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Abstract—A system for a regular updating of land-cover maps is
proposed that is based on the use of multitemporal remote sensing
images. Such a system is able to address the updating problem
under the realistic but critical constraint that, for the image to be
classified (i.e., the most recent of the considered multitemporal
dataset) no ground truth information is available. The system
is composed of an ensemble of partially unsupervised classifiers
integrated in a multiple-classifier architecture. Each classifier
of the ensemble exhibits the following novel characteristics: 1)
it is developed in the framework of the cascade-classification
approach to exploit the temporal correlation existing between
images acquired at different times in the considered area; and 2)
it is based on a partially unsupervised methodology capable of
accomplishing the classification process under the aforementioned
critical constraint. Both a parametric maximum-likelihood (ML)
classification approach and a nonparametric radial basis function
(RBF) neural-network classification approach are used as basic
methods for the development of partially unsupervised cascade
classifiers. In addition, in order to generate an effective ensemble
of classification algorithms, hybrid ML and RBF neural-network
cascade classifiers are defined by exploiting the characteristics of
the cascade-classification methodology. The results yielded by the
different classifiers are combined by using standard unsupervised
combination strategies. This allows the definition of a robust and
accurate partially unsupervised classification system capable of
analyzing a wide typology of remote sensing data (e.g., images
acquired by passive sensors, synthetic aperture radar images, and
multisensor and multisource data). Experimental results obtained
on a real multitemporal and multisource dataset confirm the
effectiveness of the proposed system.

Index Terms—Cascade classification, maximum-likelihood clas-
sifier, multiple classifier systems, multitemporal remote sensing
images, partially unsupervised classification, radial basis function
neural networks, updating land-cover maps.

I. INTRODUCTION

ONE OF THE major problems in geographical informa-
tion systems (GISs) consists in defining strategies and

procedures for a regular updating of land-cover maps stored in
the system databases. This crucial task can be carried out by
using remote sensing images regularly acquired by spaceborne
sensors in the specific investigated areas. Such images can be
analyzed with automatic classification techniques in order to
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derive updated land-cover maps. The classification process can
be performed by considering either the information contained
in a single image [1] or the information contained in a multi-
temporal series of images of the same area [2] (i.e., by exploiting
the temporal correlation between images acquired at different
times). The latter approach is called “cascade-classification”
and allows one to increase the categorization accuracy. How-
ever, at the operating level, both aforementioned approaches are
usually based on supervised classification algorithms. Conse-
quently, they require the availability of ground truth informa-
tion for the training of the classifiers. Unfortunately, in many
real cases, it is not possible to rely on training data for all the
images necessary to ensure an updating of land-cover maps that
is as frequent as required by applications. This prevents all the
remotely sensed images acquired in the investigated area from
being used to update land-cover maps. For these reasons, the
process of temporal updating of land-cover maps results in a
complex and challenging problem.

In previous works [3], [4], the authors have already ad-
dressed the aforementioned problem. In particular, partially
unsupervised classification approaches have been defined and
developed. (The term “partially unsupervised” is used here to
point out that, on the one hand, no ground truth information is
assumed to be available for the specific image to be classified,
but, on the other hand, a training set exists related to an image
of the same geographical area acquired before the one to
be classified). In [3], a partially unsupervised classification
methodology is proposed that is able to update the parameters
of an already trained parametric maximum-likelihood (ML)
classifier on the basis of the distribution of a new image for
which training data are not available. In [4], in order to take
into account the temporal correlation between series of remote
sensing images, the partially unsupervised ML classification
approach is reformulated in the framework of the Bayesian
rule for cascade classification. This allows an increase in the
robustness of the unsupervised retraining process.

Although the aforementioned approaches have proved ef-
fective on several datasets, they exhibit some limitations. First,
given the intrinsic complexity of the problem addressed, these
approaches result in classifiers that are less reliable and less ac-
curate than the corresponding supervised classifiers. Secondly,
the parametric nature of the proposed classifiers prevents the
approaches from being used for the analysis of multisensor
and multisource remote sensing images. This can be critical in
complex classification problems, in which multisource and/or
multisensor information may play a fundamental role.
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In this paper, a novel classification system aimed at ob-
taining an accurate and robust partially unsupervised updating
of land-cover maps is proposed. Such a system extends the
approaches proposed in [3] and [4], defining an effective
classification framework based on a multiple-cascade-classifier
system (MCCS), which is able to overcome the main limitations
of the aforementioned methods. The ensemble of classifiers
used in the MCCS architecture is derived from ML and radial
basis function (RBF) neural-network classification approaches.
Three important methodological novelties are associated with
the presented system:

1) all the partially unsupervised classifiers of the ensemble
are defined in the framework of cascade classification;

2) a new nonparametric partially unsupervised cascade clas-
sifier based on RBF neural networks is proposed;

3) hybrid ML and RBF neural classifiers are defined by ex-
ploiting the characteristics of the cascade-classification
approach in order to generate an effective ensemble of
classifiers.

