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Abstract—A novel system for the classification of multitemporal
synthetic aperture radar (SAR) images is presented. It has been
developed by integrating an analysis of the multitemporal SAR
signal physics with a pattern recognition approach. The system
is made up of a feature-extraction module and a neural-network
classifier, as well as a set of standard preprocessing procedures.
The feature-extraction module derives a set of features from a se-
ries of multitemporal SAR images. These features are based on
the concepts of long-term coherence and backscattering temporal
variability and have been defined according to an analysis of the
multitemporal SAR signal behavior in the presence of different
land-cover classes. The neural-network classifier (which is based
on a radial basis function neural architecture) properly exploits the
multitemporal features for producing accurate land-cover maps.
Thanks to the effectiveness of the extracted features, the number
of measures that can be provided as input to the classifier is signifi-
cantly smaller than the number of available multitemporal images.
This reduces the complexity of the neural architecture (and conse-
quently increases the generalization capabilities of the classifier)
and relaxes the requirements relating to the number of training
patterns to be used for classifier learning. Experimental results
(obtained on a multitemporal series of European Remote Sensing
1 satellite SAR images) confirm the effectiveness of the proposed
system, which exhibits both high classification accuracy and good
stability versus parameter settings. These results also point out
that properly integrating a pattern recognition procedure (based
on machine learning) with an accurate feature extraction phase
(based on the SAR sensor physics understanding) represents an ef-
fective approach to SAR data analysis.

Index Terms—Backscattering temporal variability, classifica-
tion, feature extraction, image analysis, long-term coherence,
multiclass problems, multitemporal synthetic aperture radar
(SAR) images, neural networks.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) sensors are becoming
more and more important in remote sensing applications.

Their importance is based on the properties of SAR signals,
the most significant of which being: 1) the sensitivity of the
backscattering coefficient to target geometry and permittivity;
2) the coherent nature of the electromagnetic pulse that permits
interferometry; and 3) the fact that the measures are almost com-
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pletely independent of atmospheric conditions and solar illumi-
nation. While the first two factors above are related to the spe-
cific information contained in SAR signals, the third emphasizes
the great robustness and wide applicability of SAR techniques
in real problems. For these reasons, SAR sensors can play an
important role in several application domains dealing with the
production of land-cover maps, especially in cases in which re-
mote sensing with optical sensors fails due to the unavailability
of cloud-free data.

Nevertheless, there are understandable reasons for the lim-
ited use of SAR data for land-cover classification, such as the
special SAR imaging geometry (which results in the undesired
presence of shadow, layover, and foreshortening phenomena in
the images), the complicated scatter process, and the presence
of speckle noise [1]. For the above reasons, it is generally
difficult to obtain high classification accuracies if only one
single-channel single-polarization SAR image is considered,
even if advanced classification procedures are used [2], [3]. In
order to mitigate these problems, classification of SAR data
is usually applied to more complex datasets. In particular, the
most typical operational frameworks are the following: 1) use
of multichannel, fully polarimetric images [4]–[7]; 2) fusion
between data acquired by different SAR sensors [8], [9] or
between SAR data and multispectral images [10]–[12]; and 3)
use of series of multitemporal images acquired on the same ge-
ographic area at different dates [13], [14]. Despite the fact that
the multichannel fully polarimetric data may increase the sep-
arability of land-cover classes in the feature space, at present
their use is limited to airborne remote sensing systems, given
the technical problems that prevent the development of multi-
channel fully polarimetric SAR sensors on satellites. If proper
classification techniques are used [11], [12], the integration
between SAR data and multispectral images can result in ac-
curate land-cover maps. This depends on the complementary
information provided by active microwave and passive optical
sensors. However, in operational applications, multispectral
data are often not available (e.g., depending on cloud-covers).
In this context, in recent years, the remote sensing community
has become increasingly interested in the use of multitemporal
SAR data for the production of land-cover maps [13], [14]. On
the one hand, with multitemporal images, the SNR of the SAR
data can be improved (without significantly degrading the spa-
tial resolution of the images) thanks to multitemporal filtering
approaches; on the other hand, multitemporal data allow to
identify different land-cover classes by analyzing the temporal
behavior of the backscattering coefficient (i.e., the “temporal
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signature” of a given pixel). For these reasons, multitem-
poral SAR images have become a relatively operational tool
for classification problems involving few land-cover classes
[15]–[17]. Nevertheless, at present, multitemporal SAR data
are not yet operative in the solution of more complex multi-
class problems.

For a proper exploitation of multitemporal SAR data in in
multiclass classification problems, we need to develop a system
based both on: 1) effective preprocessing and feature-extraction
procedures and 2) an appropriate classification methodology
that should take into account the peculiarities of currently avail-
able multitemporal SAR signals.

