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Abstract

In this paper, we propose a classification system based on a multiple-classifier architecture, which is aimed at updating land-cover

maps by using multisensor and/or multisource remote-sensing images. The proposed system is composed of an ensemble of clas-

sifiers that, once trained in a supervised way on a specific image of a given area, can be retrained in an unsupervised way to classify a

new image of the considered site. In this context, two techniques are presented for the unsupervised updating of the parameters of a

maximum-likelihood classifier and a radial basis function neural-network classifier, on the basis of the distribution of the new image

to be classified. Experimental results carried out on a multitemporal and multisource remote-sensing data set confirm the effec-

tiveness of the proposed system.

� 2002 Elsevier Science B.V. All rights reserved.

Keywords: Multiple-classifier system; Unsupervised retraining algorithm; Maximum-likelihood classifier; Radial basis function neural network;

Expectation-maximization algorithm

1. Introduction

The increasing availability of remote-sensing images,

acquired periodically by satellite sensors on the same

geographical area, makes it extremely interesting to

develop monitoring systems capable of automatically

producing and regularly updating land-cover maps of

the considered site. The monitoring task can be ac-

complished by supervised classification techniques,
which have proven to be effective categorisation tools

[1–5]. Unfortunately, these techniques require the

availability of a suitable training set (and hence of

ground-truth information) for each new image of the

considered area to be classified. However, in real ap-

plications, it is not possible to rely on suitable ground

truth information for each of the available images of the

analysed site. Consequently, not all the remote-sensing
images acquired on the investigated area at different

times can be used for updating the related land-cover

maps. In this context, it would be important to develop

classification methods capable of analysing the images
of the considered site for which no training data are

available, thus increasing the effectiveness of monitoring

systems based on the use of remote-sensing images.

Recently, the authors faced this problem by pro-

posing an unsupervised retraining technique for maxi-

mum-likelihood (ML) classifiers capable of producing

accurate land-cover maps even for images for which

ground-truth information is not available [6]. This tech-
nique allows the unsupervised updating of the parame-

ters of an already trained classifier on the basis of the

distribution of the new image to be classified. How-

ever, given the complexity inherent with the task of

unsupervised retraining, the resulting classifier may be

intrinsically less reliable and less accurate than the cor-

responding supervised one, especially for complex data

sets.
In this paper, in order to define a robust classifica-

tion system for an unsupervised updating of land-

cover maps, we propose: (i) to extend the unsupervised

retraining technique proposed in [6] to radial basis

function (RBF) neural network classifiers; (ii) to inte-

grate the resulting unsupervised retraining classifiers in

the framework of multiple-classifier systems. In greater
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detail, the proposed system is based on two different
unsupervised retraining classification algorithms: a para-

metric ML classifier and a non-parametric RBF neural-

network classifier. Both techniques allow the existing

‘‘knowledge’’ of the classifiers (i.e., the parameters of the

classifiers obtained by supervised learning on a first im-

age, for which a training set is assumed available) to be

updated in an unsupervised way, on the basis of the

distribution of the new image to be categorised. The
combination of the above-mentioned classification al-

gorithms is used as a tool for increasing the accuracy

and the reliability of the classification maps obtained by

each single classifier. Classical approaches to classifier

combination are adopted. As compared to previous

works [6], the main novelty of this paper consists in the

original retraining technique proposed for the RBF

classifier and in the multiple-classifier architecture used
in the context of partially unsupervised classification.

The paper is organized into seven sections. In Section

2 the considered problem is formulated. The architec-

ture of the proposed system is described in Section 3.

The unsupervised retraining classifiers are described in

Section 4. Section 5 presents the strategies adopted for

the combination of the ensemble of unsupervised re-

training classifiers considered. Experimental results are
given in Section 6. Finally, in Section 7, discussion is

provided and conclusions are drawn.

2. Formulation of the problem

Let X1 ¼ fx11; x12; . . . ; x1Bg and X2 ¼ fx21; x22; . . . ; x2Bg
denote two multispectral images composed of B pixels

and acquired in the area under analysis at the time t1 and
t2, respectively. Let xij be the 1� d feature vector asso-

ciated with the jth pixel of the image Xi (where d is the

dimensionality of the input space). Let Xi be a multi-

variate random variable that represents the pixel values
(i.e., the feature vector values) in Xi. Let us assume that

the same set X ¼ fx1;x2; . . . ;xCg of C land-cover

classes characterizes the considered geographical area at

both t1 and t2. This means that in our system only the

spatial and spectral distributions of such land-covers

classes are supposed to vary (i.e., the set of land-cover

classes that characterize the considered site is fixed over

time). This assumption is quite realistic in several real
applications of classification of remote-sensing data [7–