It is worth noting that, thanks to the nonparametric nature of the
RBF neural-network cascade classifiers, the proposed system is
able to analyze multisensor and multisource data.

Experimental results obtained on a multitemporal and mul-
tisource dataset related to the Island of Sardinia, Italy, confirm
the effectiveness of the proposed system.

The paper is organized into seven sections. Section II reports
the formulation of the problem and describes the general
architecture of the proposed system. Section III presents the
partially unsupervised classification problem in the framework
of the cascade-classification approach for both the ML and RBF
neural-network classification techniques. Section IV addresses
the problem of defining suitable ensembles of cascade classifiers
and describes the proposed hybrid ML and RBF classifiers.
Section V deals with the unsupervised strategies used for the
combination of the results yielded by the cascade classifiers
included in the considered ensemble. Experimental results
are reported in Section VI. Finally, Section VII presents a
discussion and conclusions.

II. PROBLEM FORMULATION AND DESCRIPTION OF THE

SYSTEM ARCHITECTURE

A. Problem Formulation and Simplifying Assumptions

Let and
denote two multispectral images composed ofpixels and ac-
quired in the area under analysis at the timesand , respec-
tively. Let and be the 1 feature vectors associated
with the th pixels of the images (whereis the dimensionality
of the input space), and be the set of
land-cover classes that characterize the geographical area con-
sidered at both and . Let be the classification label of the
th pixel at the time . Finally, let and be two multi-

variate random variables representing the pixel values (i.e., the
feature vector values) in and , respectively.

In the formulation of the proposed approach, we make the
following assumptions:

1) the same set of land-cover classes characterizes the
area considered over time (only the spatial and spectral
distributions of such classes are supposed to vary);

2) a reliable training set for the image acquired at
is available;

3) a training set for the image acquired at is not
available.

It is worth noting that assumption 1), even if not verified in
all possible applications, is reasonable in a wide range of real
problems.

In the aforementioned assumptions, the proposed system
aims at performing a robust and accurate classification of
by exploiting the image , the training set , and the image

, as well as the temporal correlation between the classes at
and .

B. System Architecture

The proposed system is based on a multiple-classifier
architecture composed of different classification algorithms
(see Fig. 1). The choice of this kind of architecture is due to
the complexity of the problem addressed. In particular, the
intrinsic difficulty of the partially unsupervised classification
problem results in classifiers that are less reliable and less
accurate than the corresponding supervised ones, especially for
complex datasets. Therefore, by taking into account that, in
general, ensembles of classifiers are more accurate and more
robust than the individual classifiers that make them up [5],
we expect that a multiple-classifier approach may increase the
reliability and accuracy of the global classification system.
A further step aimed at improving the performance of the
system consists in implementing each partially unsupervised
classification algorithm of the ensemble in the framework of a
cascade-classifier approach, thus exploiting also the temporal
correlation between the multitemporal images in the updating
process.

The following sections address the individual components of
the presented system. In particular, the proposed partially unsu-
pervised cascade classifiers, the strategy adopted to define the
ensemble of cascade classifiers, and the combination methods
will be described in detail.

III. PARTIALLY UNSUPERVISEDCLASSIFICATION TECHNIQUES:
A CASCADE-CLASSIFIER APPROACH

Let us focus our attention on the choice of each partially
unsupervised classifier to be included in the multiple-classifier
architecture. In order to obtain robust and accurate classifiers,
we propose classification strategies defined in the context of
the cascade-classifier approach [2], [6]. The standard super-
vised cascade-classifier approach (proposed in [2]) exploits the
correlation between multitemporal images in order to increase
the classification accuracy in the cases in which training data
are available for all the images considered. In our method,
we extend the application of the standard supervised cas-
cade-classifier approach to partially unsupervised classification
problems. In particular, we exploit the temporal dependence
between land-cover classes to increase the reliability and the
accuracy of the unsupervised estimation of the parameters
related to the image .
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Fig. 1. General architecture of the proposed system.

The cascade-classifier decision strategy associates a generic
pixel of the image with a land-cover class according to
the following decision rule [2]:

if and only if

(1)

where is the value of the probability that theth
pixel of the image belongs to the class at , given the ob-
servations and . Under the conventional assumption of
class-conditional independence [2], [6], the decision rule (1) can
be rewritten as [4]

if and only if

(2)

where is the value of the conditional density function
for the pixel , given the class , and is the
prior joint probability of the pair of classes ( ). The latter
term takes into account the temporal correlation between the
two images.