In the literature, the most important features used for the
classification of multitemporal SAR data are the European Re-
mote Sensing (ERS) 1/2 Tandem coherence and the Japanese
Earth Resources (JERS) L-band SAR backscattering coefficient
[16]–[22]. Unfortunately, these parameters are no longer avail-
able at present or in the near future. Currently used satellite-
borne SAR sensors include ERS-2, Radarsat, and ENVISAT, all
of which are repeat-track C-band SAR sensors and have inter-
ferometric capability. The repeat intervals are 35 days for ERS-2
and ENVISAT and 24 days for Radarsat. However, since very
short repeat-pass intervals are unavailable with these sensors,
nothing like ERS-1/2 Tandem coherence can be retrieved with
them.

The selection of the classification algorithm is another crit-
ical issue in the classification of multitemporal SAR data. When
standard features associated with the intensity or amplitude of
single-date SAR signals are exploited , maximum-likelihood
classifiers are commonly used [23]. However, when nonlinear
features extracted from multitemporal images are considered,
parametric classifiers become more difficult to use, as it is not
possible to make reasonable assumptions on the distribution of
derived multitemporal measures. In these cases, rule-based hi-
erarchical thresholding classifiers have been proposed in the lit-
erature [14]. However, these classifiers do not allow to exploit
the information of multitemporal features fully.

In this paper, we propose an advanced classification system
for the analysis of multitemporal SAR data that addresses the
aforementioned issues. The proposed system is made up of three
main modules: 1) a preprocessing module; 2) a feature-extrac-
tion module to derive effective features from the original mul-
titemporal SAR data; and 3) a classification module based on
the use of a distribution-free neural classifier. The preprocessing
module is based on a set of procedures commonly used in mul-
titemporal SAR data processing. The feature-extraction module
computes a reduced set of effective features from the multitem-
poral images. These features, which are based on the backscat-
tering temporal variability of images and on long-term coher-
ence (computed on images acquired 24–35 days apart, or mul-
tiples thereof), were derived by taking into account both the
physics of the multitemporal signals and their behaviors in pres-
ence of different land-cover classes. This allows to avoid blind
feature-extraction processes that do not take into account SAR
data properties. The classification module is based on radial
basis functions neural networks, which properly exploit the pe-
culiarity of multitemporal features to produce accurate land-
cover maps.

The main novelties of the proposed system consist of the
following: 1) the integration of a reliable feature-extraction
approach based on the physics of multitemporal SAR signals
with an effective advanced pattern recognition approach that
exploits a specific neural network architecture; 2) the joint use
of backscattering temporal variability and long-term coherence
features for solving a multiclass problem with multitemporal
SAR data; 3) the application of a radial basis function neural
classifier to multitemporal SAR data, which is characterized
by good generalization capabilities and properly exploits the
peculiarities of the two features above for producing accurate
land-cover maps. It is worth noting that a relevant aspect of the
proposed system is that the used features can be derived from
the currently operating spaceborne SAR sensors.

The system has been tested on a multitemporal series of
ERS-1 SAR images acquired on the area of Bern, Switzer-
land. Experimental results confirmed the effectiveness of the
proposed approach.

The paper is organized in six sections. Section II deals with
the problem formulation and briefly introduces the prepro-
cessing procedures adopted in the proposed system. Section III
presents the feature-extraction module, addressing the motiva-
tion and definition of the features developed in the proposed
system, with an analytical description. Section IV describes the
classification module, which is based on radial basis function
neural networks. The experimental results are reported in
Section V, and finally, Section VI contains a discussion and
conclusions.

II. PROBLEM FORMULATION AND PREPROCESSING TECHNIQUES

A. Problem Formulation

Let us consider a series of multitemporal complex SAR
images acquired on the same geographic area at different times

. Let be the th complex
image of the considered temporal series.
is the corresponding preprocessed (i.e., coregistered and cali-
brated) complex image and is the related
intensity image. Let be the th image ob-
tained by applying a multitemporal filtering to the entire set
of intensity images . The preprocessed com-
plex images and the temporally filtered images

are given as input to the feature-extraction block.
Let be the feature vector that represents the th pattern in
input to the classifier, and the th component
of the feature vector, which is derived from the feature-extrac-
tion block. Finally, let be the number of land-cover classes
in the considered classification problem. The block scheme of
the proposed system with the above-defined notation is shown
in Fig. 1.

Given the complexity of the automatic classification of SAR
images, we focused the development of the proposed system on
a specific challenging classification problem, which is very im-
portant from the application viewpoint. In particular, we consid-
ered a four-class problem aimed at discriminating forest, fields,
urban, and water classes (it is worth noting that features capable
of separating these classes are implicitly suitable to address sim-
pler problems involving combinations of them, such as the im-
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Fig. 1. Block scheme of the proposed system.

portant two-class forest against nonforest problem or the urban
against nonurban problem). Nevertheless, the proposed system
is general and can be easily extended to the discrimination of
other classes, provided that multitemporal SAR images contain
sufficient information for their separation. This condition de-
pends on both the intrinsic availability of information about the
classes investigated in the multitemporal SAR signal, and the
number of temporal images considered [1].

