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A Multiple-Cascade-Classifier System for a
Robust and Partially Unsupervised Updating
of Land-Cover Maps
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Abstract—A system for a regular updating of land-cover mapsis derive updated land-cover maps. The classification process can
proposed that is based on the use of multitemporal remote sensing pe performed by considering either the information contained
images. Such a system is able to address the updating problem;,, 5 gingle image [1] or the information contained in a multi-
under the realistic but critical constraint that, for the image to be . h . .\
classified (i.e., the most recent of the considered multitemporal temporal series Of'me}ges ofthe Same area [2] ("?" by eXP'O'“”g
dataset) no ground truth information is available. The system the temporal correlation between images acquired at different
is composed of an ensemble of partially unsupervised classifierstimes). The latter approach is called “cascade-classification”
integrated in a multiple-classifier architecture. Each classifier and allows one to increase the categorization accuracy. How-
of the ensemble exhibits the following novel characteristics: 1) ever, at the operating level, both aforementioned approaches are

it is developed in the framework of the cascade-classification IV b d ised classificati lqorith c
approach to exploit the temporal correlation existing between usually based on supervised classiiication algorithms. Lonse-

images acquired at different times in the considered area; and 2) quently, they require the availability of ground truth informa-

it is based on a partially unsupervised methodology capable of tion for the training of the classifiers. Unfortunately, in many
accomplishing the classification process under the aforementioned real cases, it is not possible to rely on training data for all the
critical constraint. Both a parametric maximum-likelihood (ML) images necessary to ensure an updating of land-cover maps that

classification approach and a nonparametric radial basis function . . L .
(RBF) neural-network classification approach are used as basic 'S &S frequent as required by applications. This prevents all the

methods for the development of partially unsupervised cascade 'feémotely sensed images acquired in the investigated area from
classifiers. In addition, in order to generate an effective ensemble being used to update land-cover maps. For these reasons, the

of classification algorithms, hybrid ML and RBF neural-network  process of temporal updating of land-cover maps results in a
cascade classifiers are defined by exploiting the characteristics of complex and challenging problem.

the cascade-classification methodology. The results yielded by the .
different classifiers are combined by using standard unsupervised In previous works [3], [4], the authors have already ad-

combination strategies. This allows the definition of a robust and dressed the aforementioned problem. In particular, partially
accurate partially unsupervised classification system capable of unsupervised classification approaches have been defined and
analyzing a wide typology of remote sensing data (e.g., imagesdeveloped. (The term “partially unsupervised” is used here to
acquired by passive sensors, synthetic aperture radar images, and point out that, on the one hand, no ground truth information is
multisensor and multisource data). Experimental results obtained ’ . ’ P o
assumed to be available for the specific image to be classified,

on a real multitemporal and multisource dataset confirm the . : ;
effectiveness of the proposed system. but, on the other hand, a training set exists related to an image

N ) - of the same geographical area acquired before the one to
_Index Terms—Cascade classification, maximum-likelihood clas- be classified). In [3], a partially unsupervised classification
sifier, multiple classifier systems, multitemporal remote sensing : ' X
images, partially unsupervised classification, radial basis function methodology is proposed that is able to update the parameters
neural networks, updating land-cover maps. of an already trained parametric maximum-likelihood (ML)
classifier on the basis of the distribution of a new image for
which training data are not available. In [4], in order to take
into account the temporal correlation between series of remote
NE OF THE major problems in geographical informasensing images, the partially unsupervised ML classification
tion systems (GISs) consists in defining strategies amaghproach is reformulated in the framework of the Bayesian
procedures for a regular updating of land-cover maps storedrile for cascade classification. This allows an increase in the
the system databases. This crucial task can be carried outrbyustness of the unsupervised retraining process.
using remote sensing images regularly acquired by spaceborngithough the aforementioned approaches have proved ef-
sensors in the specific investigated areas. Such images caridative on several datasets, they exhibit some limitations. First,
analyzed with automatic classification techniques in order tfiven the intrinsic complexity of the problem addressed, these
approaches result in classifiers that are less reliable and less ac-

. . . _ CL#]rate than the corresponding supervised classifiers. Secondly,
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In this paper, a novel classification system aimed at ob- 1) the same se® of C land-cover classes characterizes the
taining an accurate and robust partially unsupervised updating area considered over time (only the spatial and spectral
of land-cover maps is proposed. Such a system extends the distributions of such classes are supposed to vary);
approaches proposed in [3] and [4], defining an effective 2) areliable training s€Y; for the imageX, acquired at;
classification framework based on a multiple-cascade-classifier is available;
system (MCCS), which is able to overcome the main limitations 3) a training selY, for the imageX, acquired at is not
of the aforementioned methods. The ensemble of classifiers available.
used in the MCCS architecture is derived from ML and radial It is worth noting that assumption 1), even if not verified in
basis function (RBF) neural-network classification approachedll possible applications, is reasonable in a wide range of real

Three important methodological novelties are associated wRfPblems.
the presented system: In the aforementioned assumptions, the proposed system

1) all the partially unsupervised classifiers of the ensemhzéms at performing a robust and accurate classificatioX of

are defined in the framework of cascade classification; y epr0|t|r|1|g th(teh|mtagé(1, tTe tralrlnr;_g sng % and ttue |rr|1age t
2) anew nonparametric partially unsupervised cascade cI?sz-a’lr?;twe as the temporal correlation between the classes a
sifier based on RBF neural networks is proposed:; ! z
3) hybrid ML and RBF neural classifiers are defined by exs

- o DY €% System Architecture
ploiting the characteristics of the cascade-classification

approach in order to generate an effective ensemble off e Proposed system is based on a multiple-classifier
classifiers. architecture composed of different classification algorithms

Iti th noting that. thanks to th i i fr see Fig. 1). The choice of this kind of architecture is due to
IS worth noting that, thanks to th€ nonparametric nature ot thig, complexity of the problem addressed. In particular, the

