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Abstract. In this paper we propose a system for monitoring abnormal NO2
emissions in the troposphere by using remote-sensing sensors. In particular, the
system aims at estimating the amount of NO2 resulting from biomass burning by
exploiting the synergies between the GOME and the ATSR-2 sensors mounted on
board of the ERS-2 satellite. Two different approaches to the estimation of NO2
are proposed. The former, which is the simpler one, assumes a linear relationship
between the GOME and ATSR-2 measurements and the NO2 concentration. The
latter exploits a nonlinear and nonparametric method based on a radial basis
function (RBF) neural network. The architecture of such a network is defined in
order to retrieve the values of NO2 concentration on the basis of the GOME and
ATSR-2 measurements, as well as of other ancillary input parameters. Experimental
results, obtained on a real data set, confirm the effectiveness of the proposed
system, which represents a promising tool for operational applications.

1. Introduction
The European Remote Sensing Satellite (ERS) Programme has been providing

Earth observation measurements to the international user community for ten years.
This has stimulated the development of science, public utility and commercial applica-
tions in a variety of disciplines related to the monitoring of the Earth’s environment.
Nowadays, a very critical application concerns the monitoring of air pollution, since
only a few specific remote-sensing sensors are available to accomplish this task. For
this reason, it is important that efforts should be devoted to the development of
remote-sensing sensors and processing methods capable of providing an accurate
evaluation of air pollution. One of the most important issues concerns the develop-
ment of automatic systems being able to monitor on a global scale the nitrogen
dioxide (NO2 ) emissions in the troposphere. In this context, the Global Ozone
Monitoring Experiment (GOME) sensor mounted on board of the ERS-2 satellite
is an effective and unique monitoring resource. The GOME products, generated
operationally at the German Processing and Archiving Facility (D-PAF) at the
German Aerospace Center (DLR) comprise calibrated earthshine radiances and
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extra-terrestrial solar irradiance (Level 1 products) together with total column
concentrations (stratosphere+troposphere) of ozone and nitrogen dioxide as well as
cloud information (Level 2 products). To retrieve the tropospheric contribution to
the column densities of trace gases in nadir viewing, additional information and
processing are required. For this purpose, the GOME data have been treated in a
variety of ways to obtain tropospheric information. A possible approach is to use
knowledge of the different temporal and horizontal scales of constituents in the
stratosphere and troposphere. In particular, on one hand, the tropospheric amount
of NO2 usually exhibits specific local behaviours; while on the other hand, the
stratospheric amount of NO2 exhibits a general global behaviour. The transport in
the stratosphere also is appreciably greater than in the troposphere, so that a
homogeneity of the NO2 stratospheric column is to be expected (Leue et al. 1999).
An alternative vertical column (VC) approach for retrieving tropospheric information
is to use measurements ‘on-cloud’ and ‘off-cloud’ to determine the amount of NO2
below the cloud. However, the different albedos and the resulting photolysis field
above the cloud introduce complications (TROPOSAT, 2000). Another method for
the retrieval of tropospheric NO2 is based on a combined assimilation retrieval
approach, which takes into account the stratospheric background, the sensitivity to
the vertical profile, clouds and the surface albedo.

Although several components contribute to NO2 emissions (e.g. urban pollution),
biomass burning is the most important source of nitrogen dioxide (Casadio et al. 1999,
Zehner et al. 1999). For this reason, in this work we focus on biomass burning. In
particular, a novel methodology is presented, which performs NO2 emission estimation
by exploiting the synergy between the GOME and the Along Track Scanning
Radiometer (ATSR-2) instruments, both mounted on board the ERS-2 satellite. In
particular, two main approaches to NO2 estimation are proposed: (a) a simple linear
approach that provides estimations of NO2 emissions on the basis of GOME and
ATSR-2 data on a regional scale; and (b) a nonlinear approach that provides NO2
estimations on a global scale by exploiting both a large set of input parameters and
a radial basis function (RBF) neural network. The resulting system represents a novel
attempt to retrieve NO2 emissions due to biomass burning on a regional or global
scale by exploiting the synergy between GOME and ATSR-2 sensors.