B. Preprocessing Techniques

As stated in the introduction, the preprocessing techniques
adopted in our system are the typical methods used in the litera-
ture for SAR data processing of multitemporal scenes (e.g., see
[24]). In particular, the preprocessing module includes radio-
metric calibration and coregistration to a common geometry in
range-Doppler. The radiometric calibration was conducted but
without correcting for the effect of the local terrain slope on the
pixel area. This is adequate, as the related correction factors re-
main the same across all images and therefore do not affect the
backscatter temporal variability used in the classification. The
image coregistration was done for the complex valued SLC data
using automated algorithms designed for SAR interferometry,
which assured accuracies better than 0.2 SLC pixels. Since these
steps are carried out according to well-known methods, we refer
the reader to the literature for further details on these aspects [1],
[24]. In the following, we focus our attention on the adopted de-
speckling filtering technique, given its importance for SAR data
classification.

In order to increase the SNR ratio of multilook SAR images,
appropriate noise reduction processing schemes should be con-
sidered [25]. In the proposed system, this is done by applying
temporal and spatial filtering to multitemporal images [26]. As

Fig. 2. Qualitative analysis of the distribution of the considered classes (i.e.,
forest, fields, water, and urban areas) in the backscattering temporal variability
and long-term coherence feature space.

a starting point, we take the methodology for multitemporal
C-band backscatter data proposed in [13]. Multitemporal fil-
tering is applied to coregistered and calibrated images; the main
aim of this process is to create a set of speckle-reduced im-
ages by linearly combining the registered intensity images
acquired on the same geographic area. The adopted filter func-
tion is the one described in [26], i.e.,

(1)

where is the filtered output for the th input image, and
is the estimate of the local mean backscattering coefficient.
is estimated from the data by averaging intensity values in a



1324 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 42, NO. 6, JUNE 2004

TABLE I
ESTIMATORS FOR THE BACKSCATTER TEMPORAL VARIABILITY OF A REGISTERED MULTITEMPORAL DATASET OF M INTENSITY SAR IMAGES.

� AND � ARE THE MAXIMUM AND MINIMUM BACKSCATTER VALUES OF THE M IMAGES AT THE GENERIC COORDINATES (x; y)

local window around each pixel in each image. In our case, a
Frost adaptive filter was chosen on account of its good trade-off
between reliability of the local estimate and limited spatial
degradation [27].

III. PROPOSED FEATURE EXTRACTION MODULE BASED

ON BACKSCATTERING TEMPORAL VARIABILITY

AND LONG-TERM COHERENCE

A. Background and Rationale of the Proposed Feature Set

A study on the features to be considered in the proposed
system was carried out considering the peculiarities of the four-
class problem addressed. In particular, the physics of both the
multitemporal SAR signal and its interactions with the analyzed
classes were studied also by considering previous results pub-
lished in the literature. In this context, we can observe that the
forest class can be discriminated based on the low temporal vari-
ability of the backscattering coefficient as compared to most
other cover types [13]. Also the separation between forest and
fields is good based on temporal variability (the temporal vari-
ability of fields is higher because of a stronger influence of
soil moisture changes, vegetation growth, and cultivation phe-
nology). Another class with low temporal variability is the urban
class. Consequently, it seems appropriate to choose a feature
based on the estimation of temporal variability from the consid-
ered time series of images.

In order to increase the effectiveness of the considered fea-
ture set, a second information source with complementary in-
formation should be extracted from the multitemporal data. A
possibility could be to use the average backscattering coeffi-
cient as a second parameter. In fact, urban areas show very high
backscatter values for several pixels. However, an analysis of the
histogram of the temporal average of the backscattering coeffi-
cient on urban sites shows that its range of values is very wide

and overlaps significantly both with the forest and the field class.
Strong spatial filtering could be used to obtain narrower and less
overlapping distributions. This may prove to be effective, but at
the price of reducing the spatial resolution. Another possibility
could be to use a texture parameter to discriminate the urban
areas. This also seems to have some potential, but again at the
price of a reduction in the spatial resolution. We followed a most
promising approach that exploits the interferometric capability
of the sensors. In particular, long-term C-band coherence was
considered to discriminate urban areas from other classes [28].
The expected effectiveness of this feature (which is significantly
different from the Tandem coherence derived from ERS-1/2 im-
ages and used in standard approaches) depends on a higher tem-
poral stability of the built up structures compared to most natural
targets.

It is worth noting that long-term coherence and temporal vari-
ability are complementary, and are good candidates to separate
the four land-cover classes, as shown in the qualitative signature
diagram indicated in Fig. 2. In addition, they can be estimated
from the same multitemporal datasets by using images acquired
from the currently operating spaceborne SAR sensors. This is
an important issue considering the operational applicability of
the method and related data and processing costs.

Based on the analysis above, in the development of the fea-
ture-extraction module, we considered the backscattering tem-
poral variability and long-term coherence information sources.
The analytical description of the features computed to estimate
this information is described in the following subsections.