We propose to integrate the partially unsupervised classifi-
cation of the image in the context of the above-described
classification rule. As the training set is not available,
the density functions of the classes at the time (i.e.,

) are the only statistical terms of (2)
that we can estimate in a completely supervised way. This
means that, in order to accomplish the classification task, we
should estimate both the density functions of the classes at
( and the prior joint probabilities of the

classes ( ) in an unsupervised
way. It is worth noting that usually the estimation of
( ,2) involves the computation of a parameter
vector. The number and nature of the vector components
depend on the specific classifier used. Consequently, the proce-
dure to be adopted to accomplish the unsupervised estimation
process depends on the technique used to carry out the cascade
classification, in particular, on the vector of parameters required
by the classifier.

The possibility of establishing a relationship between the
classifier parameters and the statistical terms involved in (2)
is a basic constraint that each classification technique should
satisfy in order to permit the use of the cascade-classification
decision rule. To meet this requirement, we propose to use
two suitable classification methods. The first is a parametric
approach based on the ML classifier [3]; the second consists
of a nonparametric technique based on RBF neural networks
[7], [8]. The specific architectures of the ML and RBF cascade
classifiers and the procedures for the partially unsupervised es-
timation of the related parameters are described in Section III-A
and Section III-B.

A. ML Cascade Classifier

The formulation of the partially unsupervised classification
problem in the framework of the ML cascade approach has al-
ready been addressed in [4]. Therefore, here we briefly recall
the basic issues described in that paper.

For simplicity, let us assume that the probability density func-
tion of the generic class at the time (i.e., ,

, ,2) can be described by a Gaussian distribution (i.e., by
a mean vector and a covariance matrix ). Accordingly,
hyperquadrics decision surfaces can be modeled. Under this
common assumption (widely adopted for multispectral image
classification problems), the mean vectors and the covariance
matrices that characterize the conditional density functions of
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the classes at can be easily computed by a standard procedure
using the training set . Concerning the parameter vectorof
the classifier to be estimated in a partially unsupervised way, it
consists of the following components:

(3)

where the superscript “2” denotes the parameters of the con-
ditional density functions of the classes at the time. To carry
out the partially unsupervised estimation process, we propose to
adopt a procedure based on the observation that, under the as-
sumption of class-conditional independence over time, the joint
density function of the images and (i.e., ) can
be described as a mixture density with components (i.e.,
as many components as possible pairs of classes)

(4)

In this context, the estimation of the above terms becomes
a mixture–density estimation problem, which can be solved
via the expectation-maximization (EM) algorithm [9]–[12].
By applying such an algorithm, we can derive the following
iterative equations to estimate the components of the vector
necessary to accomplish the cascade-classification process [4]
(see (5)–(7) at the bottom of the page) where the superscripts

and refer to the values of the parameters at the current
and next iterations, respectively; the superscriptrefers to the
vector transpose operation; and the joint posterior probabilities
of the classes are approximated by

(8)

It is worth noting that all the previous equations implicitly
depend on . Concerning the initialization of the components
of the vector , the initial values of the parameters of the
density functions of classes at are obtained by considering
the corresponding values estimated at timeby supervised
learning, whereas all the prior joint probabilities of classes are
assumed to have the same values. It is possible to prove that,

at each iteration, the estimated parameters evolve from their
initial values to the final ones by maximizing the following
log-likelihood function (the convergence to a local maximum
can be proven) [9]:

(9)

The estimates of the parameters obtained at convergence and
those achieved by the classical supervised procedure at the time

are then substituted into (2) in order to accomplish the ML
cascade-classification process. We refer the reader to [4] for
greater details on the ML partially unsupervised cascade clas-
sifier and on alternative initialization conditions on the iterative
estimation algorithm.

B. RBF Neural-Network Cascade Classifier

The problem of partially unsupervised cascade classification
by using RBF neural networks is much more complex than the
one associated with the ML parametric cascade classifier. The
increased complexity depends mainly on the nonparametric
nature of RBF neural networks. In our case, we have to resolve
two critical issues in order to develop the cascade classifier
in the framework of RBF neural networks: 1) we should
define a specific architecture that is able to implement the
cascade-classification decision rule; 2) we should devise a par-
tially unsupervised procedure for the training of the proposed
architecture.

First of all, let us briefly recall the standard architecture of
an RBF neural classifier to be used for the classification of a
generic image (see Fig. 2). This architecture is made up
of three layers: an input layer (composed of as many units as
input features), a hidden layer (composed ofneurons), and an
output layer (composed of as many units as land-cover classes).
The input layer just propagates the input features to the hidden
layer. Each unit of the hidden layer applies a simple nonlinear
transformation to the input data according to a symmetric radial
basis function (usually a Gaussian function characterized by
a mean value and a width ). The connections between the
hidden and output units are associated with a numerical value
called weight (let denote the weight that connects theth

(5)

(6)

(7)
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Fig. 2. Standard architecture of a supervised RBF neural-network classifier.

hidden neuron to theth output neuron). The output neurons
apply a linear transformation to the weighted outputs of the
hidden neurons. It can be proven that if the classifier has been
properly trained [13], the outputs of an RBF neural network can
be related to the conditional densities of the classes, which are
expressed as a mixture of the kernel functions associated with
the units of the hidden layer. In addition, the statistical terms
computed by the neural classifier can be related to the global
density function of the image as follows:

(10)

where is the conditional density of the variable
given the kernel function ; is the conditional prob-
ability of the class , given the kernel ; is the prior
probability of the kernel ; and is the number of kernels con-
sidered. It is worth noting that the statistical terms in (10) can
be associated with the parameters of the RBF neural architec-
ture as follows [13]:

(11)

(12)

We refer the reader to [7] and [8] for more details on standard
RBF neural classifiers.