9]. Finally, let us assume that a reliable training set Y1 is

available at t1, whereas a training set is not available at

t2. This prevents the generation of the t2 land-cover map,

as the training of the classifier on the image X2 cannot be

performed. At the same time, it is not possible to apply

the classifier trained on the image X1 to the image X2

because, in general, the estimates of the statistical pa-
rameters of the classes at t1 do not provide accurate

approximations for the same terms at t2. This depends

on several factors (e.g., differences in the atmospheric
and light conditions at the image-acquisition dates,

sensor non-linearities, different levels of soil moisture,

etc.) that alter the spectral signatures of land-cover

classes in different images and consequently the distri-

butions of such classes in the feature space.

It is worth noting that the proposed approach is

based on a separate analysis of the two images X1 and

X2. Consequently, it does not require that the images are
accurately co-registrated.

3. Description of the architecture of the proposed

classification system

The proposed classification system is based on a

multiple-classifier architecture. The choice of this ar-

chitecture mainly depends on the intrinsic complexity of

the unsupervised retraining procedures, which may re-
sult in less reliable and less accurate classifiers than the

corresponding supervised ones, especially for complex

data sets. In this context, the use of a multiple-classifier

approach allows one to integrate the complementary

information provided by an ensemble of different clas-

sifiers, thus involving a more robust and reliable classi-

fication system.

The classifiers composing the ensemble are developed
within the framework of the Bayes decision theory.

Consequently, the decision rule adopted to classify a

generic pixel x1j of the image X1 can be expressed as [10]:

x1j 2 xk if xk ¼ arg max
xi2X

fP1ðxi=x1j Þg ð1Þ

where P1ðxi=x1j Þ is the estimate of the posterior proba-

bility of the class xi at t1, given the pixel x1j . According to

(1), the classification of the image X1 requires the esti-

mation of the posterior probabilities P1ðxi=X1Þ for all

classes xi 2 X. These estimates involve the computation

of a parameter vector #1, which represents the ‘‘knowl-
edge’’ of the classifier concerning the distributions of the

classes in the feature space (i.e., the status of the clas-

sifier at t1). The number and nature of the vector com-

ponents will be different depending on the specific

classifier used. In our system, we propose to consider

two different unsupervised retraining approaches: the

former is a parametric approach, which is based on the

ML classifier; the latter consists of a non-parametric
technique, which is based on RBF neural networks.

Both techniques allow the parameter vectors #p
1 (corre-

sponding to the parametric approach) and #n
1 (corre-

sponding to the non-parametric approach), which are

obtained by supervised learning on the first image X1, to

be updated in an unsupervised way.

In the proposed multiple-classifier approach, N dif-

ferent classifiers are trained at the time t1 by using the
information contained in the available training set Y1. In

particular, a classical parametric ML classifier [10] and
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N � 1 different architectures of non-parametric RBF
neural networks [5] are used. As a result, a parameter

vector #p
1 corresponding to the parametric approach,

and the N � 1 parameter vectors #n;r
1 (r ¼ 1; . . . ;N � 1)

corresponding to the non-parametric RBF neural ap-

proach, are derived. Then, at time t2, the classifiers are

retrained in an unsupervised way by using the infor-

mation contained in the distribution pðX2Þ of the new

image X2. At the end of the retraining phase, a new
parameter vector #p

2 is obtained for the ML classifier

and N � 1 new parameter vectors #n;r
2 r ¼ 1; . . . ;N � 1

are obtained for the N � 1 RBF neural-network archi-

tectures considered. Finally, the results provided by

different unsupervised retraining classifiers are combined

by using a classical multiple-classifier approach.

4. The proposed unsupervised retraining classifiers

The main idea of the proposed unsupervised re-

training approach is that rough estimates of the pa-

rameter values that characterize the classes considered at

the time t2 can be obtained by exploiting the parameters
of the classifiers estimated at the time t1 by supervised

learning. Such estimates are then updated in an unsu-

pervised way by using the information contained in the

distribution pðX2Þ of the new image X2. In the following,

a detailed description of the proposed unsupervised re-

training technique for the RBF neural-network classifi-

ers is given. Concerning the retraining technique for the

ML classifier, we provide only a brief description since it
was already proposed in [6].