RBF neural-network cascade classifiers, the proposed systeq{S,ic gifficulty of the partially unsupervised classification
able to analyze multisensor and multisource data. problem results in classifiers that are less reliable and less
~ Experimental results obtained on a multitemporal and mulecrate than the corresponding supervised ones, especially for
tisource dataset related to the Island of Sardinia, Italy, Conf”&mplex datasets. Therefore, by taking into account that, in
the effectiveness of the proposed system. _ general, ensembles of classifiers are more accurate and more
The paper is organized into seven sections. Section Il repigyst than the individual classifiers that make them up [5],
the formulation of the problem and describes the geneigk expect that a multiple-classifier approach may increase the
architecture of the proposed system. Section Il presents fifiapility and accuracy of the global classification system.
partially unsupervised classification problem in the framework fyrther step aimed at improving the performance of the
of the cascade-classification approach for both the ML and RBfstem consists in implementing each partially unsupervised
neural-network classification techniques. Section IV address&sssification algorithm of the ensemble in the framework of a
the problem of defining suitable ensembles of cascade classifigsscade-classifier approach, thus exploiting also the temporal
and describes the proposed hybrid ML and RBF classifiegorrelation between the multitemporal images in the updating
Section V deals with the unsupervised strategies used for fh@cess.
combination of the results yielded by the cascade classifiersThe following sections address the individual components of
included in the considered ensemble. Experimental resultg presented system. In particular, the proposed partially unsu-
are reported in Section VI. Finally, Section VII presents pervised cascade classifiers, the strategy adopted to define the
discussion and conclusions. ensemble of cascade classifiers, and the combination methods
will be described in detail.

II. PROBLEM FORMULATION AND DESCRIPTION OF THE lll. PARTIALLY UNSUPERVISEDCLASSIFICATION TECHNIQUES
SYSTEM ARCHITECTURE A CASCADE-CLASSIFIER APPROACH

Let us focus our attention on the choice of each partially
unsupervised classifier to be included in the multiple-classifier
Let X; = {x%7x%7.,.7$1B} andX, = {z%ig?m?x%} architecture. In order to obtain robust and accurate classifiers,

denote two multispectral images composedqfixels and ac- We propose classification strategies defined in the context of
quired in the area under analysis at the tireandt,, respec- the cascade-classifier approach [2], [6]. The standard super-
tively. Let le and 1]2 be the 1x d feature vectors associatedvised cascade-classifier approach (proposed in [2]) exploits the
with the jth pixels of the images (whetrgis the dimensionality correlation between multitemporal images in order to increase
of the input space), and = {w;,ws, ..., wc} be the set of?  the classification accuracy in the cases in which training data
land-cover classes that characterize the geographical area @sa-available for all the images considered. In our method,
sidered at botl, andt,. Letl? be the classification label of thewe extend the application of the standard supervised cas-
jth pixel at the timet,. Finally, let X; and X, be two multi- cade-classifier approach to partially unsupervised classification
variate random variables representing the pixel values (i.e., {®blems. In particular, we exploit the temporal dependence
feature vector values) iX; andX,, respectively. between land-cover classes to increase the reliability and the

In the formulation of the proposed approach, we make tlaecuracy of the unsupervised estimation of the parameters
following assumptions: related to the imag&X..

A. Problem Formulation and Simplifying Assumptions
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Fig. 1. General architecture of the proposed system.

The cascade-classifier decision strategy associates a gengesses P (w,,wp) ,wn, € Q,wp € Q) in an unsupervised

pixel xf of the imageX. with a land-cover class according toway. It is worth noting that usually the estimationgofX; /w,.)

the following decision rule [2]: (wr € Q,i = 1,2) involves the computation of a parameter

vector. The number and nature of the vector components

depend on the specific classifier used. Consequently, the proce-
P(wm/:nﬁ f) = max {P wh/x]’ J)} (1) dure to be adopted to accomplish the unsupervised estimation

process depends on the technique used to carry out the cascade

whereP (Wh/37 ,z3) is the value of the probability that thigh ~ classification, in particular, on the vector of parameters required

pixel of the |mage belongs to the class at ., given the ob- by the classifier.

servationse} and 2. Under the conventional assumption of The possibility of establishing a relationship between the

class-conditional independence [2], [6], the decision rule (1) calassifier parameters and the statistical terms involved in (2)

I? =w,, € Qifand only if

be rewritten as [4] is a basic constraint that each classification technique should

satisfy in order to permit the use of the cascade-classification

IZ =wy, € Qif and only if decision rule. To meet this requirement, we propose to use

c two suitable classification methods. The first is a parametric

Zp(w}/wn) p(2F wm) P (wn,wm) approach based on the ML classifier [3]; the second consists
n=1

of a nonparametric technique based on RBF neural networks
[7], [8]- The specific architectures of the ML and RBF cascade
= hax Zp /‘*’n /‘*’h) (wn,wn) classifiers and the procedures for the partially unsupervised es-
timation of the related parameters are described in Section IlI-A
) and section I1I-B.

wherep ( /wr) is the value of the conditional density function
for the plXElL given the class,. € 2, andP (w,,ws) is the
prior joint probablhty of the pair of classes/{,w). The latter The formulation of the partially unsupervised classification
term takes into account the temporal correlation between thmblem in the framework of the ML cascade approach has al-
two images. ready been addressed in [4]. Therefore, here we briefly recall
We propose to integrate the partially unsupervised classitite basic issues described in that paper.
cation of the imageX, in the context of the above-described For simplicity, let us assume that the probability density func-
classification rule. As the training séf, is not available, tion of the generic class, at the timet; (i.e.,p (X;/w,), w, €
the density functions of the classes at the time (i.e., ,7 = 1,2) canbe described by a Gaussian distribution (i.e., by
p(Xi/wn),wn € Q) are the only statistical terms of (2)a mean vectoy! and a covariance matriX:). Accordingly,
that we can estimate in a completely supervised way. THigperquadrics decision surfaces can be modeled. Under this
means that, in order to accomplish the classification task, wemmon assumption (widely adopted for multispectral image
should estimate both the density functions of the classes afclassification problems), the mean vectors and the covariance
(p(X2/wp),wn € Q) and the prior joint probabilities of the matrices that characterize the conditional density functions of

. ML Cascade Classifier
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the classes &t can be easily computed by a standard procedusie each iteration, the estimated parameters evolve from their
using the training s€Y ;. Concerning the parameter vectbof initial values to the final ones by maximizing the following
the classifier to be estimated in a partially unsupervised way)dg-likelihood function (the convergence to a local maximum
consists of the following components: can be proven) [9]:

9= [, 5, P (w1,01) -, g, B8, P (wo,we)] (3) L(Xu, Xo/0)

B c C
where the superscript “2” denotes the parameters of the con- lo 1 2 P
" : : i > 1og Y > pla/wn) p(a] fwn) P (wn,wn) p- (9)
ditional density functions of the classes at the timeTo carry el he1 (feon) plajfon) P )

out the partially unsupervised estimation process, we propose to , i
adopt a procedure based on the observation that, under the adhe estimates of the parameters obtained at convergence and

sumption of class-conditional independence over time, the jof°S€ achieved by the classical supervised procedure at the time
density function of the imageX; andX. (i.e.,p(X1, X»)) can t; are then substituted into (2) in order to accomplish the ML

be described as a mixture density withx C' components (i.e. cascade-classification process. We refer the reader to [4] for
as many components as possible pairs of classes) greater details on the ML partially unsupervised cascade clas-
sifier and on alternative initialization conditions on the iterative

estimation algorithm.

i=1

c C
p(X1,X2) =) > p(X1/wn) p(Xa/wp) P(wn,wn). (4)
n=1h=1 B. RBF Neural-Network Cascade Classifier

In this context, the estimation of the above terms becomesThe problem of partially unsupervised cascade classification
a mixture—density estimation problem, which can be solvdy using RBF neural networks is much more complex than the
via the expectation-maximization (EM) algorithm [9]-[12].one associated with the ML parametric cascade classifier. The
By applying such an algorithm, we can derive the followingncreased complexity depends mainly on the nonparametric
iterative equations to estimate the components of the vekctonature of RBF neural networks. In our case, we have to resolve
necessary to accomplish the cascade-classification processy4 critical issues in order to develop the cascade classifier
(see (5)—(7) at the bottom of the page) where the superscriptsthe framework of RBF neural networks: 1) we should
t andt + 1 refer to the values of the parameters at the curredéfine a specific architecture that is able to implement the
and next iterations, respectively; the superscripefers to the cascade-classification decision rule; 2) we should devise a par-
vector transpose operation; and the joint posterior probabilitigally unsupervised procedure for the training of the proposed

of the classes are approximated by architecture.
. . First of all, let us briefly recall the standard architecture of
P! (wn, wn /5, 75) an RBF neural classifier to be used for the classification of a
o p(aj/wn) p'(xF wn) P (wn,wn) generic imageX; (see Fig. 2). This architecture is made up
-~ ¢ ¢ - (8 of three layers: an input layer (composed of as many units as
ng le p(w}/wy) pt(23 /wy) Pt (wg,wy) input features), a hidden layer (composedafeurons), and an

output layer (composed of as many units as land-cover classes).
It is worth noting that all the previous equations implicitlyThe input layer just propagates the input features to the hidden
depend on}. Concerning the initialization of the componentdayer. Each unit of the hidden layer applies a simple nonlinear
of the vectord, the initial values of the parameters of thdransformation to the input data according to a symmetric radial
density functions of classes &t are obtained by consideringbasis functionp, (usually a Gaussian function characterized by
the corresponding values estimated at timeby supervised a mean valuer, and a widths,). The connections between the
learning, whereas all the prior joint probabilities of classes anédden and output units are associated with a humerical value
assumed to have the same values. It is possible to prove tlicatled weight (letw! denote the weight that connects tht&

> { S Ptannfeladb

(3] =1 (5)
RS Pt(wn./wh/le»,:v?)}

{ f: Pt(wn,w;,,/:v},xi)} (wf - [lti]Hl)T (J:f — [17] t+1)

B ( C

> {Z Pt(wmwh/x;?x?)}

=1 (n=1

(6)

B
1
P (wn,wn) = 5 > Plwn,wn/z],25) (7)
=1
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Fig. 2. Standard architecture of a supervised RBF neural-network classifier.

hidden neuron to theth output neuron). The output neuron® (Xi/apj,) is the value of the conditional density function of
apply a linear transformation to the weighted outputs of ttthe variableX;, given the kernep:; P (wn,wh/go}c,gog) is the
hidden neurons. It can be proven that if the classifier has bgemt conditional probability of the pair of classes.(, ws),
properly trained [13], the outputs of an RBF neural network cagiven the pair of kernelsgj,, ¢2); and P (i}, ¢2) is the joint
be related to the conditional densities of the classes, which @réor probability of the kernels4, cpg). In this context, the
expressed as a mixture of the kernel functions associated wittscade-classification decision rule can be rewritten as shown
the units of the hidden layer. In addition, the statistical ternis (14) at the bottom of the next page.
computed by the neural classifier can be related to the globalt is worth noting that the temporal correlation between the
density functiorp(X;) of the imageX; as follows: two images is taken into account by the ternﬁs(wi,?wg)
o s and P((wln,quh)/g0,1€,¢?1)(. 2By ?)nalyzing (14), we can observe
N ‘ that p (z}/¢;) and p (z3/¢;) can be derived by applying
p(Xi) = Z P(Xi/@s)P (0s) Plorfes)  (10) two standard RBF neural-network classifiers to theand
to images, respectively. In particular, we can apply an RBF
wherep (X;/¢.) is the conditional density of the variable; neural-network classifier witl hidden units to the imag;
given the kernel functiop,; P (w,/¢;) is the conditional prob- and an RBF neural-network classifier wigh hidden units to
ability of the classy,, given the kerneb,; P () is the prior - the imageX, (see Fig. 3). If a proper training algorithm is used,
probability of the kernep,; ands is the number of kernels con-the termsp (ﬂ?}/@}e) and p (x?/g,g) are given by the outputs
sidered. It is worth noting that the statistical terms in (10) cast the hidden neurons of the aforementioned neural classifiers.
be associated with the parameters of the RBF neural architegever, in order to implement the cascade-classification
ture as follows [13]: decision rule, a nonconventional architecture should be consid-
ered, which involves the joint statistical terms(¢} , »2) and
s (Xi) =p(Xi/s) (1) p (wn,wn /). 02) in the classification proces(s.kToqt)his end,
wl =P (ps) P(wy/ps). (12)  the outputs of the hidden neurons of theandt, networks are