In order to define a cascade classifier in the context of
the RBF neural-network theory, let us approximate the joint
density function of the two images and
as a mixture of Gaussian kernel functions. To this end, let
us consider kernel functions and kernel functions

associated with the statistics of the images and ,
respectively. Accordingly, under the assumption of kernel-con-
ditional independence in the temporal domain, we can write
the expression (13) shown at the bottom of the page where

is the value of the conditional density function of
the variable , given the kernel ; is the
joint conditional probability of the pair of classes ( ),
given the pair of kernels ( ); and is the joint
prior probability of the kernels ( ). In this context, the
cascade-classification decision rule can be rewritten as shown
in (14) at the bottom of the next page.

It is worth noting that the temporal correlation between the
two images is taken into account by the terms
and . By analyzing (14), we can observe
that and can be derived by applying
two standard RBF neural-network classifiers to theand

images, respectively. In particular, we can apply an RBF
neural-network classifier with hidden units to the image
and an RBF neural-network classifier with hidden units to
the image (see Fig. 3). If a proper training algorithm is used,
the terms and are given by the outputs
of the hidden neurons of the aforementioned neural classifiers.
However, in order to implement the cascade-classification
decision rule, a nonconventional architecture should be consid-
ered, which involves the joint statistical terms and

in the classification process. To this end,
the outputs of the hidden neurons of theand networks are
given as input to a specific block (let us call it a “cascade clas-
sification” block) that presents as many outputs as land-cover
classes (i.e., outputs). In particular, the output that is
associated with the land-cover class is given by

(15)

According to (14), each pixel is classified as belonging to the
land-cover class associated with the maximum output value.

(13)
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Fig. 3. Architecture of the proposed partially unsupervised RBF neural cascade classifier (solid line). The architecture of the standard RBF neuralnetwork used
for the supervised estimation of thet statistical parameters is also shown (dashed line).

The main problem that remains to be solved is the estimation
of all the parameters considered in the proposed architecture in a
partially unsupervised way (i.e., by using only the joint density
function and the training set ). Concerning the
parameters of the (i.e., the centers and the widths

of the Gaussian kernel functions that process the image),
they can be estimated according to the statistical procedure de-
scribed in [7] and [8]. Consequently, the parameter vectorthat
remains to be estimated in a partially unsupervised way is com-
posed of the following terms:

(16)

where and are the centers and the widths characterizing
the kernel functions that process the image . In order to
estimate the components of the parameter vector, we propose to
apply the EM algorithm to (13). Accordingly, it is possible to

prove that part of the components of the parameter vector can
be estimated by using the following iterative equations

(17)

(18)

(19)

where is the dimensionality of the input space; the superscripts
and refer to the values of the parameters at the current

if and only if

(14)
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and next iterations, respectively; and the are
approximated by

(20)

Concerning the initialization of the aforementioned
components of the parameter vector, the initial values of the
parameters of the conditional density functions of kernels at
can be obtained by applying a standard unsupervised clustering
algorithm to the image [7], whereas the initial values of
prior joint probabilities of the kernels can be easily computed
in the assumption of independence between the kernels at two
dates [i.e., ].

As we have already pointed out, the estimation of the RBF
cascade neural-network classifier parameters is significantly
more complex than the estimation of ML cascade-classifier
parameters. Despite that the parameters, , and
of the vector can be estimated in a fully unsupervised
way, the estimation of the joint conditional probabilities

requires other information in addition to
the one contained in the training set (it is worth noting that
the terms express the relationship between
kernel functions and land-cover classes). To solve this problem,
we propose to exploit some of the information obtained (at
convergence) by the ML cascade classifier described in the
Section III-A. In particular, a set of pixels that is composed
of the patterns that are most likely correctly categorized by
the ML cascade classifier is used for the initialization of the

conditional probabilities. These patterns
are selected on the basis of the values of the posterior proba-
bilities provided by the ML classifier. In greater detail, pixels
associated with values of the posterior probabilities above a
predefined thresholdare chosen. Let be the set of pairs
of pixels ( ) such that belongs to the land-cover
class and such that is categorized by the ML
cascade classifier as belonging to the class. Let be
the set of pairs of pixels ( ) such that belongs

to the land-cover class and . Analogously, let
be the set of pairs of pixels ( ) such that

and is categorized by the ML cascade classifier as
belonging to the class . The iterative equations to be used to
estimate the joint conditional probabilities are

(21)

where the normalizing factor is equal to

(22)

It is worth noting that this iterative procedure significantly im-
proves the initial estimates biased by the patterns included in

.
Analogously to the ML cascade classifier, also in this case the

estimated parameters evolve from their initial values to the final
ones by maximizing the log-likelihood function (23) shown at
the bottom of the page (the convergence to a local maximum
can be proven), where is the set of pairs of pixels ( )
such that and .