2. Sensor and data description
The methodology proposed exploits the synergy between GOME and ATSR-2

sensors mounted on board the ERS-2 satellite. These sensors and the related data
are briefly described here.

Owing its nadir viewing geometry, the GOME sensor provides the possibility of
measuring the total column amount of atmospheric constituents down to the Earth’s
surface. Its main scientific objective is to measure the global distribution of ozone
and other trace gases through spectral analysis of the sunlight scattered from the
Earth’s atmosphere and/or reflected by the surface in the spectral region 240–790 nm.
The GOME instrument is a double monochromator and the entering light is split
into four separate spectral bands. In each of the four spectral bands, the light is
dispersed by a diffraction grating and focused onto monolithic silicon linear detector
array comprising 1024 individual detector pixels. Detailed description of the instru-
ment design and operation can be found in the GOME Users Manual (1995).
GOME Level 2 products consist of slant and vertical amount of atmospheric
constituents (ozone and nitrogen dioxide), and related uncertainties, retrieved from
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calibrated geolocated radiances. They also include essential information on cloud
parameters. Here, we use both NO2 vertical column data and cloud information to
select cloud-free scenes (this task is accomplished by imposing a threshold equal to
0.3 on the GOME cloud fraction factor). It is difficult to evaluate precisely the
accuracy of the GOME nitrogen dioxide product, due to various problems such as
the diurnal variation of NO2 and the profile shape effect on the air mass factor
(AMF). The overall accuracy of the GOME NO2 total column is estimated to fall
within the 5–20% ranges (http://earth.esa.int/gome_report99).

The conical scan of the ATSR-2 radiometer measures nadir and forward reflectances
in four solar and three thermal channels with a spatial resolution of 1 km. An important
application of ATSR-2 data is the detection of forest fires and other hotspots on the
Earth’s surface. To this end, a widely used approach involves associating pixels with
an average temperature of greater than 312K to hotspots. The ATSR-2 product used
here is the Monthly Global Fire Maps (Level 3 product, downloadable at
http://shark1.esrin.esa.it/FIRE/AF/ATSR/). The user of the Fire product must take
into account both the algorithm limitations due to the presence of clouds and atmo-
spheric effects, and the fact that the fire temperature and extension are not taken into
account in the processing. The ATSR night-time data used to determine the presence
of hotspots (fires) are composed of four spectral bands: 1.6, 3.7, 11.0 and 12.0mm. The
detection capabilities depend on the fire temperature; they can be estimated as follows:
from 0.1 ha at 600K to 0.01 ha at 800K, for a background temperature of 300K.
The advantages of ATSR-2 are that, due to the night-time detection, no artefacts due
to solar reflection are possible. Moreover, the absence of drift of the ERS orbit allows
year-to-year comparisons, and the high radiometric sensitivity allows one the detection
of little/not extended fires. Two well-known problems in the hotspot retrieval by using
ATSR-2 data are: (a) ATSR-2 frames overlap (some fires can be detected twice); (b)
only night-time fires are detected (this involves a global underestimation of the number
of hotspots). It is worth noting that an ATSR FIRE Atlas product is presently in a
validation phase (Arino et al. 2001).

3. Problem formulation and simplifying assumptions
The problem of the estimation of the amount of NO2 in the troposphere by using

data acquired by the GOME and ATSR-2 sensors is very complex. The complexity
depends on several factors that decrease the precision of the measurements acquired
by the sensors and increase the difficulty in the sensor integration. In particular, the
following factors should be considered in addition to those described in the previous
section (i.e. presence of clouds, uncertainties of data):

(a) GOME and ATSR-2 instruments acquire measurements at different times.
In particular, GOME collects data during the day, whereas ATSR acquires
data about hotspots during the night.

(b) GOME measurements are related to the total column amount of atmosphere
constituents down to the Earth surface. Consequently, they are influenced
both from the stratospheric and the tropospheric components of NO2 . This
makes it complex to isolate the NO2 component present in the troposphere.

(c) The NO2 production in absence of fires ( let us call it ‘normal’), which should
not be considered in our estimation because uncorrelated with burning
biomass, has a seasonal cycle that depends on the latitude of the geographical
area investigated.
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(d) The NO2 plumes generated by combustion may be transported by the wind
also far from the area of production. This may affect the spatial accuracy
of the GOME measurements.

