accuracy between 
the MML and NN approaches when using the whole feature 
set (Kappa=0.653 vs. Kappa=0.765, as given in Table 3a) re- 

sulted in a high Zeta value (Zeta = 10.91). This confirmed 
that the NN approach better handles multisource information. 

The performances of the two classification approaches 
when using the whole feature set (i.e., spectral, texture, and 
ancillary features) are also described by the error matrices in 
Tables 4a and 4b. According to the Kappa values in Table 
3a, the NN approach yielded higher classification accuracies 
than the MML approach for most of the land-cover classes. 

Plates l a  and l b  present the classification results ob- 
tained by the two approaches by using the whole feature set 
to characterize the basin of the Cigno river. The two thematic 
maps seem to exhibit a good degree of similarity, even 
though some differences affect a few land-cover classes. For 
example, the hilly forest class has similar extents in the two 
thematic maps but is spatially distributed in different ways. 
The same is true for the bare-soil class. The riparian forest 
class was almost completely omitted by the MML approach. 
These differences can be ascribed to the non-optimal per- 
formances of the two approaches for these classes (Figure 8). 

Even though the overall classification accuracy obtained 
by using the whole feature set can be considered acceptable 
for practical applications, it should be pointed out that mis- 
classification errors were unequally distributed among the 
land-cover classes (Figure 8). In particular, classes 2, 3, 7, 9, 
and 11 were poorly classified by the MML approach; the 
worst results yielded by the NN approach concerned classes 
5 and 7. This unequal distribution may be due to the diffi- 
culties inherent in the data set used, such as the spectral 
complexities of the cover classes, the presence of mixed pix- 
els, and possible inaccuracies in the collection of the refer- 
ence samples and in the resampling of the TM images. 

Nevertheless, the contextual information provided by the 
texture features proved very useful, as well as the informa- 
tion contained in the ancillary data. All this information was 
better exploited by the NN approach. The main reason for the 
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Plate 1. Classification maps of the Cigno basin obtained by using the whole feature set. (a) Classification results 
by the MML approach. (b) Classification results by the NN approach. 

different behaviors of the two approaches is the difficulty not use ancillary data as input features but used them only 
with representing texture and ancillary information in para- to modify the a priori probabilities of the land-cover classes 
metric form. It is worth noting that the MML approach did considered. However, additional experiments not reported in 
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Figure 8. Values of the conditional Kappa coefficients ob- 
tained by the two classification approaches by using the 
whole feature set for each of the 11 land-cover classes. 
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