(23)
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The estimates of the parameters obtained at convergence and
the ones achieved by the classical supervised procedure are used
to accomplish the RBF cascade-classification process.

IV. STRATEGY FORGENERATING ENSEMBLES OFPARTIALLY

UNSUPERVISEDCASCADE CLASSIFIERS: HYBRID ML AND RBF
NEURAL-NETWORK CLASSIFIERS

The selection of the pool of classifiers to be integrated into the
multiple-cascade-classifier architecture is an important and crit-
ical task. In the literature, several different strategies for defining
a classifier ensemble have been proposed [5], [14]–[17]. From
a theoretical viewpoint, necessary and sufficient conditions for
an ensemble of classifiers to be more accurate than any of its in-
dividual members are that the classifiers should be accurate and
different [18]. In our case, we can control only the second con-
dition, since no training set is available to verify the first one.

The main issue to be resolved for the definition of the en-
semble concerns the capability of different classifiers to incur
uncorrelated errors. In practice, several strategies have been
proposed to make up pools of classifiers that incur uncorre-
lated errors. These strategies involve the selection of different
classification algorithms, the choice of different initial training
conditions for a given classification algorithm, the use of dif-
ferent architectures for the same kind of classifier (e.g., neural
networks), the manipulation of the training examples, the ma-
nipulation of the input features, the manipulation of the output
targets, the injection of randomness, etc. [18]. In our system, the
choice of both a parametric (ML) and a nonparametric (RBF)
classifier guarantees the use of two classification algorithms
based on significantly different principles. For this reason, we
expect these classifiers to incur sufficiently uncorrelated er-
rors. However, two classification algorithms are not enough to
define an effective multiple-classifier architecture. To increase
the reliability of the system, we need to generate a pool of

classifiers ( ). According to the literature, we could
define different RBF neural-network architectures in order to
derive different classification algorithms for the ensemble [19].
However, as we are dealing with cascade-classification tech-
niques, we propose to adopt an alternative, deterministic, and
simple strategy for making up the ensemble. This strategy
is based on the characteristics of the cascade-classification
approach, in which a set of key parameters, estimated by the
partially unsupervised process, is composed of the prior joint
probabilities of classes (they are associated with
the temporal correlation between classes). The different cas-
cade classifiers (i.e., ML and RBF neural networks) perform
different estimations of the aforementioned probabilities, on
the basis of the different classification and estimation princi-
ples. According to this observation, we propose to introduce
in the ensemble hybrid classifiers obtained by exchanging the
estimates of the prior joint probabilities of classes performed
by different algorithms. In our case, given an ML cascade
classifier and an RBF neural-network cascade classifier, this
strategy results in an ensemble composed of the two “orig-
inal” classifiers and of two hybrid ML and RBF algorithms
obtained by exchanging the prior joint probabilities estimated

in a partially unsupervised way by the original classifiers.
These hybrid classifiers are described in the following.

Let , , and de-
note the joint probabilities and the conditional densities of
classes estimated by the ML cascade classifier, respectively.
Analogously, let , ,

, and denote the joint prob-
abilities of the classes conditioned to the kernels, the joint
probabilities of the kernels, and the conditional densities of the
classes estimated by the RBF cascade classifier, respectively.

The first hybrid classifier (let us call it the ML-hybrid
cascade classifier) is obtained by merging the joint probabilities
estimated by the RBF cascade classifier with the conditional
densities estimated by the ML cascade classifier. Hence, we
have the following corresponding classification rule

if and only if

(24)

where

(25)

Analogously, the second hybrid classifier (let us call it the
RBF-hybrid cascade classifier) is obtained by merging the
joint probabilities estimated by the ML cascade classifier with
the conditional densities that can be
estimated by using the RBF cascade classifier parameters.
Hence, the corresponding classification rule is

if and only if

(26)

where the conditional densities can be ap-
proximated by (27) shown at the bottom of the next page.

The use of these hybrid classifiers allows one to obtain a mul-
tiple-classifier architecture composed of four classifiers. It is
worth noting that it is possible to further increase the number
of classifiers by extending the aforementioned procedure to the
case of additional RBF neural-network architectures with dif-
ferent numbers of hidden units.