We refer the reader to [7] and [8] for more details on standapdi{en as input to a specific block (et us call it a “cascade clas-
ification” block) that presents as many outputs as land-cover

RBF neural classifiers. S . . .
In order to define a cascade classifier in the context 8pssgs (|.e.Q outputs). In partlcular, the outputy, that is

the RBF neural-network theory, let us approximate the joiﬁ)tssomated with the land-cover classis given by

density functionp (X1, X5) of the two imagesX; and X, c K Q

as a mixture of Gaussian kernel functions. To this end, lg}, (z],27) = > Y )"

us considerK kernel functionsy} and @ kernel functions n=1k=1q=1

@2 associated with the statistics of the imagés and X, .P (@i#ﬂi) P(wnvwh/(piv(pg)(pi (I/}) @3 (xg) . (15)

respectively. Accordingly, under the assumption of kernel-con-

ditional independence in the temporal domain, we can write According to (14), each pixel is classified as belonging to the

the expression (13) shown at the bottom of the page whédamd-cover class associated with the maximum output value.

r=1s=1

c Q
p(X1,X2) =D """ p(Xi/h) p(Xa/9]) P (¢k,07) P(wn, wn/ 0k 03) (13)

h=1n=1k=1qg=1
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Fig. 3. Architecture of the proposed partially unsupervised RBF neural cascade classifier (solid line). The architecture of the standard Rétwoduusied
for the supervised estimation of the statistical parameters is also shown (dashed line).

The main problem that remains to be solved is the estimatiprove that part of the components of the parameter vector can
of all the parameters considered in the proposed architecture lmesestimated by using the following iterative equations

partially unsupervised way (i.e., by using only the joint density B (K

function p (X1, X5) and the training se¥;). Concerning the > { > Pt(wiw?/x}vﬁ)} 3

parameters of the (X1 /¢}) (i.e., the centers} and the widths [x2]" = J:; ’:;( 7)
o} of the Gaussian kernel functions that process the inkage S S Pl 02 )zt )}

they can be estimated according to the statistical procedure de- j=1 Lk=1 al T T

scribed in [7] and [8]. Consequently, the parameter vegtbiat B (K L 91 o ) t+1]2
remains to be estimated in a partially unsupervised way is com- > { > Py /] %)} ‘ @ =[] H
posed of the following terms: [o§]t+1 L =

15 { £ Pk /ot

19—[7r1 o%,...,wé,aé,]’(g@%,g@%),...,P((p}(,goé), j=1 Lg=
Plwi,w1 /91, 01), ..., Plwe,we/¢k. vp)]  (16) (18)
wheren? anda? are the centers and the widths characterizifig' (1. ¥;) = Z P!y, 02/, 25) (19)

q q
the kernel functiong, that process the imag€,. In order to

estimate the components of the parameter vector, we proposetered is the dlmen3|onallty of the input space; the superscripts
apply the EM algorithm to (13). Accordingly, it is possible tat andt + 1 refer to the values of the parameters at the current

2 =w,, € Qifand only if

C K Q
SN olaj/en) p(x/02) P (ks 02) Plwn,wm/ ok ©7)

C K Q
= max {Z SO plaj/en) p(a3/97) P (ks ©2) Plwn, wn /o, wﬁ)} : (14)
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and next iterations, respectively; andfﬁé(wk (pq/:LJ, J) are to the land-cover class, and xz ¢ Y. Analogously, let

approximated by Yo . be the set of pairs of plerSc} %) such thatr} ¢ Y,
and :LJ € Y,yis categorized by the ML cascade classmer as
P (k. /75, 25) belonging to the class,,,. The iterative equations to be used to
p(z 1/9%) ta ‘?/@2) Pt (9011«/903) (20) estimate the joint conditional probabilities are
i XQ) p(@/el) p'(a3/03) P! (01, 3) PP (wnwn /g 0y)
=t 1
Concerning the initialization of the aforementionéd’y Z P'(¢}, ‘Pq/%v J)
components of the parameter vectyrthe initial values of the (x},23) € Yon
parameters of the conditional density functions of kernels at [ C

can be obtained by applying a standard unsupervised clusterirg Z Z P'(wg,wn/ e, <pq) Pt(e}, (pq/lj, ])
algorithm to theX, image [7], whereas the initial values of (21,22)€Y, o Lo=1
prior joint probabilities of the kernels can be easily computed

in the assumption of independence between the kernels at two c .

dates fi.e.(or, ¢) = Plgx) - P, D | P wnwr/ehel) Pleker/agal)
As we have already pointed out, the estimation of the RBF (z}.2?)€Yo.n Lf=1

cascade neural-network classifier parameters is significantly (21)

more complex than the estimation of ML cascade- Class'f'Where the normalizing factod is equal to
parameters. Despite that the paramemgcsz,andP (ok,02)

of the vectory can be estimated in a fully unsuperwsed c

way, the estimation of the joint conditional probabilities — A= > Plek, )z}, ad)
P (wn,wn/ ¢}, ¢2) requires other information in addition to h=1 | (21
the one contained in the training S€4 (it is worth noting that

the termsP (wn,wr/ ¢}, ) express the relationship between <
kernel functions and land-cover classes). To solve this problem, + Z Z P! (<Pk %/xw ])
we propose to exploit some of the information obtained (at n=l | (a,22)eYn o

convergence) by the ML cascade classifier described in the ¢ c

Section llI-A. In particular, a s€Y, of pixels that is composed

of the patterns that are most likely correctly categorized by + z_: Z Z P! (w’“”pq/m i ) (22)

the ML cascade classifier is used for the initialization of the nELA=L (203 €Y

P (wn./wh/go,lw(pi) conditional probabilities. These patternst is worth noting that this iterative procedure significantly im-
are selected on the basis of the values of the posterior propesves the initial estimates biased by the patterns included in
bilities provided by the ML classifier. In greater detail, pixelé&?z.

associated with values of the posterior probabilities above aAnalogously to the ML cascade classifier, also in this case the
predefined threshold are chosen. LeY, ,,, be the set of pairs estimated parameters evolve from their initial values to the final
of pixels (xl 2) such thal‘:c1 € Y1 belongs to the land-cover ones by maximizing the log-likelihood function (23) shown at
classw,, and such thatr2 € Y, is categorized by the ML the bottom of the page (the convergence to a local maximum
cascade classifier as belonglng to the class Let Y, o be canbe proven), wher¥ is the set of pairs of pixelsif;, 2

the set of pairs of pixelsz(j, #7) such thatr} € Y, belongs such that} ¢ Y, andz? ¢ Y.