(e) The NO2 produced by a forest fire depends on the amount of burned
biomass, and hence on the land-cover of the area considered.

By taking into account the aforementioned issues, in the definition of the proposed
system we considered the following simplifying assumptions:

(a) T he plume movements can be modelled with a Gaussian distribution. We
model with a Gaussian distribution the diffusive behaviour of NO2 in the
troposphere (Sharan et al. 1996).

(b) No significant changes took place between the acquisitions of GOME and
ATSR data. This assumption, that in some cases may be critical, makes it
possible to establish a correlation between the GOME and the ATSR
measurements.

(c) T he stratospheric amount of NO
2
is constant over time. According with Leue

et al. (1999), we make the assumption that the stratospheric amount of NO2
does not change over time. This reasonable assumption is very useful in the
formulation of the proposed approach to separate the tropospheric and
stratospheric NO2 components.

4. Proposed system
In the proposed system, the GOME and ATSR measurements are integrated in order

to establish a correlation between the amount of NO2 present in the troposphere and
hotspots related to active fires on the ground. Two different approaches to the NO2
estimation are presented: a linear approach and a nonlinear approach based on RBF
neural networks. The two approaches are described in the following sub-sections.

4.1. L inear approach
The linear approach is the simplest one. The rationale of such an approach is

that the amount of NO2 produced in a given area by biomass burning has a linear
dependence on the number of hotspots detected in the considered area. This involves
the assumption that a single hotspot emits a fixed amount a of NO2 . Even though
such an assumption may be critical, it allows one to obtain estimate of NO2 produced
in a given area by biomass burning with a level of accuracy acceptable for many
applications.

The linear approach is composed of two phases: estimation of the average amount
a of NO2 emissions related to each hotspot (training phase); estimation of NO2
emissions on the basis of both the number of hotspots detected by ATSR-2 sensor
and the a value previously estimated (operative phase).

The training phase is carried out in three steps: (a) detection of abnormal amounts
of NO2 in the troposphere by using GOME data; (b) integration of GOME and
ATSR-2 data for estimating the relationship between fires and GOME measurements;
and (c) estimation of the coefficient a. These steps are described in greater details in
the following.

(a) On the basis of the assumption that the stratospheric amount of NO2
can be considered almost constant in time, we propose to estimate the
tropospheric abnormal NO2 emissions by computing temporal variations
of GOME measurements versus the behaviour of historical series of data.
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(b) Since biomass burning produces NO2 gases, the amount of NO2 in a given
area is related to the number of hotspots detected in the considered site. Let
us denote xGOME

j
the position of the pixel centre related to the j-th GOME

measure and xATSR
i

the position of the i-th hotspot detected by the ATSR-2
sensor. In order to estimate the influence that the i-th hotspot has on the j-th
GOME measure, the following weighting function f (xGOME

j
, xATSR
i

) is adopted:

f (xGOME
j

, xATSR
i

)=Ged2/dth d∏d
th

0 d>d
th

(1)

where d is the distance between xGOME
j

and xATSR
i

, and d
th

is a threshold value
that is computed to take into account the diffusion of NO2 gases. By summing
the components related to all the detected hotspots, we obtain an estimation
of the total influence F(xGOME

j
) of forest fires on the j-th GOME measure:

F(xGOME
j

)=∑
i
f (xGOME
j

, xATSR
i

) (2)

Consequently, F(xGOME
j

) can be considered as an equivalent number of
hotspots located in xGOME

j
and producing an amount of NO2 equal to the

one actually measured by the GOME sensor.
(c) A linear regression between abnormal NO2 values identified in (a) and the

correspondent F(xGOME
j

) values computed in (b) is applied in order to
estimate the average amount a of NO2 emissions related to each hotspot.

It is worth noting that in the training phase of the linear approach it is mandatory
to have historical series of GOME and ATSR-2 data of the investigated area.

During the operative phase, only ATSR-2 data are required. The estimation of
NO2 emissions related to the considered geographical area ( let NOtrop2 denote such
an amount) is carried out according to the following simple equation:

NOtrop2 =aN (3)

where N is the total number of hotspots detected in the considered geographical
area by analysing the ATSR-2 data.