V. MULTIPLE-CASCADE-CLASSIFIER ARCHITECTURE:
UNSUPERVISEDCOMBINATION STRATEGIES

In the proposed system, the classification results provided by
the members of the considered pool of cascade classifiers
are combined by using classical multiple-classifier strategies. In
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(a) (b)

Fig. 4. Bands 5 of the Landsat-5 TM images utilized for the experiments. (a) Image acquired in September 1995. (b) Image acquired in July 1996.

particular, we consider two simple and widely used combination
procedures:majority votingandcombination by Bayesian av-
erage[5]. Both procedures exhibit the common characteristic of
requiring no prior training to carry out the combination process.
This is a mandatory requirement in our approach, as we have
no ground truth information (and hence no training set) for the
image .

A. Majority Voting

This procedure faces the combination problem by consid-
ering the results of each single classifier in terms of the class
labels assigned to the patterns. A given input pattern receives

classification labels from the MCCS: each label corresponds
to one of the classes considered. The combination method is
based on the interpretation of the classification label resulting
from each classifier as a “vote” to one of the land-cover
classes. The data class that receives the largest number of votes
is taken as the class of the input pattern.

B. Combination by Bayesian Average

This strategy is based on the remark that, given the observa-
tions and , the classifiers considered provide an esti-
mate of the posterior probability for each class

. Therefore, a possible strategy for combining these
classifiers consists in the computation of the average posterior
probabilities, i.e.,

(28)

where is the estimate of the posterior proba-
bility provided by the th classifier. The classi-
fication process is then carried out according to the Bayes rule
by selecting the land-cover class associated with the maximum
average probability.

VI. EXPERIMENTAL RESULTS

To assess the effectiveness of the proposed approach, dif-
ferent experiments were carried out on a dataset made up of two
multispectral images acquired by the Thematic Mapper (TM)
sensor of the Landsat 5 satellite. The selected test site was a
section (412 382 pixels) of a scene including Lake Mulargia
on the Island of Sardinia, Italy. The two images used in the ex-
periments were acquired in September 1995 () and July 1996
( ). Fig. 4 shows channels 5 of both images. Five land-cover
classes (i.e., urban area, forest, pasture, water body, and vine-
yard), which characterize the test site at the above-mentioned
dates, were considered. The available ground truth was used to
derive a training set and a test set for each image (see Table I).
To carry out the experiments, we assumed that only the training
set associated with the image acquired in September 1995 was
available. We used the training set of the July 1996 image only
for comparisons with completely supervised classifiers.

Partially unsupervised ML and RBF neural-network cascade
classifiers were applied to the September 1995 and July
1996 images. For the ML cascade classifier, the assumption of
Gaussian distributions was made for the density functions of the
classes (this is a reasonable assumption, as we considered TM
images). Concerning the RBF neural cascade classifier, in order

(27)



BRUZZONE AND COSSU: MULTIPLE-CASCADE-CLASSIFIER SYSTEM 1993

TABLE I
NUMBER OF PATTERNS IN THE TRAINING AND TEST SETS FORBOTH THE

SEPTEMBER1995AND JULY 1996 IMAGES

to exploit its nonparametric nature, five texture features based
on the gray-level co-occurrence matrix (i.e., sum variance, sum
average, correlation, entropy, and difference variance) [20]
were computed and given as input to the classifier in addition
to the six TM channels. These features were obtained by using
a window size equal to 7 7 and an interpixel distance equal
to 1.

As regards the ML cascade classifier, the parameters of the
Gaussian density functions of the classes atwere computed
in a supervised way by using the available training set for the
September 1995 image (i.e., ). These values were also used to
initialize the parameters of the conditional density functions of
the classes at . Concerning the RBF cascade classifier, several
trials were carried out in order to derive an effective number of
neurons to be used in the hidden layer. To this end, experiments
were carried out using a standard RBF architecture trained by
the available set and applied to the test set. The highest ac-
curacy was obtained by an architecture composed of 35 hidden
units. On the basis of this result, an architecture composed of
70 hidden units was used for the RBF cascade classifier (i.e., 35
units related to the image and 35 units related to theimage).
It is worth noting that the parameters of the 35 hidden units asso-
ciated with were fixed according to the values achieved in a
supervised way in the aforementioned experiment. The values of
the parameters of the 35 hidden units used to process the image

were initialized by applying an unsupervised clustering to
that image.

The parameters of the vectorsrelated to the ML and RBF
cascade classifiers were estimated in an unsupervised way by
using the proposed formulations of the iterative EM algorithm
[see (5)–(8), (17)–(19), (21), and (22)]. First, the ML cascade
classifier was trained, and the patterns classified witha poste-
riori probability higher than the threshold value were
used to generate the set in order to support the RBF training
process. The EM algorithms adopted for the ML and RBF par-
tially unsupervised training processes converged in 11 and 25
iterations, respectively. At the end of the iterative process, the
resulting estimates were used to perform the classification of the
July 1996 image. In addition, from the considered ML and RBF
cascade classifiers, the two hybrid ML and RBF neural-network
cascade classifiers were derived according to the strategy de-
scribed in Section IV. Also, these hybrid classifiers were applied
to the July 1996 image.