K Q
L(Xy,Xp/d)= Y log {Z > p(xj/ek) p (25/92) P (k. wi)}
k=1

(a: ,x )6100 q=1
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The estimates of the parameters obtained at convergence iand partially unsupervised way by the original classifiers.
the ones achieved by the classical supervised procedure are Udegbe hybrid classifiers are described in the following.
to accomplish the RBF cascade-classification process. Let PML(wy,wp), pME (X1 /wy), and pM= (X5 /wy,) de-
note the joint probabilities and the conditional densities of
classes estimated by the ML cascade classifier, respectively.

RBF 1 2 RBF 1 2
IV. STRATEGY FORGENERATING ENSEMBLES OFPARTIALLY ~ Analogously, let P (wnswn/ehs03), P (ks 93),

RBF RBF iAi
UNSUPERVISEDCASCADE CLASSIFIERS HYBRID ML AND RBF P (X1/wn), and p™=* (X, /wy,) denote the joint prob-
NEURAL-NETWORK CLASSIFIERS abilities of the classes conditioned to the kernels, the joint

probabilities of the kernels, and the conditional densities of the

The selection of the pool of classifiers to be integrated into tiasses estimated by the RBF cascade classifier, respectively.
multiple-cascade-classifier architecture is an important and crit-The first hybrid classifier (let us call it the ML-hybrid
ical task. In the literature, several different strategies for definirigscade classifier) is obtained by merging the joint probabilities
a classifier ensemble have been proposed [5], [14]-[17]. Freatimated by the RBF cascade classifier with the conditional
a theoretical viewpoint, necessary and sufficient conditions fdensities estimated by the ML cascade classifier. Hence, we
an ensemble of classifiers to be more accurate than any of itshave the following corresponding classification rule
d?vidual members are that the classifiers should be accurate gnd wn € Qif and only if
different [18]. In our case, we can control only the second con- p.
dition, since no training set is available to ven_fy.t_he first one. ZpML (:v}/wn) pML (:vf/wm) PRBF (4 o)

The main issue to be resolved for the definition of the en- <=
semble concerns the capability of different classifiers to incur c
uncorrelated errors. In practice, several strategies have been ax {ZPML (3;; /wn) pME (Jjj’ /wh) PRBF (wn,um)}
proposed to make up pools of classifiers that incur uncorre- “:€9 | 7=}
lated errors. These strategies involve the selection of different (24)
classification algorithms, the choice of different initial trainin
conditions for a given classification algorithm, the use of dif-
ferent architectures for the same kind of classifier (e.g., neufdl ™" (wn,w)
networks), the manipulation of the training examples, the ma- K <
nipulation of the input features, the manipulation of the output = Z Z PRBF (wm wh/@llm tpz) PRBEF (@llw @3)- (25)
targets, the injection of randomness, etc. [18]. In our system, the k=1g¢=1
choice of both a parametric (ML) and a nonparametric (RBF) Analogously, the second hybrid classifier (let us call it the
classifier guarantees the use of two classification algorithr®BF-hybrid cascade classifier) is obtained by merging the
based on significantly different principles. For this reason, weint probabilities estimated by the ML cascade classifier with
expect these classifiers to incur sufficiently uncorrelated ehe conditional densities)RBF(a:},xf/wn,wh) that can be
rors. However, two classification algorithms are not enough &stimated by using the RBF cascade classifier parameters.
define an effective multiple-classifier architecture. To increas¢ence, the corresponding classification rule is
the reliability of the system, we need to generate a pool of
N classifiers (V > 2). According to the literature, we could

here

2 . )
;i =wm € Q if and only if

define different RBF neural-network architectures in order t RBF (.’171- xz/w w )PML (Wns @)
derive different classification algorithms for the ensemble [19%:1 b 32y o
However, as we are dealing with cascade-classification tech- c
niques, we propose to adopt an alternative, deterministic, and — max Z pRBF (x1_ 22w wh) pML (W, wh)
. . . ]7 J nsy L ns L
simple strategy for making up the ensemble. This strategy wn €2 |
is based on the characteristics of the cascade-classification (26)

approach, in which a set of key parameters, estimated by th " C RBF, 1 2
partially unsupervised process, is composed of the prior joiWFere the conditional densitipS (xi’xj/w”’wh) can be ap-

probabilities of classe® (w,,wy) (they are associated with proximated by (27) shov_vn at the. bottom of the next page.
the temporal correlation between classes). The different cas N use ofthese hybrid classifiers allows one to obtain a mul-

cade classifiers (i.e., ML and RBF neural networks) perfor Ie—clas§|f|er archrFecture_composed of -four classifiers. It is
orth noting that it is possible to further increase the number

different estimations of the aforementioned probabilities, ov?lt lassifiers by extending the af tioned dure to th
the basis of the different classification and estimation princ?— classmers by extending the aforementioned procedure 1o the
se of additional RBF neural-network architectures with dif-

ples. According to this observation, we propose to introduig . .
in the ensemble hybrid classifiers obtained by exchanging t éent numbers of hidden units.
estimates of the prior joint probabilities of classes performed
by different algorithms. In our case, given an ML cascade
classifier and an RBF neural-network cascade classifier, this
strategy results in an ensemble composed of the two “orig-In the proposed system, the classification results provided by
inal” classifiers and of two hybrid ML and RBF algorithmsthe N members of the considered pool of cascade classifiers
obtained by exchanging the prior joint probabilities estimateate combined by using classical multiple-classifier strategies. In

V. MULTIPLE-CASCADE-CLASSIFIER ARCHITECTURE
UNSUPERVISEDCOMBINATION STRATEGIES
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(@ (b)
Fig. 4. Bands 5 of the Landsat-5 TM images utilized for the experiments. (a) Image acquired in September 1995. (b) Image acquired in July 1996.