Since the analysis of different geographical areas reveals that the amount of NO2
produced by a single hotspot depends on several factors (e.g. the latitude and the
land-cover type that characterize the investigated area), the a value estimated for a
specific geographical site can be used only in a neighbourhood of the considered area.

4.2. Nonlinear approach based on RBF neural networks
The proposed approach based on RBF neural networks considers the abnormal

amount of NO2 produced in troposphere (NOtrop2 ) as a nonlinear function depending
on several parameters, i.e. :

NOtrop2 =g(q) (4)

where each component of the vector q is a physical parameter that influences the
NO2 generated. In this approach, we consider the following input parameters for
the NO2 estimation:

$ Vegetation index: different types of land-covers (e.g. different types of ‘fuel’)
produce different amounts of NO2 .

$ L atitude: important indication of the amount of NO2 produced by biomass
burning and present in the troposphere can be retrieved by the knowledge of
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the latitude of the investigated area. In fact, latitude provides hints about: (a)
the combustion speed (such a parameter depends on the heat); (b) the land
coverage; and (c) the seasonal cycle characterizing the normal amount of NO2 .

$ Number of fires in the area considered: the NOtrop2 increases when the number of
fires increases. Therefore, the information on the number of hotspots
provided by the ATSR-2 sensor plays a fundamental role in the estimation process.

$ Spatial position of fires with respect to the GOME measurements: the sensitivity
of the GOME measurements to hotspots depends on the relative position
between the GOME IFOV and fires.

$ Season: the seasonal period influences the natural cycle of the NO2 .
Consequently, it should be considered in the estimation process.

The function g( . ), which defines the relation between the aforementioned input
parameters and the estimated NO2 , is learned by the neural network in the training
phase on the basis of selected examples.

The choice of adopting an RBF neural model depends on the ability of this kind
of network to solve nonlinear problems of function estimation and regression (Powell
1987, Broomhead and Lowe 1988, Hatman et al. 1990, Park and Sandberg 1991)
and on the advantages exhibited by this kind of neural model over others. In
particular, one of the main advantages consists of a trade-off between the complexity
of the training phase and the obtained accuracy (Bruzzone and Fernández Prieto
1999). Generally, a Gaussian RBF neural network is composed of three layers (input,
hidden and output layers). Input neurons (as many as there are input features) just
propagate input features to the next layer. Each neuron in the hidden layer is
associated with a radial basis kernel function (usually a Gaussian function y

i
charac-

terized by a centre m
i
and a width s

i
). In one-dimensional regression problems, the

output layer is composed of one neuron that computes a simple weighted summation
of the responses of the hidden neurons to a given pattern described by the input
feature vector. The connections between the hidden neurons and the output neuron
are associated with numerical values called ‘weights’ (figure 1 shows the architecture
of the RBF neural network used in the proposed nonlinear system). In the training
phase, the centre m

j
and the width s

j
of each Gaussian activation function of hidden

units, as well as the weights between the hidden units and the output unit, are
computed. This can be accomplished by using classical training procedures (Moody
and Darken 1989, Park and Sandberg 1991, Bruzzone and Fernández Prieto 1999).

Figure 1. Architecture of the RBF neural network used in the proposed nonlinear approach.



Forest fire management—new methods and sensors 1715

In particular, in our approach, the simple algorithm proposed by Moody and Darken
(1989) is adopted. We refer the reader to Bianchini et al. (1995) and Bruzzone and
Fernández Prieto (1999) for further details on RBF neural networks and on their
training procedures.

The training on the neural network is based on the previously discussed assump-
tion that the stratospheric amount of NO2 can be considered to be almost constant
in time. Accordingly, the tropospheric abnormal NO2 emissions can be estimated
by computing temporal variations of GOME measurements versus the behaviour of
historical series of data. Such estimations are used in the learning of the network.
In particular, the neural network learns the function g( . ) that relates all the input
parameters to the different estimates of the tropospheric abnormal NO2 emissions.
During the operative phase, the neural architecture provides the estimation of NO2
emissions, given the correspondent input vector.