B. Backscattering Temporal Variability Features

The estimation of the temporal variability of the backscat-
tering coefficient is carried out starting from preprocessed im-
ages (see Section II). Different temporal variability estimators
can be applied to the filtered backscatter images. Out of the six
evaluated estimators (see Table I), we preferred the “standard
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deviation of decibels values” for this study, because it is effec-
tive and because its values are more meaningful and easier to
understand. It is defined as

(2)

As an alternative to the temporal variability defined in (2), a tem-
poral variability relative to a reference target can be calculated
according to the following equation:

(3)

where is the estimate of the backscattering coefficient of
the reference target in the image . Both, the temporal variability
defined in (2) and the temporal variability relative to a refer-
ence target defined in (3) are robust with respect to scene to-
pography as the related radiometric factors are multiplicative.
Thanks to this relative variability it is possible to reduce rela-
tive calibration errors (for instance, an offset of almost 0.5 dB
between ERS-1 and ERS-2 based backscatter values was ob-
served). The other advantage of relative variability compared
to absolute variability is that large scale meteorological phe-
nomena that have a significant effect on backscattering, such
as freezing, are at least partially compensated. Of course, in
this way more heterogeneous effects (as in the case of strong
relief, depending on different temperatures at different eleva-
tions) cannot be taken into account. For the above reasons, in
our case we used the standard deviation relative to selected ref-
erence forest areas within the image.

C. Long-Term Coherence Features

The development of SAR interferometry has recently proved
that not only the amplitude of the radar signal, but also its phase
contains valuable information for remote sensing applications.
The interferometric phase (i.e., the phase difference between
two images acquired from slightly different sensor positions)
contains “geometric information,” from which the three dimen-
sional position of the scatter element can be derived. Estimation
accuracy of the interferometric phase is characterized by the de-
gree of coherence (generally referred to as coherence). Coher-
ence is defined as the absolute value of the normalized complex
correlation coefficient

(4)

in which and denote the first and second complex SAR
images respectively, and the brackets represent the ensemble
average, which is estimated by spatial averaging. In our system,
unlike in standard problems that utilize Tandem coherence, we
focused our attention on the long term C-band coherence com-
puted from images acquired 24 or 35 days apart (or multiples
thereof). To compute long-term coherence, we recommend pairs

(a)

(b)

Fig. 3. Long-term coherence computed on a pair of ERS-2 images acquired
35 days apart with a baseline of 146 m. (a) Image showing the behavior of the
long-term coherence parameter. (b) Histogram of the values of this parameter for
the four investigated land-cover classes (area of the city of Bern, Switzerland).

of images with relatively short, perpendicular baseline compo-
nents ( m). This is due to the fact that pairs of images with
longer baselines tend to have low coherence also over urban
areas. As confirmed by the preliminary experimental analysis
shown in Fig. 3, separation of the urban class from other classes
is rather good when the long-term coherence feature is used.

IV. PROPOSED CLASSIFICATION MODULE BASED

ON RBF NEURAL NETWORKS

From a simple theoretical analysis, it is clear that the in-
vestigated multitemporal features have an irregular and com-
plex joint probabilistic distribution, mainly because they are ob-
tained by applying nonlinear operators to multitemporal SAR
images. For this reason, parametric classification approaches
(like Gaussian or Gamma distributed maximum likelihood al-
gorithms) are not suited to our system, as it is impossible to
formulate a reasonable model on class distributions in the con-
sidered feature space.

To overcome this difficulty and make the system more
effective, we adopt distribution-free techniques that assume no
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Fig. 4. Architecture of an RBF neural network classifier.

specific probabilistic models for class distributions. Among
the possible nonparametric approaches, we did not consider
rule-based hierarchical thresholding classifiers (as it often
happens when multitemporal SAR images are available) [14],
[21]. This is due to the fact that, although these approaches are
simple and can also be applied to unsupervised classification
problems, they rarely guarantee sufficiently high accuracies.
As an alternative, we evaluated to use the k-nn technique.
However, as extensively proved in the literature, this technique
generally provides accuracies lower than or comparable with
those exhibited by artificial neural networks, and it requires
a higher computational time during the classification phase.
For these reasons, we propose to use a classifier based on
artificial neural networks that automatically fit the complexity
of the different classes thanks to their nonlinear approximation
properties and capability of learning from examples [29]. In
the literature different models of neural networks have been
proposed [11], [12], [29]. Among these, the multilayer per-
ceptron (MLP) trained with the error backpropagation (EBP)
learning algorithm is the most commonly used. However,
MLPs exhibit drawbacks and limitations [12], [30], such as: the
slow convergence of the EBP learning algorithm, the potential
convergence to a local minimum, and the inability to detect that
an input pattern has fallen in a region of the input space without
training data. For these reasons, in our system we decided to use
radial basis functions (RBF) neural network classifiers, which
overcome some of the above problems by relying on a rapid
training phase and by presenting systematic low responses to
patterns that have fallen in regions of the input space with no
training samples (this property is very important because it
is strongly related to the capability of rejecting critical input
samples) [31].