4.1. The proposed retraining technique for the ML

classifier

In the case of a parametric ML classifier, the vector of

parameters that should be estimated for classifying the

new image X2 is given by:

#p
2 ¼ ½hp

2;1; P2ðx1Þ; hp
2;2; P2ðx2Þ; . . . ; hp

2;C; P2ðxCÞ
 ð2Þ
where hp

2;i is the vector of the parameters that charac-

terize the conditional density function p2ðX2=xiÞ of the

class xi (e.g., the mean vector l2;i and the covariance

matrix R2;i in the Gaussian case). For each class xi 2 X,

the initial values of both the prior probability P 0
2 ðxiÞ and

the conditional density function p02ðX2=xiÞ can be ap-

proximated by the values computed in the supervised

training phase at t1: Then, such estimates can be im-

proved by exploiting the information associated with the

distribution p2ðX2Þ of the new image X2. In particular,

the proposed method is based on the observation that the

statistical distribution of the pixel values in X2 can be

described by the following mixed-density distribution:

p2ðX2Þ ¼
XC
i¼1

P2ðxiÞp2ðX2=xiÞ ð3Þ

where the mixing parameters and the component den-
sities are the a priori probabilities and the conditional

density functions of the classes, respectively. In this

context, the retraining of the ML classifier at the time t2
becomes a mixture density estimation problem, which

can be solved by exploiting the iterative expectation-

maximization (EM) algorithm [11–14]. The iterative

equations to be used are the following:

P tþ1
2 ðxkÞ ¼

1

B

X
x2j2X2

P t
2ðxk=x2j Þ ð4Þ

ltþ1
2;k ¼

P
x2j2X2

P t
2ðxk=x2j Þx2jP

x2j2X2
P t
2ðxk=x2j Þ

ð5Þ

Rtþ1
2;k ¼

P
x2j2X2

P t
2ðxk=x2j Þðx2j � ltþ1

2;k Þ
Tðx2j � ltþ1

2;k ÞP
x2j2X2

P t
2ðxk=x2j Þ

ð6Þ

where the superscripts t and t þ 1 refer to the values of
the parameters at the current and next iterations, re-

spectively, the superscript T refers to the vector trans-

pose operation, and the estimated posterior probability

P t
2ðxk=x2j Þ is equal to:

P t
2ðxk=x2j Þ ¼

pt2ðx2j=xkÞP t
2ðxkÞPC

i¼1 p
t
2ðx2j=xiÞP t

2ðxiÞ
ð7Þ

where the density function pt2ðx2j=xiÞ is computed by

using the estimates of the terms lt
2;i and Rt

2;i obtained at
current iteration.

For each class xi 2 X, the estimates obtained at

convergence of the EM algorithm are the new parame-

ters of the ML classifier at the time t2. Since the unsu-

pervised retraining approach for the ML classifier is not

the novel aspect of this paper, we refer the reader to [6]

for greater details on this method.

4.2. The proposed unsupervised retraining technique for

RBF neural-network classifiers

The proposed non-parametric classifier is based on

Gaussian RBF neural networks, which consist of three

layers: an input layer, a hidden layer, and an output

layer (see Fig. 1). The input layer relies on as many

neurons as the input features. The input neurons just

propagate the input features to the next layer. Each one

of the Q neurons in the hidden layer is associated with a
Gaussian kernel function. The output layer is made up

of as many neurons as the classes to be recognised. Each

output neuron computes a simple weighted summation

over the responses of the hidden units for a given input

pattern (we refer the reader to [5] for more details on

RBF neural-network classifiers).

In the context of RBF neural classifiers, the condi-

tional densities of Eq. (3) can be written as a sum of
contributes due to the Q kernel functions uq of the

neural architecture [14]:
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p2ðX2Þ ¼
XQ
q¼1

P2ðuqÞp2ðX2=uqÞ ð8Þ

where the mixing parameters and the component den-

sities are the a priori probabilities and the conditional

density functions of the kernels. Eq. (8) can be rewritten

as:

p2ðX2Þ ¼
XC
i¼1

XQ
q¼1

P2ðxi=uqÞP2ðuqÞp2ðX2=uqÞ ð9Þ

where the mixing parameter P2ðxi=uqÞ is the conditional
probability that the kernel uq belongs to class xi. In this
formulation, kernels are not deterministically owned by

classes; so the formulation can be considered as a gen-

eralization of a standard mixture model [14]. The value

of the weight wi
q that connects the qth hidden unit to the

ith output node, can be computed as [14]:

wi
q ¼ P ðxi=uqÞP ðuqÞ ð10Þ

By analysing Eq. (9), it can be noticed that, as for the

ML classifier, the retraining of the RBF classifier at time

t2 becomes a parameter estimation problem. In partic-

ular, the parameter vector to be estimated is given by:

#n
2 ¼½/2;1;P ðu1Þ;P2ðx1=u1Þ;...;P2ðxC=u1Þ;...;/2;Q;P ðuQÞ;

P2ðx1=uQÞ;...;P2ðxC=uQÞ
 ð11Þ

where /2;q is the vector of parameters that characterises

the density function p2ðX2=uqÞ (e.g., if Gaussian kernel

functions are considered, /2;q is composed of the mean

p2;q and the width r2;q characterizing the qth kernel).

However, the parameter vector #n
2 is more complex to be

estimated than the parameter vector #p
2 related to the

ML classifier. In particular, the presence of the mixing
terms P2ðxi=uqÞ do not allow the new estimates to be

accomplished in a fully unsupervised way. Hence, ad-

ditional information should be available in order to

compute such statistical terms. In the following, we will

assume to know the values of the mixing parameters

P ðxi=uqÞ; we refer the reader to the Appendices A and B

for the description of a technique that exploits the ar-

chitecture of the proposed system (and, in particular,
some of the results provided by the ML classifier) for

estimating such parameters. For simplicity, let us as-

sume that all the Q kernel functions /2;q are character-

ized by the same width r2. Under the above-mentioned

assumptions, it is possible to prove that the following

equations (derived by exploiting the EM algorithm) can

be applied iteratively to update the RBF neural-network

classifier parameters:

P tþ1
2 ðuqÞ ¼

1

B

X
x2j2X2

P t
2ðuq=x

2
j Þ ð12Þ

ptþ1
2;q ¼

P
x2j2X2

P t
2ðuq=x

2
j Þx2jP

x2j2X2
P t
2ðuq=x

2
j Þ

ð13Þ

rtþ1
2 ¼ 1

dB

X
x2j2X2

XQ
q¼1

P t
2ðuq=x

2
j Þkx2j

"
� ptþ1

2;q k
2

#
ð14Þ

where the superscripts t and t þ 1 refer to the values of

the parameters at the current and next iterations, re-

spectively, and the estimated posterior probability

P t
2ðuq=x

2
j Þ is given by:

P t
2ðuq=x

2
j Þ ¼

pt2ðx2j=uqÞP t
2ðuqÞPQ

i¼1 p
t
2ðx2j=uiÞP t

2ðuiÞ
ð15Þ

where the density function pt2ðx2j=uiÞ is computed by

using the estimates of the terms pt
2;i and rt

2 obtained at

current iteration.

All the components of #n
2 are initialized according to

the values obtained in a supervised way on the t1 image.

It is possible to prove that at each iteration, the log-

likelihood function of the estimates increases until a

maximum is reached. Although the EM algorithm may
converge to a local maximum, its convergence is guar-

anteed [11–14]. The values of the parameters obtained at

convergence for each RBF neural classifier are used to

analyse the new image to be classified.

5. Multiple-classifier strategies

We propose the use of different combination strate-

gies to integrate the complementary information pro-

vided by the ensemble of unsupervised retraining
parametric and non-parametric classifiers described in

the previous section. The use of these strategies for

combining the decisions provided by each single classi-

fier results in a more robust behaviour in terms of ac-

curacy and reliability of the final classification system.

As stated in Section 3, let us assume that a set of N

classifiers (an unsupervised retraining ML classifier and

N � 1 unsupervised retraining RBF neural classifiers
with different architectures) are retrained on the X2

image in order to update the corresponding parameters

Fig. 1. Standard architecture of a supervised RBF neural-network

classifier.
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by using the procedures described in Section 4. In this
context, several strategies for combining the decisions of

the different classifiers can be adopted [15,16]. We will

focus on three widely used combination strategies: the

majority voting [15], the combination by Bayesian average

[16], and the maximum posterior probability strategies. It

is worth noting that, in our case, the use of these un-

supervised combination strategies is mandatory because

a training set is not available at t2, and therefore more
complex supervised approaches cannot be adopted.

The majority voting principle faces the combination

problem by considering the results of each single clas-

sifier in terms of the class labels assigned to the patterns.

Hence, a given input pattern receives N classification

labels from the multiple-classifier system, each label

corresponding to one of the C classes considered. The

combination method is based on the interpretation of
the classification label resulting from each classifier as a

‘‘vote’’ for one of the C land-cover classes. The data

class that receives the largest number of votes is taken as

the class of the input pattern.