When compared with the linear approach, the nonlinear approach exhibits some
important advantages:

(a) It is not based on the assumption that the relation between the tropospheric
NO2 emissions due to biomass burning and the forest fires that affect the
considered geographical area is linear. Consequently, more accurate
estimates of the tropospheric abnormal NO2 amount are expected.

(b) It is able also to estimate emissions in areas different from the ones used
in the training phase (thanks to the generalization ability of the neural
network). As a consequence, the nonlinear approach can be applied to
geographical areas where time series of GOME and ATSR-2 data for the
estimation of a are not available.

Regarding the latter point, as described in §4.1, the linear approach requires the
computation of an a value that depends on the specific geographical area considered.
The function g(q) (i.e. the relation between the set of all the parameters q and the
amount of NO2 estimated by the nonlinear approach) implicitly deals with this
dependence, thus allowing one to analyse geographical areas for which the a value
is not explicitly known. Consequently, an important difference between the two
approaches is the scale at which they are operative. The linear approach allows one
to estimate the amount of NO2 at a local scale; whereas the nonlinear approach is
suitable for developing a global scale monitoring system.

5. Experimental results
In order to assess the effectiveness of the proposed method, a data set related to

different geographical areas was considered. In particular, five areas (Africa Coast,
Australia, Congo, Mexico and North Brazil ) characterized by different land-cover
types and latitudes were selected (figure 2). Multitemporal sequences of GOME and
ATSR-2 data acquired on the selected areas between November 1996 and May 1999
were considered.

To evaluate the effectiveness of both the linear and the nonlinear approaches,
multitemporal data were divided into two different series. Data acquired between
November 1996 and June 1998 were used for the training phase, and data acquired
between July 1998 and May 1999 were used for the test of the proposed methods.
A detailed description of the training and test sets is given in table 1. In addition, in
table 2, the minimum and maximum NO2 concentration values derived from the
GOME measurements for each one of the considered areas are reported.
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Table 1. Description of the training and test sets for the five geographical areas considered.

Number of patterns

Geographical area Training set Test set

Africa Coast 5298 2794
Australia 6840 913
Congo 5310 381
Mexico 7283 992
North Brazil 8013 116

Table 2. Minimum and maximum NO2 concentration values affecting the geographical areas
in the period under study.

NO2 concentration values
(1014mol cm−3 )

Geographical area Minimum Maximum

Africa Coast 0.031 35.889
Australia 0.007 35.889
Congo 0.002 50.657
Mexico 0.002 36.803
North Brazil 0.037 20.437
Global 0.002 50.657

5.1. Results obtained with the linear approach
The linear approach was applied separately to each area. First of all, anomalous

amounts of NO2 in the troposphere were detected on the basis of the analysis of
training samples. In particular, samples of the training data not affected by biomass
burning (i.e. pixels with F(xGOME

j
)=0) were identified. Then the average (computed

both in the time and in the spatial domains) of the NO2 values measured by the
GOME sensor on these samples was derived. Under the assumptions considered in
§3, the resulting average shows the normal amount of NO2 present in the atmosphere
over the area considered. Abnormal amounts in the troposphere were thus obtained
by differencing the GOME measurements and the aforementioned normal amount
of NO2 . As an example, figure 3 shows the abnormal amounts of NO2 computed
for a specific pixel of the Africa Coast area in the period between November 1996
and June 1998 (see the green profile). In the same figure, red marks show the values

Figure 2. Geographical areas considered for evaluating the effectiveness of the proposed
methods (the selected areas are within the rectangles).
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assumed by the function F(xGOME
j

). At this point, the value of the a coefficient was
retrieved according to the methodology described in §4.1. Finally, the amount of
NO2 produced in the considered area is estimated according to equation (3). Figure 4
shows the profile of such an amount computed for the Africa Coast area in the
period between 1 July 1998 and 31 May 1999.