RBF neural networks are embedded in an architecture with
an input layer, a single hidden layer characterized by units
having activation functions with a radial symmetry (in
this paper we consider Gaussian functions), and an output layer
characterized by neurons with linear activation functions (see
Fig. 4). In the most widely used classification architectures, the
input layer is made up of as many units as the number of input
features (i.e., ), whereas the output layer contains as many

neurons as the number of classes to be recognized (i.e., ).
Each activation function associated with each unit of the
hidden layer is characterized by a center vector and a width

. Each output neuron computes a weighted summation
over the responses of the hidden neurons of the network for a
given pattern , i.e.,

(5)

where is the number of hidden neurons, represents the
weight associated with the connection between the kernel func-
tion and the output neuron , and is the bias of
the output neuron . Training of the RBF classifiers is usually
carried out in two steps: 1) training of the hidden layer (i.e., se-
lection of both the centers and the width of the kernel
functions associated with the hidden units); 2) training of the
output layer (i.e., the weights associated with the connec-
tions between the hidden and the output units are computed).

In training the hidden layer, in order to avoid the typical prob-
lems of standard learning procedures, the algorithm proposed
in [31] was chosen. Such an algorithm, unlike traditional ones,
considers the class membership of training samples to select
the centers and widths of the kernel functions. In particular, it
avoids the generation of mixed kernel functions and tunes the
kernel widths to limit the overlapping in boundary regions be-
tween different classes. This results in: 1) an high stability of the
classification accuracy versus the number of hidden neurons; 2)
an high stability of the classification error versus the random
initialization of the kernel centers during the training process;
3) a reduced computational time. These properties simplify the
learning process of the classifier by significantly reducing the
time devoted to the design of the network architecture.

The training of the output layer was carried out according to
a standard procedure based on the minimization of a sum-of-
squares error function carried out according to an algorithm
based on the pseudoinverse matrix. It is worth noting that
though RBF neural networks are made up of only one hidden
layer, they can model the same complex mappings that multi-
layer perceptron neural networks model by means of multiple
hidden layers.

V. EXPERIMENTAL RESULTS

A. Description of the Test Area and Experiment Design

The test site considered in our experiments is related to an
area around Bern, Switzerland. The area is rather complex, as
it presents continuous alternation of all the different classes to
be identified (i.e., fields, water, urban area, and forest). More-
over, since the selected area includes an irregular topography,
it represents a challenging test case for SAR image analysis. A
set of eight ERS complex SAR images, acquired between June
1995 and May 1996, was used for the investigation. An area of
20 km 20 km was selected for the study. For validation pur-
poses, a digital land use inventory and a Thematic Mapper image
(acquired by the Landsat 5 satellite) were used. By analyzing
these data, a set of regions of interest (ROIs) was defined [see
Fig. 5(a) and (b)] from which the training and test sets (described
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(a)

(b)

Fig. 5. Training and test sets overlapped to one of the eight ERS SAR images
(four-class problem). (a) Training set. (b) Test set.

in Table II) were generated (the samples of the training and test
sets were extracted from different ROIs). It is worth noting that
most patterns were included in the test set to obtain a small-size
training set with a number of samples comparable to the one that

TABLE II
NUMBER OF TRAINING AND TEST SAMPLES USED IN THE EXPERIMENTS

Fig. 6. RGB false-color composition of backscatter temporal variability,
long-term coherence, and average backscattering coefficient (derived from the
considered temporal series of eight ERS-1 SAR images acquired on the Bern
area—Switzerland). This composition can be used for evaluating qualitatively
the accuracies of the obtained classification maps.

is typically available in operational applications of remote
sensing image classification.

As preprocessing, we applied radiometric calibration, coreg-
istration to a common geometry in range-Doppler coordinates,
and the temporal filtering described in Section II to all available
images. We then selected four pairs of images, from which we
generated four coherence images first (34/35 days time interval)
and then an average image of them. Finally, the temporal vari-
ability feature was computed from the intensity images. Fig. 6
shows an RGB false-color composition of backscatter temporal
variability, long-term coherence, and average backscattering co-
efficient, derived from the considered temporal series of eight
ERS-1 SAR images.

In order to evaluate the effectiveness of the proposed system,
several experiments were carried out. First, we focused our
attention on the four-class classification problem (i.e., fields,
water, urban area, and forest). We then applied the same
process to discriminate only forest and nonforest areas. To
better understand the behavior of the different modules of the
proposed system, we carried out several trials generating three
datasets on the basis of the aforementioned images and features:
1) a dataset with the eight temporally filtered images; 2) a
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Fig. 7. Behavior of the Kappa coefficient of accuracy versus number of hidden neurons obtained with the three different sets of features considered (four-class
problem).

dataset made up of the eight temporally filtered images plus the
average long-term coherence image; and 3) a dataset with only
the backscattering temporal variability feature (computed using
the standard deviation of decibel values estimate with intensity
scaling) and the average long-term coherence estimate.