The classification accuracies and the kappa coefficients
of accuracy exhibited by the aforementioned four partially
unsupervised cascade classifiers on thetest set are given in
Table II. As one can see, the performances of all the classifiers
are very good. In particular, the overall accuracies exhibited by

TABLE II
CLASSIFICATION ACCURACIESOBTAINED BY THE FOUR PARTIALLY

UNSUPERVISEDCASCADE CLASSIFIERS INCLUDED IN THE

PROPOSEDMULTIPLE-CLASSIFIER ARCHITECTURE

(JULY 1996 TEST SET)

both the RBF and RBF-hybrid classifiers are very high (i.e.,
96.10% and 95.38%, respectively), and the overall accuracies
provided by the ML and ML-hybrid classifiers are satisfactory
(i.e., 91.48% and 91.79%, respectively). This confirms the
effectiveness of the partially unsupervised training process.
Comparisons between standard and hybrid classifiers (i.e., RBF
versus RBF-hybrid and ML versus ML-hybrid) point out that
these classifiers provided very similar overall accuracies. How-
ever, a deeper analysis of the results reveals some important
differences between the considered classification techniques.
For example, the accuracy exhibited by the RBF-hybrid
cascade classifier on the vineyard class is significantly higher
than the one exhibited by the RBF neural cascade classifier
(i.e., 66.67% versus 61.54%). If one considers the confusion
matrices resulting from the aforementioned experiments [see
Table III(a)–(d)], it is possible to verify other significant
differences in the behaviors of the classifiers on the different
classes. For example, the RBF classifier misclassifies 30
pasture patterns as belonging to urban areas, whereas the
RBF-hybrid classifier never incurs such a classification error.
This confirms that the assumption that the four classifiers incur
quite uncorrelated errors is reasonable.

At this point, the four classifiers were combined by using
both the majority voting and combination by Bayesian average
strategies (concerning the majority-voting strategy, in the case
where more than one class received the same number of votes,
the class with the maximum posterior probability was chosen).
The accuracies obtained on the July 1996 test set are given in
Table IV. Both combination strategies provided very high accu-
racies on all the land-cover classes, with the exception of the
vineyard class, which is a minority one. By comparing Tables II
and IV, one can conclude that the classification accuracies ob-
tained combining the results of the partially unsupervised cas-
cade classifiers by the two combination strategies considered
are significantly higher than the accuracy exhibited by the worst
single classifier (i.e., 96.56% and 94.77% versus 91.48%). In
particular, the classification accuracy obtained by applying the
majority rule strategy is also higher than those exhibited by all
the single classifiers making up the ensemble.

As stated in the methodological part of the paper, the objec-
tive of the multiple-classifier approach is not only to improve
the overall classification accuracy of the system but also to in-
crease its robustness. In order to investigate this aspect, an ex-
periment was carried out in which the failure of the training
process of the RBF neural cascade classifier was simulated. In
particular, in order to simulate this situation, the partially unsu-
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TABLE III
CONFUSIONMATRICES THAT RESULTED FROM THE CLASSIFICATION OF THEJULY 1996 TEST SET BY USING THE PROPOSEDPARTIALLY UNSUPERVISED

TECHNIQUES. (a) ML CASCADE CLASSIFIER; (b) RBF NEURAL CASCADE CLASSIFIER; (c) ML-HYBRID CASCADE CLASSIFIER; (d) RBF-HYBRID

NEURAL CASCADE CLASSIFIER

(a)

(b)

(c)

(d)

TABLE IV
OVERALL CLASSIFICATION ACCURACIESEXHIBITED BY THE PROPOSED

MULTIPLE-CASCADE-CLASSIFIER SYSTEM

pervised training of the parameters of the RBF architecture was
carried out by replacing the image with the image . It is
worth noting that the resulting incorrect estimation of the RBF
parameters also affects the hybrid classifiers. Table V presents
the classification accuracies obtained by this experiment. As
can be seen, even though the overall accuracies exhibited by
both the RBF and the RBF-hybrid cascade classifiers are very
poor (i.e, 67.68% and 72.75%, respectively), both combination
strategies (i.e., combination by Bayesian average strategy and
the majority rule) allow the presented system to achieve clas-
sification accuracies (i.e., 92.46% and 95.90%) higher than the
ones yielded by all the single classifiers. This confirms that the
proposed architecture based on multiple cascade classifiers per-
mits one to increase the robustness of the system versus possible

TABLE V
OVERALL CLASSIFICATION ACCURACIESEXHIBITED BY THE FOUR PARTIALLY

UNSUPERVISEDCASCADE-CLASSIFIERSINCLUDED IN THE PROPOSED

MULTIPLE-CLASSIFIER ARCHITECTURE(JULY 1996 TEST SET). THE RESULTS

ARE RELATED TO THE CASE IN WHICH A FAILURE IN THE PARTIALLY

UNSUPERVISEDTRAINING OF THE RBF CASCADE CLASSIFIER WASSIMULATED .
THE OVERALL ACCURACY OBTAINED AFTER COMBINING THE PROPOSED

CLASSIFIERS ISALSO GIVEN

failures of the partially unsupervised training process of single
cascade-classification techniques.