In order to obtain a quantitative evaluation of the effectiveness of the proposed
approach, the amounts of NO2 due to biomass burning were compared with the
reference values (i.e. the abnormal amounts of NO2 estimated by computing the
temporal variations of GOME measurements versus the behaviour of the series of test
data). The resulting errors for all the considered geographical areas are reported in
table 3. As can be seen, the percentage error is globally satisfactory. In fact, even if the
Congo and the Mexico areas are characterized by errors equal to 43.6% and 35.7%,
respectively, all other errors are rather small. It is worth noting that this evaluation of
results is done by taking into account that the linear method considers just ATSR-2
data in the test phase. Consequently, it is not reasonable to expect that this method
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provides very high accuracies; instead it should be used for deriving general indications
about NO2 emission behaviour in the different test sites. In order to understand in
greater detail the behaviour of the approach on the Congo and Mexico areas, a deeper
analysis of the GOME time series was carried out. Regarding the Congo area, the
analysis revealed that the behaviour of the NO2 emissions was very unstable during
the historical period considered. Consequently, the length of the series of data used
was not sufficient to compute with a good approximation the normal value of NO2
present in the atmosphere. In this case, to increase the estimation accuracy, a longer
historical series of GOME measurements would be necessary. The Mexico site includes
the Mexico City area, which is affected by high urban pollution. Consequently, as
confirmed by additional experiments not reported in this paper, the error incurred in
this site mainly depends on the urban pollution present in this city.

Table 3 also reports the values of the a coefficient obtained for the different areas.
As one can see, these values strongly depend on the geographical area considered.
Consequently, the a value estimated for a specific geographical site can be used only
in a neighbourhood of the zone considered; hence, the linear approach can be applied
only at a regional scale. In order to support this conclusion, a further experiment
was carried out. Specifically, the linear approach was jointly trained on the five
considered areas and then tested on all the geographical sites. The errors obtained
are shown in table 4, where the estimated global value of the a coefficient is also
given for comparisons with the values presented in table 3. As can be seen, the error
yielded is sharply higher than the overall error achieved by analysing the five areas
separately (i.e. 41.9% vs 25.5%). This confirms the usefulness of the linear approach
as a local-scale monitoring tool.

5.2. Results obtained with the nonlinear approach
In order to assess the effectiveness of the nonlinear approach, two main experi-

ments were carried out. The aim of the first experiment was to compare the accuracies
provided by the nonlinear approach with the ones exhibited by the linear method.
The aim of the second experiment was to investigate the effectiveness of the nonlinear

Table 3. Percentage errors provided by the linear approach in estimating NO2 produced by
biomass burning in the five geographical areas considered. The estimates of the a
coefficient are also given.

Geographical area Error (%) Estimated a coefficient

Africa Coast 18.8 6.0
Australia 29.3 16.7
Congo 43.6 8.0
Mexico 35.7 8.0
North Brazil 9.2 5.0
Overall 25.5 –

Table 4. Overall percentage errors provided by the linear approach in estimating NO2
emissions produced by biomass burning. The results are obtained by jointly applying
the linear method to all the geographical areas considered.

Overall error (%) Estimated a coefficient

41.9 10.7
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approach for developing a global-scale monitoring system. In particular, the capabil-
ity of the nonlinear approach to estimate emissions in a geographical area different
from the ones used in the training phase was assessed.

As the objective of the nonlinear approach is to derive a global-scale monitoring
system, this approach was applied jointly to all the selected areas. In this way, the
RBF neural network can learn the complex relation existing between the set of all
the input parameters q and the amount of NO2 emissions due to biomass burning.

In the first experiment the training phase was carried out as follows. For each
one of the five selected geographical areas, the abnormal amounts of NO2 were
estimated by computing temporal variations of GOME measurements on the training
data according to the method described in the previous subsection. These variations
were computed separately on each considered area. The estimates obtained were
used for the training of the network. Different RBF neural network architectures
(i.e. architectures with different numbers of hidden neurons) were considered. At this
point, the effectiveness of the nonlinear approach was evaluated by considering the
test samples. The estimated amounts of NO2 were compared with the reference
values (i.e. amounts of NO2 computed by considering the temporal variations of
GOME measurements versus the normal amount of NO2 estimated on the test data).
The percentage errors obtained are given in table 5. A comparison between table 3
and table 5 shows that the nonlinear approach generally allows one to reduce the
errors in the estimated NO2 significantly with respect to the linear method. In greater
detail, the nonlinear approach increases the accuracy in all the areas except for
North Brazil (where in any case the error is acceptable). The decrease of performances
on the North Brazil area is due mainly to the fact that the neural network realizes
a trade-off between errors incurred on each single area and generalization capabilities.