The second method considered, the combination by

Bayesian average strategy, is based on the observation

that for a given pixel x2j in the image X2 the N classifiers

considered provide an approximation of the posterior
probability P2ðxi=x2j Þ for each class xi 2 X. Therefore, a

possible strategy for combining these classifiers consists

in the computation of the average posterior probabili-

ties, i.e.,

P ave
2 ðxi=x2j Þ ¼

1

N

XN
n¼1

bPP n
2 ðxi=x2j Þ ð16Þ

where bPP n
2 ðxi=x2j Þ is the approximation of the posterior

probability P2ðxi=x2j Þ provided by the nth classifier. The

classification is then carried out according to the Bayes

rule by selecting the land-cover class associated with the

maximum average posterior probability.
The third method considered (i.e., the maximum

posterior probability strategy) is based on the same ob-

servation of the previous one. However, in this case, the
strategy for combining classifiers consists in a winner-

takes-all approach: the land-cover class that has the

larger posterior probability among all classifiers is taken

as the class of the input pattern.

6. Experimental results

In order to assess the effectiveness of the proposed

approach, different experiments were carried out on a

data set made up of two multispectral images acquired

by the thematic mapper (TM) multispectral sensor of
the Landsat 5 satellite. The selected test site was a sec-

tion (412� 382 pixels) of a scene including Lake Mu-

largias on the Island of Sardinia, Italy. The two images

used in the experiments were acquired in September

1995 (t1) and July 1996 (t2). Fig. 2 shows channels 5 of

both images.

The available ground truth was used to derive a

training set and a test set for each image. Five land-
cover classes (i.e., urban area, forest, pasture, water

body, and vineyard), which characterize the test site at

the above-mentioned dates, were considered. A detailed

description of the training and test sets of both images is

given in Table 1. To carry out the experiments, we as-

sumed that only the training set associated with the

image acquired in September 1995 was available. It is

worth noting that the images considered were acquired
in different periods of the year. Therefore, in this case,

the unsupervised retraining problem turned out to be

rather complex.

An ML and two RBF classifiers (one with 60 hidden

neurons, i.e., RBF-1, the other with 80 hidden neu-

rons, i.e., RBF-2) were trained in a supervised way on

the September 1995 image to estimate the parameters

that characterize the density functions of the classes
at the time t1. For the ML classifier, the assumption

of Gaussian distributions was made for the density

Fig. 2. Channel 5 of the Landsat-5 TM images utilized for the experiments: (a) image acquired in September 1995; (b) image acquired in July 1996.
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functions of the classes (this was a reasonable assump-

tion, as we considered TM images). In order to exploit

the non-parametric characteristic of the two RBF neural

classifiers, they were trained using not only the 6 avail-

able spectral channels, but also 5 texture features based

on the gray-level co-occurrence matrix (i.e., sum vari-

ance, sum average, correlation, entropy and difference

variance) [17]. These features were computed by using
a window size equal to 7� 7 and an interpixel dis-

tance equal to 1. After the supervised training on the X1

image, the effectiveness of the classifiers was evaluated

on the test sets related to both images (see Table 2). On

the one hand, as expected, the classifiers provided high

overall classification accuracies for the test set related to

the September 1995 image (i.e., 90.97%, 81.79% and

81.74% for the ML, the RBF-1, and the RBF-2 classi-
fiers, respectively). On the other hand, they exhibited

very poor performances on the July 1996 test set. In

particular, the overall classification accuracy provided

by the ML classifier for the July test set was equal to

50.43%, which is not an acceptable result. Also the ac-

curacies exhibited by the two RBF neural classifiers

considered are not sufficiently high (i.e., 69.78% and

71.27%).
At this point, the considered classifiers were retrained

on the t2 image (July 1996) by using the proposed un-

supervised retraining techniques. The ML and RBF re-

training processes converged in 11 and 15 iterations,

respectively, taking few minutes of processing on a Sun

Ultra80 workstation. The overall and class-by-class ac-

curacies exhibited by the different classifiers after the

retraining phase are given in Table 3. By a comparisons
of Tables 2 and 3, one can see that the classification

accuracies provided by the considered unsupervised re-
training classifiers for the July 1996 test set are sharply

higher than the ones exhibited by the single classifiers

trained on the September 1995 image (i.e., 92.76% vs.