Finally, in order to completely assess the effectiveness of
the proposed methodology, two additional experiments were
carried out using a fully supervised standard RBF classifier.
In the first experiment, the RBF classifier was trained on the
September 1995 training set and tested on the July 1996 image.
The obtained results are given in Table VI. As one can see,
the standard supervised RBF neural-network classifier trained
on the “old” training set was unable to classify the “new”
image with an acceptable accuracy, thus confirming that the
use of a more complex classification methodology based on
a partially unsupervised training process is mandatory. In the
second experiment, the RBF classifier was trained on the July
1996 training set and applied to the test set related to the same
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TABLE VI
CLASSIFICATION ACCURACIESEXHIBITED BY A STANDARD SUPERVISEDRBF
NEURAL CLASSIFIERTRAINED ON THE SEPTEMBER1995 IMAGE AND TESTED

ON THE JULY 1996 IMAGE

image (it is worth noting that this training set was not considered
in the previous experiments, as we assumed that it was not
available). Table VII gives the obtained results. A comparison
of these results with the ones provided in Table IV points out
that the proposed system outperforms the standard supervised
RBF classifier. This surprising result, which depends mainly
on the ability of the proposed approach to exploit the temporal
correlation between the two images considered, confirms the
effectiveness of the presented methodology.

VII. D ISCUSSION ANDCONCLUSION

In this paper, a novel MCCS for a partially unsupervised
updating of land-cover maps has been proposed. This system
allows one to update the existing land-cover maps of a given
area by exploiting a new remote sensing image acquired on the
investigated site, without requiring the related ground truth.
The main features of the proposed system are the following:

1) capability to exploit the temporal correlation among mul-
titemporal images in the process of partially unsupervised
updating of land-cover maps;

2) capability to exploit, in a synergical way, the information
provided by different classifiers;

3) robustness to the partially unsupervised training process,
thanks to the use of different partially unsupervised
classifiers;

4) capability to consider multisensor and multisource data in
the process of updating of land-cover maps (thanks to the
availability of nonparametric classification algorithms in
the ensemble).

Concerning the methodological novelties of this work, be-
sides the definition of the global architecture of the system,
some specific aspects should be pointed out:

1) use of cascade classifiers to solve the partially unsuper-
vised classification problem;

2) original RBF neural-network architecture capable of
exploiting the temporal correlation between pairs of
multitemporal remote sensing images;

3) specific formulation of the EM algorithm within the
framework of the cascade-classification decision rule for
the training of the RBF cascade classifier;

4) proposed ML and RBF hybrid cascade classifiers.
Due to the partially unsupervised nature of the proposed cas-

cade classifiers considered in the ensemble, it is not possible to
guarantee in all cases the convergence of the estimation process

TABLE VII
CLASSIFICATION ACCURACIESEXHIBITED BY A STANDARD SUPERVISEDRBF

CLASSIFIER TRAINED AND TESTED ON THEJULY 1996 IMAGE

to accurate values of the classifier parameters. The accuracy ob-
tained at convergence depends both on the reliability of the ini-
tialization conditions of the partially unsupervised estimation
procedures and on the specific classification algorithm consid-
ered. However, the use of the multiple-cascade-classifier archi-
tecture reduces the overall probability that the system may not
succeed, thus increasing the robustness of the architecture to the
probability of failure of the partially unsupervised training of
each single classifier.

In the experiments carried out on different remote sensing
datasets, the proposed system proved effective, providing both
high classification accuracy and high roboustness. Conse-
quently, it seems a very promising tool to be integrated into
a GIS system for a regular updating of land-cover maps. It is
worth noting that, in the case where an “old” ground truth is not
available, the old land-cover map itself can be considered as the
training set required for the partially unsupervised training
process of the proposed system (however, in this situation,
the possible errors present in the original land-cover map may
affect the accuracy of the system).

The future developments of this work will be oriented in two
different directions:

1) developing a procedure that, given the two images
and and the training set , may identify the prob-
ability of a failure of the partially unsupervised training
of each cascade classifier and consequently prevent such
a situation;

2) extending the partially unsupervised cascade-classifica-
tion approach to other kinds of classification techniques
to be integrated into the classifier ensemble.
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