particular, we consider two simple and widely used combinatimmherel’f’,Y (wh/x},x?) is the estimate of the posterior proba-
proceduresmajority votingand combination by Bayesian av- bility P (wh/:c} ,xf) provided by theyth classifier. The classi-
erage[5]. Both procedures exhibit the common characteristic ditation process is then carried out according to the Bayes rule
requiring no prior training to carry out the combination procesby selecting the land-cover class associated with the maximum
This is a mandatory requirement in our approach, as we hawgerage probability.

no ground truth information (and hence no training set) for the

imageXs. VI. EXPERIMENTAL RESULTS

A. Majority Voting To assess the effectiveness of the proposed approach, dif-
. o .Taarent experiments were carried out on a dataset made up of two
This procedure faces the combination problem by consigd- i Li ired by the Th :
ering the results of each single classifier in terms of the cIamu tispectral images acquire 4 the Thematic Mappgr (TM)
nsor of the Landsat 5 satellite. The selected test site was a

labels assigned to the patterns. A given input pattern recei €S tion (412« 382 pixels) of a scene including Lake Mulargia
N classification labels from the MCCS: each label correspongg the Island of Sardinia, Italy. The two images used in the ex-
to one of theC' classes considered. The combination method IS, i<t were acquired’ in September 1995 ¢nd July 1996
based on the interpretation of the classification label resulti ). Fig. 4 shows channels 5 of both images. Five land-cover
from each classifier as a “vote” to one of tiié land-cover (|asses (i.e., urban area, forest, pasture, water body, and vine-
classes. The data class that receives the largest number of VOig8) '\vhich characterize the test site at the above-mentioned
is taken as the class of the input pattern. dates, were considered. The available ground truth was used to
derive a training set and a test set for each image (see Table I).
To carry out the experiments, we assumed that only the training
This strategy is based on the remark that, given the obsergat associated with the image acquired in September 1995 was
tionsz} andx?, the N classifiers considered provide an estiavailable. We used the training set of the July 1996 image only
mate of the posterior probabilit§ (w, /x} ,x?) for each class for comparisons with completely supervised classifiers.
wp € . Therefore, a possible strategy for combining these Partially unsupervised ML and RBF neural-network cascade
classifiers consists in the computation of the average posteritassifiers were applied to the September 1995 and July
probabilities, i.e., 1996 images. For the ML cascade classifier, the assumption of
1N Gaussian distributions was made for the density functions of the
pave (wh/(p},gj’?) =¥ Z P, (Wh/$;7 ;,;32) (28) classes (this is a reasonable assumption, as we considered TM
v=1

B. Combination by Bayesian Aage

images). Concerning the RBF neural cascade classifier, in order

Q0 K
Zl kzl PEBE (w,,,wn [, 02) PRBF (@, 02) pRPF (2} /r) pRPF (25 /¢2)
2 q=1k=

P (@ fwns wn)

~

P (27)

0 K
qujl k; PRBF (w,, wy [}, ©2) PREF (o1 ¢2)
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TABLE | TABLE I
NUMBER OF PATTERNS IN THE TRAINING AND TEST SETS FORBOTH THE CLASSIFICATION ACCURACIES OBTAINED BY THE FOUR PARTIALLY
SEPTEMBER1995AND JULY 1996 MAGES UNSUPERVISED CASCADE CLASSIFIERS INCLUDED IN THE
PROPOSEDMULTIPLE-CLASSIFIER ARCHITECTURE
Land-cover class Number of patterns (JuLy 1996 TEST SET)
Training set Test set

Pasture 554 589 Land-cover class Classification accuracy (%)

Forest 304 274 ML RBF ML-hybrid RBF-hybrid
Urban area 408 418 Pasture 83.53 9491 85.23 94.40
‘Water body 804 551 Forest 97.45 100.00 97.45 98.91

Vineyard 179 117 Urban area 95.69 99.76 94.98 96.41

Overall 2249 1949 Water body 100.00 100.00 100.00 100.00

Vineyard 62.39 61.54 61.54 66.67
Overall 91.48 96.10 91.79 95.38

. i . Kappa coefficient 0.88 0.94 0.89 0.93
to exploit its nonparametric nature, five texture features basea