50.43%, 95.34% vs. 71.27%, 95.44% vs. 69.78% for the

ML, the RBF-1, the RBF-2 classifiers, respectively). In

greater detail, the retrained classifiers exhibited high

accuracies on all land-cover classes, with exception of

the vineyard class, which is a minority one.
At this point, the three classifiers were combined ac-

cording to the strategies described in Section 5. In order

to evaluate the accuracy of the resulting classification

system, it was applied to the July 1996 test set. The

overall and class-by-class accuracies yielded are given in

Table 4. As one can see, the overall accuracies provided

by all the considered combination strategies (i.e.,

95.58%, 95.39%, and 95.75% for the majority voting, the
Bayesian average, and the maximum posterior proba-

bility strategies, respectively) are similar to the one

yielded by the best-performing classifier composing the

ensemble (i.e., 95.44% obtained by the RBF-2 classifier).

It is worth stressing that the objective of the multiple-

classifier architecture is not only to increase the accuracy

of the classification system but also to increase its ro-

bustness. In particular, the combination strategy should
allow one to recover the possible failure of a single un-

supervised retraining classifier of the ensemble by ex-

ploiting the results provided by the other considered

classifiers. In order to assess this last issue, an experi-

ment was carried out in which the failure of the re-

Table 1

Number of patterns in the training and test sets of both the September

1995 and July 1996 images

Land-cover class Number of patterns

Training set Test set

Pasture 554 589

Forest 304 274

Urban area 408 418

Water body 804 551

Vineyard 179 117

Overall 2249 1949

Table 2

Overall classification accuracies exhibited by the considered classifiers

(trained in a supervised way on the September 1995 image) before the

unsupervised retraining

Classification

technique

Overall classification accuracy (%)

Test set (September 1995) Test set (July 1996)

ML 90.97 50.43

RBF-1 81.79 71.27

RBF-2 81.74 69.78

Table 3

Classification accuracies exhibited by the considered classifiers on the

July 1996 test set after the unsupervised retraining

Land-cover class Classification accuracy (%) (July 1996 test set)

ML RBF-1 RBF-2

Pasture 94.06 99.83 100.00

Forest 87.22 98.54 98.90

Urban area 93.06 98.56 98.56

Water body 100.00 100.00 100.00

Vineyard 64.10 31.62 31.62

Overall 92.76 95.34 95.44

Table 4

Classification accuracies exhibited by the proposed multiple-classifier

system on the July 1996 test set

Land-cover

class

Classification accuracy (%) (July 1996 test set)

Majority

voting

Bayesian

average

Maximum posterior

probability

Pasture 100.00 99.83 99.32

Forest 98.90 98.90 98.54

Urban area 98.56 98.56 98.08

Water body 100.00 100.00 100.00

Vineyard 34.18 31.62 42.73

Overall 95.58 95.39 95.75
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training process of one of the RBF classifiers (i.e.,

RBF-1) was simulated. To this end, the RBF classifier

with 60 hidden neurons, after being trained on the X1

image, was not retrained on the X2 image (let us indicate

this classifier as RBF-3). In this condition, the classifi-

cation accuracy exhibited by the RBF-3 classifier on the

July 1996 test set results equal to the one yielded by the

RBF-1 classifier on the same test set before the unsu-
pervised retraining phase (see Table 2). As already

observed, this overall accuracy (i.e., 71.27%) is not ac-

ceptable. At this point, the ML classifier and the RBF-2

and RBF-3 neural classifiers were combined according

to the strategies described in Section 5. The accuracies

exhibited by the resulting multiple-classifier system are

reported in Table 5. As one can see, even though RBF-3

provided low accuracy on the July 1996 test set, all the
combination strategies resulted in high classification

accuracies, so recovering the simulated failure of the

unsupervised retraining process. In greater detail, the

obtained accuracies are comparable to the ones achieved

by combining the three ‘‘well-retrained’’ classifiers (i.e.,

ML, RBF-1, and RBF-2).

7. Discussion and conclusions

In this paper, the problem of unsupervised retraining

of classifiers for the updating of land-cover maps has

been addressed in the framework of a multiple-classifier

system. The proposed system produces accurate land-
cover maps of a specific study area also from images for

which a reliable ground truth (and hence a suitable

training set) is not available. This is made possible by an

unsupervised updating of the parameters of an ensemble

of parametric and non-parametric classifiers on the basis

of the new image to be classified. In particular, an ML

parametric classifier and RBF neural network non-

parametric classifiers have been considered. However,
given the complexity inherent with the task of un-

supervised retraining, the resulting classifiers are

intrinsically less reliable and less accurate than the cor-
responding supervised approaches, especially for com-

plex data sets. Therefore, the use of methodologies for

the combination of classifiers has been proposed in

order to increase the reliability and the accuracy of

single unsupervised retraining classifiers.