After the training phase, we gave the patterns of the test set as
input to the classifier, and for each trial we computed a confu-
sion matrix and several accuracy statistics. Finally, the system
was applied to the entire image to generate the global classifi-
cation map. For all the statistics extracted from the confusion
matrix (i.e., overall accuracy, user’s and producer’s accuracies,
and Kappa coefficient of accuracy), we computed both the mean
values and the standard deviations versus the number of hidden
neurons, in order to assess the stability of the proposed classifi-
cation system (in the paper we only report the most interesting
results of this analysis). It is worth noting that producer’s accu-
racy relates to omission errors, while user’s accuracy indicates
commission errors. The Kappa coefficient estimates the global
accuracy of a classification process. It is widely used, because
all the elements in the classification error matrix (not just the
main diagonal) contribute to its computation.

As stated in Section IV, the RBF neural network classifier is
made up of only three layers. The input layer has a number of
neurons equal to the number of features of the used dataset. In
our case, we considered datasets with eight, nine, and two fea-
tures. Concerning the output layer, we defined as many units
as the number of information classes (i.e., four neurons in the
case of recognition of forest, water, fields, and urban classes,
and two neurons in the classification of forest against nonforest).
For each experiment, we carried out twelve trials, increasing the
number of hidden neurons (and hence of activation functions)
from 20 to 160. For the sake of simplicity, we chose an equal
number of units for each information class. In this way, initially,

we varied the neurons corresponding to each land-cover class
from 5 to 40, in steps equal to 5. Successively, we made four
additional trials with 2, 3, 8, and 13 neurons for each class, re-
spectively, in order to better analyze the performances of the
system when a low-complexity architecture is used.

B. Results for the Four-Class Problem

Let us first consider the results obtained in the four-class
problem. Fig. 7 reports the behavior of the Kappa coefficient
of accuracy versus the number of hidden neurons for the
three considered datasets (made up of different features). As
expected, the experiments carried out on the dataset containing
the eight temporally filtered images had the worst accuracy,
while the best accuracies were obtained with the dataset made
up of only two features, i.e., the average long-term coherence
and the backscattering temporal variability parameters. On
analyzing the results in greater detail, we observe that for
datasets with eight and nine features, the trend of the Kappa
coefficient becomes stable only with a high number of neurons
in the hidden layer (80–100 units). When few neurons are
considered (two to five units per class), the outcomes are not
satisfactory, especially for the first dataset (i.e., the percentage
value of Kappa was lower than 60%). The average coherence
feature proved to be very effective when added to the set of
temporally filtered images, increasing the Kappa coefficient
of accuracy by more than 15% with respect to the case with
only temporally filtered images. This mainly depends on
the effectiveness of the coherence to significantly reduce the
confusion between both forest and urban areas and fields and
urban areas. The dataset with the average coherence and the
temporal variability features (which gave the highest accuracy)
also exhibited a very interesting property: all accuracies grew
steady and remained nearly constant on increasing the number
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TABLE III
MEAN VALUES AND STANDARD DEVIATIONS OF KAPPA COEFFICIENTS OF

ACCURACY (WITH RESPECT TO THE NUMBER OF HIDDEN NEURONS) YIELDED

ON THE THREE INVESTIGATED FEATURE SETS (COMPUTED ON 12 TRIALS FOR

EACH SET) BY THE PROPOSED RBF CLASSIFIER (FOUR-CLASS PROBLEM)

TABLE IV
THRESHOLD VALUES APPLIED TO THE LONG-TERM COHERENCE AND

TEMPORAL VARIABILITY FEATURES IN THE CLASSICAL HIERARCHICAL

THRESHOLDING CLASSIFIER (FOUR-CLASS PROBLEM). THE THRESHOLDS

ARE APPLIED TO THE PIXELS HIERARCHICALLY STARTING

FROM THE FIRST ROW OF THE TABLE

TABLE V
BEST OVERALL CLASSIFICATION ACCURACIES AND KAPPA COEFFICIENT

OF ACCURACY EXHIBITED ON THE TEST SET BY THE PROPOSED RBF
CLASSIFIER AND A STANDARD HIERARCHICAL THRESHOLDING

CLASSIFIER (FOUR-CLASS PROBLEM)

of neurons in the hidden layer of the network. This stability
was confirmed by the very low standard deviation value of the
overall classification accuracy (versus the number of hidden
units of the network) compared to the other two datasets (see
Table III). Consequently, good results (similar to those yielded
with a large number of hidden neurons with the previous set
of features) were obtained using simple network architectures
(i.e., less than eight neurons per class). This resulted in both
very good classifier generalization capabilities (few parameters
to estimate compared to more complex architectures) and a
reduced computational time. It is worth noting that on this
dataset the neural architecture with only 32 hidden neurons
showed the best accuracy of all our trials.