on the gray-level co-occurrence matrix (i.e., sum variance, sum
average, correlation, entropy, and difference variance) [20pth the RBF and RBF-hybrid classifiers are very high (i.e.,
were computed and given as input to the classifier in additi@®.10% and 95.38%, respectively), and the overall accuracies
to the six TM channels. These features were obtained by usin@vided by the ML and ML-hybrid classifiers are satisfactory
a window size equal to ¥ 7 and an interpixel distance equalj.e., 91.48% and 91.79%, respectively). This confirms the
to 1. effectiveness of the partially unsupervised training process.
As regards the ML cascade classifier, the parameters of tiemparisons between standard and hybrid classifiers (i.e., RBF
Gaussian density functions of the classes, avere computed versus RBF-hybrid and ML versus ML-hybrid) point out that
in a supervised way by using the available training set for tlkese classifiers provided very similar overall accuracies. How-
September 1995 image (i.&; ). These values were also used t@ver, a deeper analysis of the results reveals some important
initialize the parameters of the conditional density functions diifferences between the considered classification techniques.
the classes at. Concerning the RBF cascade classifier, severfibr example, the accuracy exhibited by the RBF-hybrid
trials were carried out in order to derive an effective number oascade classifier on the vineyard class is significantly higher
neurons to be used in the hidden layer. To this end, experimetitan the one exhibited by the RBF neural cascade classifier
were carried out using a standard RBF architecture trained (., 66.67% versus 61.54%). If one considers the confusion
the available s€Y; and applied to the; test set. The highest ac-matrices resulting from the aforementioned experiments [see
curacy was obtained by an architecture composed of 35 hiddeable Ili(a)—(d)], it is possible to verify other significant
units. On the basis of this result, an architecture composeddifferences in the behaviors of the classifiers on the different
70 hidden units was used for the RBF cascade classifier (i.e.,3asses. For example, the RBF classifier misclassifies 30
units related to the, image and 35 units related to themage). pasture patterns as belonging to urban areas, whereas the
Itis worth noting that the parameters of the 35 hidden units ass@BF-hybrid classifier never incurs such a classification error.
ciated withX ; were fixed according to the values achieved in @his confirms that the assumption that the four classifiers incur
supervised way in the aforementioned experiment. The valuegyite uncorrelated errors is reasonable.
the parameters of the 35 hidden units used to process the imagat this point, the four classifiers were combined by using
X, were initialized by applying an unsupervised clustering t8oth the majority voting and combination by Bayesian average
that image. strategies (concerning the majority-voting strategy, in the case
The parameters of the vectajselated to the ML and RBF where more than one class received the same number of votes,
cascade classifiers were estimated in an unsupervised waythy class with the maximum posterior probability was chosen).
using the proposed formulations of the iterative EM algorithmhe accuracies obtained on the July 1996 test set are given in
[see (5)—(8), (17)—(19), (21), and (22)]. First, the ML cascadkable IV. Both combination strategies provided very high accu-
classifier was trained, and the patterns classified &iffoste- racies on all the land-cover classes, with the exception of the
riori probability higher than the threshold valae- 0.98 were vineyard class, which is a minority one. By comparing Tables II
used to generate the S8t in order to support the RBF training and 1V, one can conclude that the classification accuracies ob-
process. The EM algorithms adopted for the ML and RBF pagined combining the results of the partially unsupervised cas-
tially unsupervised training processes converged in 11 and @&de classifiers by the two combination strategies considered
iterations, respectively. At the end of the iterative process, thee significantly higher than the accuracy exhibited by the worst
resulting estimates were used to perform the classification of tiagle classifier (i.e., 96.56% and 94.77% versus 91.48%). In
July 1996 image. In addition, from the considered ML and RBparticular, the classification accuracy obtained by applying the
cascade classifiers, the two hybrid ML and RBF neural-networkajority rule strategy is also higher than those exhibited by all
cascade classifiers were derived according to the strategy @ single classifiers making up the ensemble.
scribed in Section IV. Also, these hybrid classifiers were applied As stated in the methodological part of the paper, the objec-
to the July 1996 image. tive of the multiple-classifier approach is not only to improve
The classification accuracies and the kappa coefficieritse overall classification accuracy of the system but also to in-
of accuracy exhibited by the aforementioned four partiallgrease its robustness. In order to investigate this aspect, an ex-
unsupervised cascade classifiers on#th&est set are given in periment was carried out in which the failure of the training
Table Il. As one can see, the performances of all the classifign@cess of the RBF neural cascade classifier was simulated. In
are very good. In particular, the overall accuracies exhibited pgrticular, in order to simulate this situation, the partially unsu-
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TABLE Il
CONFUSION MATRICES THAT RESULTED FROM THE CLASSIFICATION OF THEJULY 1996 TEST SET BY USING THE PROPOSEDPARTIALLY UNSUPERVISED
TECHNIQUES (@) ML CASCADE CLASSIFIER; (b) RBF NEURAL CASCADE CLASSIFIER, (¢) ML-HYBRID CASCADE CLASSIFIER, (d) RBF-HYBRID
NEURAL CASCADE CLASSIFIER

Pasture Forest Urban area Water body Vineyard
Pasture 492 12 85 0 0
Forest 2 267 2 0 3
Urban area 5 5 400 0 8
Water body 0 0 0 551 0
Vineyard 23 11 10 0 73
()
Pasture Forest Urban area Water body Vineyard
Pasture 559 0 30 0 0
Forest 0 274 0 0 0
Urban area 0 0 417 1 0
Water body 0 0 0 551 0
Vineyard 31 11 3 0 72
(b)
Pasture Forest Urban area Water body Vineyard
Pasture 502 15 72 0 0
Forest 2 267 2 0 3
Urban area 5 7 397 0 9
Water body 0 0 0 551 0
Vineyard 21 11 13 0 72
(©)
Pasture Forest Urban area Water body Vineyard
Pasture 556 23 0 10 0
Forest 0 271 0 2 1
Urban area 15 0 403 0 0
Water body 0 0 0 551 0
Vineyard 21 0 3 15 78
(d)
TABLE IV TABLE V

OVERALL CLASSIFICATION ACCURACIESEXHIBITED BY THE FOUR PARTIALLY
UNSUPERVISEDCASCADE-CLASSIFIERS INCLUDED IN THE PROPOSED
MULTIPLE-CLASSIFIER ARCHITECTURE(JULY 1996 TEST SET). THE RESULTS
ARE RELATED TO THE CASE IN WHICH A FAILURE IN THE PARTIALLY

OVERALL CLASSIFICATION ACCURACIESEXHIBITED BY THE PROPOSED
MULTIPLE-CASCADE-CLASSIFIER SYSTEM

Classification accuracy (%)

Land-cover class

Bayesian Average Majority rule UNSUPERVISEDTRAINING OF THE RBF CASCADE CLASSIFIER WAS SIMULATED .
Pasture 91.51 94.06 THE OVERALL ACCURACY OBTAINED AFTER COMBINING THE PROPOSED
Forest 99'27 99'64 CLASSIFIERS ISALSO GIVEN
V[é;t;::t?;fji ?goog ?3023 Overall classification accuracy (%)
Vineyard 64.10 76.06 ML RBF  RBF-hybrid  ML-hybrid 'zafr’:‘an Mall"“ty
e e 265 91.48 67.68 72.75 91.74 ;]2 46ge 9r;1 ;0
Kappa coefficient 0.93 0.95 : . . . . ]