Although extensive experiments on other data sets

are necessary for a final validation of the method, the

results we obtained on the considered data set are very
interesting. In particular, they pointed out that the

proposed system is a promising tool for attaining high

classification accuracies also for images of a given area

for which an updated training set is not available.

The presented method is based on the assumption

that the estimates of the classifier parameters derived

from a supervised training on a previous image of the

considered area can represent rough estimates of the
class distributions in the new image to be categorised.

Then the EM algorithm is applied in order to iteratively

improve such estimates on the basis of the global density

function of the new image.

It is worth noting that the initial estimates usually

cannot be directly used to classify the new image to be

analyzed. In fact in practical situation, depending on

differences in the atmospheric or light conditions exist-
ing between the two acquisition dates, such initial esti-

mates may be significantly different from the true ones.

The proposed method copes with this situation, i.e., the

EM algorithm is able to improve the initial estimates so

that the classification of the new image can be accurately

performed. However, in order to minimize the possi-

bility that the retraining does not converge to accurate

estimates, if possible, we recommend the application of
a pre-processing phase aimed at reducing the differences

between images due to the above-mentioned factors

(simple correction algorithms can be adopted).

At the present, the authors are addressing the prob-

lem of defining criteria suitable to identify the cases in

which the initial estimates of the class distributions are

so different from the true ones that may involve a failure

of the retraining process.
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Appendix A. Estimation of the mixing parameters

P2ðxi=uqÞ for the retraining of RBF neural-network

classifiers

In this appendix, we propose a method for estimating

the values of the mixing parameters P2ðxi=uqÞ of the

Table 5

Classification accuracies exhibited by the proposed multiple-classifier

system on the July 1996 test set when the failure of the unsupervised

retraining of RBF-3 was simulated

Land-cover

class

Classification accuracy

(%) (July 1996 test set)

Majority

voting

Bayesian

average

Maximum posterior

probability

Pasture 98.47 96.43 90.83

Forest 98.90 98.90 99.27

Urban area 98.56 97.84 98.08

Water body 100 100 100

Vineyard 58.11 52.13 58.11

Overall 96.56 95.43 94.20
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RBF neural classifiers (see Section 4.2). These parame-
ters can be estimated by exploiting the multiple-classifier

architecture of the proposed system. In particular, they

can be derived by using the updated parameter vector of

the ML classifier. The strategy adopted is the following.

Let L2 be the set of pixels x2j that are most likely cor-

rectly classified by the ML classifier. This set can be

identified by analysing the estimates of the posterior

probability P2ðxi=x2j Þ provided by the ML classification
algorithm. Let us consider the jth pixel x2j of the image

X2 and let us assume that x2j is classified by the ML

classifier as belonging to the class xk (i.e., xk ¼
arg maxxi2XfP2ðxi=x2j Þg). The pixel x2j is likely to be

correctly classified by the ML classifier (and thus is as-

signed to the set L2 and labelled as belonging to the class

xk) if its estimated posterior probability is above a given

threshold (i.e., P2ðxk=x2j ÞP a, where 0:5 < a < 1 is a real
number usually close to 1). The set L2 is then used to

estimate the mixing parameters P2ðxi=uqÞ according to

the following iterative equation:

P tþ1
2 ðxi=uqÞ ¼

P
x2j2L

i
2
P t
2ðuq=x

2
j ÞP

x2j2L2
P t
2ðuq=x

2
j Þ

ð17Þ

where Li
2 is the subset of L2 containing the pixels x2j

labelled as belonging to the class xi: At each step of the

EM algorithm used for the unsupervised estimation of

the other RBF neural-network parameters (see Eqs.

(12)–(14)), also the Eq. (17) is iterated in order to in-

crease the accuracy in the estimation of the mixing pa-

rameters.