In order to point out the improvements that can be obtained
with the classification module defined in our system, we com-
pared the results of the RBF architecture with those obtained
when classifying the considered dataset with a hierarchical
thresholding classifier (see [14] for a detailed description of this

(a)

(b)

Fig. 8. Four-class classification problem using long-term coherence and
temporal variability features. (a) Classification map obtained with a hierarchical
thresholding classifier. (b) Classification map obtained with the most accurate
RBF neural network classifier (architecture made up of 32 hidden neurons).

classifier). The different threshold values (see Table IV) used in
this classifier were set on the basis of an experimental analysis
carried out on the training data distribution. It is worth noting
that the term “hierarchical” implies that the thresholds are
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TABLE VI
CONFUSION MATRIX RESULTING FROM THE CLASSIFICATION OF THE TEST SET USING LONG-TERM COHERENCE AND BACKSCATTERING TEMPORAL VARIABILITY

FEATURES WITH THE RBF NEURAL ARCHITECTURE THAT GAVE THE HIGHEST ACCURACY (I.E., 32 HIDDEN NEURONS)

TABLE VII
CONFUSION MATRIX RESULTING FROM THE CLASSIFICATION OF THE TEST SET USING LONG-TERM COHERENCE AND BACKSCATTERING TEMPORAL

VARIABILITY FEATURES WITH THE HIERARCHICAL THRESHOLDING CLASSIFIER

Fig. 9. Behavior of the Kappa coefficient of accuracy versus number of hidden neurons obtained with the three different sets of features considered (two-class
forest against nonforest problem).

applied to the pixel hierarchically, starting form the first row of
the Table IV (i.e., the condition of the first row is applied first,
then the condition of the second row is applied for the remaining
pixels, and so on). In all trials, we observed that the accuracies
exhibited by the RBF neural network were always significantly
higher than those obtained with the hierarchical thresholding
classifier. From Table V, it can be seen that considering the
best performances of the two classification methodologies, the
proposed RBF neural network sharply increased (i.e., 6%) the
overall accuracy compared to the thresholding approach. The
significant improvement was stressed by the behavior of the
Kappa coefficient of accuracy, which increased by about 10%.
This behavior is also evident on comparing the classification

maps provided by the two classifiers (see Fig. 8). In greater
detail, the rule-based hierarchical thresholding classifier led to
a number of problems that did not appear with the RBF neural
network classifier: many fields were erroneously classified as
water [see upper left corners of Fig. 8(a) and (b)], the edges of
the forest areas were not always well shaped [see upper right
corners of Fig. 8(a) and (b)], and the urban areas did not appear
homogeneous and were confused with fields [see centers of
Fig. 8(a) and (b)]. It is worth noting that from the analysis of
the two classification maps, it seems that the gap of accuracy
between the neural classifier and the hierarchical classifier is
larger than that estimated on the test set. This is probably due
to the fact that only few test samples were located in the most
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TABLE VIII
MEAN VALUES AND STANDARD DEVIATIONS OF KAPPA COEFFICIENTS OF

ACCURACY (WITH RESPECT TO THE NUMBER OF HIDDEN NEURONS) YIELDED

ON THE THREE INVESTIGATED FEATURE SETS (COMPUTED ON 12 TRIALS FOR

EACH SET) BY THE PROPOSED RBF CLASSIFIER (TWO-CLASS PROBLEM)

critical regions of the image (e.g., in border areas between
classes), where the proposed neural classifier was far more
accurate than the hierarchical approach.

For a better understanding of the results obtained, Tables VI
and VII show the error matrices yielded by the two classifiers
when using the temporal variability and the long term coher-
ence features. When considering the RBF classifier, all accura-
cies are very high, except for the user accuracy of water (which
is slightly lower than 70%). This undesired behavior of the water
class depends on two main facts: it is a strongly minority class
among the four considered, and it is confused with fields (which,
like water, have low values of long-term coherence and high
values of backscattering temporal variability). However, it is
worth noting that the classification accuracy of the water class is
27% higher than the one obtained with a hierarchical classifier.
In greater detail, on comparing Tables VI and VII, we observe
that the results provided by the two classifiers are similar only
in the producer’s accuracy of urban areas and in the user’s accu-
racy of forest areas, while the accuracies exhibited by the RBF
neural classifier are significantly higher in all other cases.

C. Results for the Two-Class Problem

In the forest against nonforest classification, we used the
same training and test sets of the four-class case, but the labels
corresponding to water, fields, and urban areas were merged
into the nonforest region of interest. It is worth noting that from
the perspective of the classifier, this leads to a different problem
(i.e., the decision regions are different as well as the model of
the classification problem to be learnt from the classifiers). The
architectures of the RBF classifier and the datasets were the
same as for the previous trials.

Fig. 9 shows the behavior of the overall accuracy exhibited
by the RBF neural classifier versus the number of hidden neu-
rons for the different feature sets. From an analysis of the figure,
it is easy to see that the results obtained here are very sim-
ilar to those obtained in the four-class problem. In greater de-
tail, also in this case the highest accuracy was obtained with
the backscattering temporal variability and long-term coherence
features (overall accuracy was always higher than 94% and the
Kappa coefficient was higher than 86%), which was also con-
firmed to be very stable compared to the number of hidden neu-
rons (starting from eight hidden units). Also for the two-class
problem, the third feature set showed a very low standard devi-
ation (see Table VIII). It is worth noting that, as expected, in all

(a)

(b)

Fig. 10. Two-class classification problem using long-term coherence and
temporal variability features. (a) Classification map obtained with a hierarchical
thresholding classifier. (b) Classification map obtained with the most accurate
RBF neural network classifier (architecture made up of 20 hidden neurons).

the trials carried out we obtained higher accuracies than in the
four-class problem.