In the second experiment (i.e. analysis of the capability of the nonlinear approach
to estimate NO2 in areas other than the ones considered in the training set), five
trials were carried out by using a leaving-one-out method. In particular, in each
trial, the learning of the RBF neural network was carried out by considering four
of the five available geographical areas, while the test was accomplished on the
remaining site. The results obtained are shown in table 6. As one can see, the ability
of neural network to generalize allows the nonlinear approach to estimate NO2
emissions with high accuracy in geographical areas different than the ones used for
the training. Specifically, it can be seen that the decrease of accuracies between
table 5 and table 6 are not significant.

Table 5. Percentage errors provided by the nonlinear approach in estimating NO2 emissions
produced by biomass burning on the test sets related to the different geographical
areas analysed (errors incurred with different neural architectures are reported). Results
are yielded by considering a training set composed of samples related to all the five sites.

Error (%)

Number of hidden neurons Africa Coast Australia Congo Mexico North Brazil

100 12.5 13.5 38.8 14.2 20.1
125 11.7 12.8 39.3 14.2 18.8
150 11.5 11.9 39.3 13.8 18.9
175 11.8 11.9 41.1 14.1 19.0
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Table 6. Percentage errors provided by the nonlinear approach in estimating NO2 emissions
produced by biomass burning on the test sets related to the different geographical
areas analysed (errors incurred with different neural architectures are reported). Results
are yielded by defining training and test sets with the leaving-one-out method.

Error (%)

Number of hidden neurons Africa Coast Australia Congo Mexico North Brazil

100 19.1 11.4 36.5 18.3 26.7
125 18.5 12.8 34.3 16.8 26.5
150 18.7 12.8 35.7 17.8 26.1
175 18.0 12.9 34.0 18.3 26.0

6. Discussion and conclusions
In this paper, a novel system for estimating NO2 emissions resulting from bio-

mass burning has been proposed. The system performs the estimation process by
integrating data acquired by the GOME and the ATSR-2 sensors mounted on board
of the ERS-2 satellite.

Two different approaches have been presented for estimating NO2 : an approach
based on a linear model and a nonlinear approach based on RBF neural networks.

The linear approach is based on the assumption that an equivalent amount of
NO2 emissions for each generic fire can be estimated. This estimation is carried out
according to a linear regression between GOME and ATSR-2 measurements applied
to historical series of remotely sensed data. In the estimation process, a specific
model for deleting the stratospheric NO2 component by the GOME measurements
has been considered. This approach exhibits two main advantages: (a) it is very
simple; and (b) in the operative phase the NO2 estimation is carried out on the basis
of ATSR-2 data (GOME data are only used in the training of the system for
computing the equivalent amount of NO2 associated with each fire). The main
disadvantages of this estimation procedure are: (a) it does not take into account the
differences in the production of NO2 often associated with different hotspots; (b) it
is not able to take into account the complex relationship between the amount of
NO2 emissions present in the troposphere and the large number of parameters that
influence this value; and (c) it requires historical series of training data for all the
geographical areas studied.

The nonlinear approach based on RBF neural networks overcomes these disad-
vantages. It takes into account a set of parameters that may influence the presence
of NO2 emissions in the troposphere resulting from fires. In particular, this nonpara-
metric approach models the complex nonlinear function that maps the input para-
meters in the output NO2 estimation. The neural approach exhibits two additional
important advantages: (a) it does not require the definition of a specific linear model
for each geographical area considered in the test phase; and (b) thanks to the
generalization ability of the neural networks, it makes it possible to estimate NO2
emissions in areas for which historical series of data are not available.

Experimental results obtained on a data set related to five different geographical
areas point out that the proposed approaches seem to be a promising tool for
monitoring NO2 emissions. As future developments of this work, we are considering
two main issues: (a) further extension of the neural approach experiments by con-
sidering other input parameters, therefore increasing the precision of the function
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used by the neural networks for estimating NO2 emissions; and (b) generalization
of the proposed system for detecting anomalous NO2 emissions from environmental
pollution in large urban areas.
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