failures of the partially unsupervised training process of single
pervised training of the parameters of the RBF architecture wagscade-classification techniques.
carried out by replacing the image, with the imageX,. Itis Finally, in order to completely assess the effectiveness of
worth noting that the resulting incorrect estimation of the RBfhe proposed methodology, two additional experiments were
parameters also affects the hybrid classifiers. Table V preses#gried out using a fully supervised standard RBF classifier.
the classification accuracies obtained by this experiment. Asthe first experiment, the RBF classifier was trained on the
can be seen, even though the overall accuracies exhibitedSsptember 1995 training set and tested on the July 1996 image.
both the RBF and the RBF-hybrid cascade classifiers are vaiye obtained results are given in Table VI. As one can see,
poor (i.e, 67.68% and 72.75%, respectively), both combinatitie standard supervised RBF neural-network classifier trained
strategies (i.e., combination by Bayesian average strategy amdthe “old” training set was unable to classify the “new”
the majority rule) allow the presented system to achieve clasrage with an acceptable accuracy, thus confirming that the
sification accuracies (i.e., 92.46% and 95.90%) higher than thse of a more complex classification methodology based on
ones yielded by all the single classifiers. This confirms that tleepartially unsupervised training process is mandatory. In the
proposed architecture based on multiple cascade classifiers gecond experiment, the RBF classifier was trained on the July
mits one to increase the robustness of the system versus pos<iBRS training set and applied to the test set related to the same
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TABLE VI
CLASSIFICATION ACCURACIESEXHIBITED BY A STANDARD SUPERVISEDRBF
NEURAL CLASSIFIER TRAINED ON THE SEPTEMBER1995 MAGE AND TESTED

1995

TABLE VII
CLASSIFICATION ACCURACIESEXHIBITED BY A STANDARD SUPERVISEDRBF
CLASSIFIER TRAINED AND TESTED ON THEJULY 1996 MAGE

ON THE JULY 1996 MAGE

Land cover class Classification accuracy

Land-cover class Classification accuracy (%) (%)
Pasture 47.70 Pasture 89.64
Forest 94.16 Forest 99.27

Urban area 66.27 Urban area 88.28
Water body 100.00 Water body 100.00
Vineyard 45.30 Vineyard 67.52
Overall 72.85 Overall 92.30
Kappa coefficient 0.65 Kappa coefficient 0.89

image (it is worth noting that this training set was not considerd@ accurate values of the classifier parameters. The accuracy ob-
in the previous experiments, as we assumed that it was fjiféd at convergence depends both on the reliability of the ini-
available). Table VII gives the obtained results. A comparisdi@lization conditions of the partially unsupervised estimation
of these results with the ones provided in Table IV points o@ifocedures and on the specific classification algorithm consid-
that the proposed system outperforms the standard supervigegtl. However, the use of the multiple-cascade-classifier archi-
RBF classifier. This surprising result, which depends mainigcture reduces the overall probability that the system may not
on the ability of the proposed approach to exploit the tempomilicceed, thus increasing the robustness of the architecture to the
correlation between the two images considered, confirms tpebability of failure of the partially unsupervised training of
effectiveness of the presented methodology. each single classifier.

In the experiments carried out on different remote sensing
datasets, the proposed system proved effective, providing both

In this paper, a novel MCCS for a partially unsuperviseglgh classification accuracy and high roboustness. Conse-

updating of land-cover maps has been proposed. This syst%lrﬁntly' It seems a very promising tool to be integrated mtp
- . a GIS system for a regular updating of land-cover maps. It is
allows one to update the existing land-cover maps of a given

- o . ¥vorth noting that, in the case where an “old” ground truth is not
area by exploiting a new remote sensing image acquired on the . . .
) : . . . vailable, the old land-cover map itself can be considered as the
investigated site, without requiring the related ground trut
The main features of the proposed system are the followintgr.

VII. DiscussiON ANDCONCLUSION

training setY; required for the partially unsupervised training
- , ) ocess of the proposed system (however, in this situation,
1) capability to exploit the temporal correlation among muly,e nossible errors present in the original land-cover map may
titemporal images in the process of partially unsupervisegact the accuracy of the system).

updating of land-cover maps; _ ~ The future developments of this work will be oriented in two
2) capability to exploit, in a synergical way, the informationyittarent directions:

provided by different classifiers;

3) robustness to the partially unsupervised training process,
thanks to the use of different partially unsupervised
classifiers;

4) capability to consider multisensor and multisource datain
the process of updating of land-cover maps (thanks to the
availability of nonparametric classification algorithms in
the ensemble).

Concerning the methodological novelties of this work, be-

sides the definition of the global architecture of the system,

some specific aspects should be pointed out:
- . [1] J. A. RichardsRemote Sensing Digital Image Analysiad ed. New
1) use of cascade classifiers to solve the partially unsuper=— | . Springer-Verlag, 1993.

vised classification problem; [2] P. H. Swain, “Bayesian classification in time-varying environment,”
2) original RBF neural-network architecture capable of  |EEE Trans. Syst. Man Cyberrvol. 8, pp. 880-883, 1978.

" - : [3] L. Bruzzone and D. Fernandez Prieto, “Unsupervised retraining of
eXpl(.)Itlng the temporal cprreilatlon between pairs of a maximume-likelihood classifier for the analysis of multitemporal
multitemporal remote sensing images;

remote-sensing imagedEEE Trans. Geosci. Remote Sensing. 39,
3) specific formulation of the EM algorithm within the

pp. 456-460, Feb. 2001.
framework of the cascade-classification decision rule for [4] ——, “A partially unsupervised approach to the automatic classification
the training of the RBF cascade classifier;

of multitemporal remote-sensing imageBdttern Recognit. Lett2002.
[5] J.Kittler, A. Hojjatoleslami, and T. Windeatt, “Strategies for combining
4) proposed ML and RBF hybrid cascade classifiers. classifiers employing shared and distinct pattern representatibas,”
Due to the partially unsupervised nature of the proposed cas-__ tem Recognit. Lettvol. 18, pp. 1373-1377, 1997.
. . . . . 56] L. Bruzzone and S. B. Serpico, “An iterative technique for the detec-
cade classifiers considered in the ensemble, it is not pOSSIble t tion of land-cover transitions in multitemporal remote-sensing images,”
guarantee in all cases the convergence of the estimation process |EEE Trans. Geosci. Remote Sensivg. 35, pp. 858-867, July 1997.

1) developing a procedure that, given the two ima¥as
and X, and the training seY,, may identify the prob-
ability of a failure of the partially unsupervised training
of each cascade classifier and consequently prevent such
a situation;

2) extending the partially unsupervised cascade-classifica-
tion approach to other kinds of classification techniques
to be integrated into the classifier ensemble.
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