On analyzing the best accuracies provided by the considered
classifiers (see Table IX), the improvements obtained using the
RBF classifier compared to the rule-based hierarchic thresh-
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TABLE IX
BEST OVERALL CLASSIFICATION ACCURACIES AND KAPPA COEFFICIENT

OF ACCURACY EXHIBITED ON THE TEST SET BY THE PROPOSED RBF
CLASSIFIER AND A STANDARD HIERARCHICAL THRESHOLDING

CLASSIFIER (TWO-CLASS CASE)

olding classifier were confirmed significant: 3.3% for overall
accuracy and 8.3% for the Kappa coefficient, respectively.
On comparing the classification maps provided by the two
classifiers (see Fig. 10), some very important differences can be
observed. As in the four-class case, the hierarchical classifier
led to several problems compared to the RBF neural network
classifier: the edges of the woods in the hilly areas were not
well shaped, especially in sites where the layover phenomenon
is considerable [see upper left and lower right corners of
Figs. 10(a) and (b)], some wide forest areas did not appear
homogeneous [see left of Figs. 10(a) and (b)], and some urban
areas were often wrongly classified as groves [see middle and
right of Figs. 10(a) and (b)].

These results point out that the presented system (and in par-
ticular the proposed feature-extraction and classification mod-
ules) is a promising tool also for discriminating forest and non-
forest areas in multitemporal SAR images.

VI. CONCLUSION

A system for the automatic classification of multitemporal
SAR images has been proposed. The system was designed by in-
tegrating the features extracted on analyzing the physical prop-
erties of the multitemporal SAR signals with a pattern recogni-
tion approach. The resulting system is based on a standard set of
preprocessing procedures, on a feature-extraction module, and
on an RBF neural network classifier.

From an analysis of the results of all the experiments car-
ried out using this system, we can conclude that it yielded both
very high accuracies and very good stability compared to the
parameter settings (e.g., number of units in the hidden layer
of the neural architecture). In greater detail, we verified that:
1) the features of temporal variability of backscattering and
long-term coherence are very effective in modeling the infor-
mation present in a temporal series of SAR images (with re-
spect to the land-cover classes considered in our experiments);
and 2) RBF neural networks are a very effective classification
methodology that allows to fully exploit the information in the
two above features.

An important novelty of the proposed system consists of
the combined use of temporal variability of backscattering and
long-term coherence to discriminate several land-cover classes
[in the literature, similar features have been used separately, for
example, to discriminate between forest and agricultural fields
(i.e., temporal variability of backscattering) or to separate urban

areas from other areas (i.e., Tandem coherence)]. This is made
possible by the use of a distribution-free RBF neural classifier.
In this respect, a significant remark should be made as regards
the relationship between the extracted features and the neural
classifier. Thanks to the effectiveness of the extracted measures
and to the properties of the classifier, it becomes possible to
provide as input to the classification algorithm a significantly
smaller number of parameters than the number of available
multitemporal images, thus decreasing the complexity of the
neural architecture and consequently increasing the general-
ization capabilities of the system. In addition, this leads to
reduced computational costs, stable behavior of classification
accuracy versus the number of hidden neurons of the classifier,
and less critical constraints on the number of training samples
necessary for an accurate and proper training of the classifier
(it is well known that there is a direct proportionality link
between the model complexity of the classifier, i.e., the number
of parameters of the classifier, and the minimum number of
per-class training samples that should be used to avoid poor
generalization capability [32]).

The proposed system has been developed considering the
forest, fields, urban, and water classes, and has been tested
on two specific four-class and two-class problems. However,
the methodology is general and can easily be extended to the
discrimination of other classes, provided that multitemporal
SAR images contain sufficient information for their separation
and the feature extraction module is properly designed on the
considered problem (as a future development of this work,
we intend to extend the system to the discrimination between
winter and summer field classes).

It is worth noting that the long-term coherence feature can
be estimated from the same multitemporal data as the temporal
variability of backscattering measure. In addition, the feature
extraction methodology can be applied to currently operating
spaceborne SAR sensors. This confirms the interest in the pro-
posed system, which can be used to address classification appli-
cations with current available SAR data.

As a final remark, it is worth emphasizing that a joint ap-
proach to SAR data analysis that integrates an advanced pat-
tern recognition methodology (based on machine learning tech-
niques) with an accurate feature-extraction phase (based on the
SAR-signal physics analysis) results in a system that outper-
forms the results obtained by applying these methodologies sep-
arately. This joint approach seems very promising to develop
advanced operational tools for classifying multitemporal SAR
data.
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