Appendix B. Derivation of the equations for estimating

the parameters of RBF neural-network classifiers

Eqs. (12)–(14) and (17) can be derived by maximizing

the following log-likelihood function:

WðX2=#
n
2Þ ¼

X
x2j 62L2

log
XQ
q¼1

½p2ðx2j=uqÞP2ðuqÞ


þ
XC
i¼1

X
x2j2L

i
2

log
XQ
q¼1

p2ðx2j=uqÞP2ðuqÞP2ðxi=uqÞ
" #8<:

9=;
ð18Þ

which is equivalent to minimizing the error function

EðX2=#
n
2Þ:

EðX2=#
n
2Þ ¼ �WðX2=#

n
2Þ ð19Þ

This task can be achieved by means of the technique

described in [18]. In particular, let us consider the

change DE in the function (19) when replacing the pa-
rameter values of the current iteration with the one of

the next iteration:

DE¼Etþ1ðX2=#
n
2Þ�EtðX2=#

n
2Þ¼

¼�
X
x2j 62L2

log

PQ
q¼1 ptþ1

2 ðx2j=uqÞP tþ1
2 ðuqÞ�

P t
2
ðuq=x

2
j Þ

P t
2
ðuq=x

2
j Þ

� 
PQ

r¼1½pt2ðx2j=urÞP t
2ðurÞ


þ

�
XC
i¼1

XB
x2j2L

i
2

log

PQ
q¼1 ptþ1

2 ðx2j=uqÞP tþ1
2 ðuqÞP tþ1

2 ðxi=uqÞ�
P t
2
ðuq=x

2
j Þ

P t
2
ðuq=x

2
j Þ

� 
PQ

r¼1½pt2ðx2j=urÞP t
2ðurÞP t

2ðxi=urÞ


8>><>>:
9>>=>>;
ð20Þ

where EtðX2=#
n
2Þ and Etþ1ðX2=#

n
2Þ are the error functions

computed with the parameters estimated at the current

and next iterations, respectively. The terms P t
2ðuq=x

2
j Þ are

introduced in order to apply the Jensen�s inequality.

Thanks to such inequality, the following upper-bound

can be obtained:

DE6 �
X
x2j 62L2

XQ
q¼1

P t
2ðuq=x

2
j Þ log

ptþ1
2 ðx2j=uqÞP tþ1

2 ðuqÞPQ
r¼1 p

t
2ðx2j=urÞP t

2ðurÞP t
2ðuq=x

2
j Þ

þ

�
XC
i¼1

XB
x2j2L

i
2

XQ
q¼1

P t
2ðuq=x

2
j Þ �

"

� log
ptþ1
2 ðx2j=uqÞP tþ1

2 ðuqÞP tþ1
2 ðxi=uqÞPQ

r¼1 p
t
2ðx2j=urÞP t

2ðurÞP t
2ðxi=urÞP t

2ðuq=x
2
j Þ

#
ð21Þ

We aim at minimizing this bound with respect to the

values of the parameters computed at the next iteration.

Dropping the terms which depends only on the ‘‘old’’ pa-

rameters, the right-hand side of (21) can be rewritten as:

H ¼ �
X
x2j 62L2

XQ
q¼1

P t
2ðuq=x

2
j Þ log½ptþ1

2 ðx2j=uqÞP tþ1
2 ðuqÞ
 þ

�
XC
i¼1

XB
x2j2L

i
2

XQ
q¼1

P t
2ðuq=x

2
j Þ�

(

� log½ptþ1
2 ðx2j=uqÞP tþ1

2 ðuqÞP tþ1
2 ðxi=uqÞ


)
ð22Þ

and for the Gaussian case:

H ¼ �
X
x2j 62L2

XQ
q¼1

P t
2ðuq=x

2
j Þ�

(

� log P tþ1
2 ðuqÞ

"
� d log rtþ1

2 �
kx2j � ptþ1

2;q k
2

2ðrtþ1
2 Þ2

#)
þ

�
XC
i¼1

XB
x2j2L

i
2

XQ
q¼1

P t
2ðuq=x

2
j Þ�

(

� log P tþ1
2 ðuqÞ

"
þ log P tþ1

2 ðxi=uqÞ

� d log rtþ1
2 �

kx2j � ptþ1
2;q k

2

2ðrtþ1
2 Þ2

#)
ð23Þ

At this point it is possible to minimize H (and hence the

error function Etþ1ðX2=#
n
2Þ) with respect to the ‘‘new’’

parameters. Concerning the parameters r2 and p2;q the
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minimization is straightforward and leads to Eqs. (13)
and (14). Concerning the parameters P2ðuqÞ and

P2ðxi=uqÞ the following constraints should be considered:XQ
q¼1

P2ðuqÞ ¼ 1 ð24Þ

XC
i¼1

P2ðxi=uqÞ ¼ 1 ð25Þ

This can be easily done by introducing two Lagrange

multipliers. Accordingly equations (12) and (17) can be

obtained.
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