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Abstract

Image fusion refers to the acquisition, processing and synergistic combination of information provided by various sensors or by

the same sensor in many measuring contexts. The aim of this survey paper is to describe three typical applications of data fusion in

remote sensing. The first study case considers the problem of the synthetic aperture radar (SAR) interferometry, where a pair of

antennas are used to obtain an elevation map of the observed scene; the second one refers to the fusion of multisensor and multi-

temporal (Landsat Thematic Mapper and SAR) images of the same site acquired at different times, by using neural networks; the

third one presents a processor to fuse multifrequency, multipolarization and mutiresolution SAR images, based on wavelet

transform and multiscale Kalman filter (MKF). Each study case presents also the results achieved by the proposed techniques

applied to real data. � 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Remote sensing [1] is a science with applications
ranging from civilian to surveillance and military. Re-
mote sensing systems measure and record data about a
scene. Such systems have proven to be powerful tools for
the monitoring of the Earth surface and atmosphere at a
global, regional, and even local scale, by providing im-
portant coverage, mapping and classification of land
cover features such as vegetation, soil, water and forests.
The degree of accuracy achieved in classification depends
on the quality of the images, degree of knowledge pos-
sessed by the researcher, and nature of the cover types in
the area. For instance, correlations can then be drawn
from among drainage, superficial deposits and topo-
graphic features, in order to show the relationships that
occur between forest, vegetation and soils. This provides
important information for land classification and land-

use management. The sensors that acquire the images are
typically classified as airborne or space borne sensors, if
they are placed, respectively, on an airplane or a satellite;
furthermore, they can acquire information in different
spectral bands on the basis of the exploited frequency or
at different resolutions. Therefore, a wide spectrum of
data can be available for the same observed site. For
many applications the information provided by individ-
ual sensors are incomplete, inconsistent, or imprecise
[2–4]. Additional sources may provide complementary
data, and fusion of different information can produce a
better understanding of the observed site, by decreasing
the uncertainty related to the single sources [5–7]. Images
may be provided by radars and by heterogeneous sen-
sors. For instance, multitemporal radar images [1,8,9] of
the same scene are needed to detect changes that occur in
the considered scene between two or more observations;
multidimensional images, provided by radar and non-
radar sensors, facilitate the classification of scene seg-
ments because multispectral and multipolarization data
increase the separation between the segments. In the in-
terpretation of a scene, contextual information is im-
portant: in an image labeling problem, a pixel considered
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in isolation may provide incomplete information about
the desired characteristics. Context can be defined in the
frequency, space and time domains. The spectral di-
mension refers to different bands of the electro-magnetic
spectrum. These bands may be acquired by a single
multispectral sensor or by more sensors operating at
different frequencies. The spectral context improves the
separation between various ground cover classes com-
pared to a single-band image [1]. Furthermore, since the
electro-magnetic incident/backscattered wave also de-
pends on the polarization, the properties of the examined
area can be studied by varying the polarization of the
incident/backscattered wave. Therefore, complementary
information about the same observed scene can be
available in the following cases:

– data recorded by different sensors (multisensor im-
age fusion);
– data recorded by the same sensor scanning the same
scene at different dates (multitemporal image fusion);
– data recorded by the same sensor operating in dif-
ferent spectral bands (multifrequency image fusion);
– data recorded by the same sensor at different polar-
izations (multipolarization image fusion);
– data recorded by the same sensor located on plat-
forms flying at different heights (multiresolution im-
age fusion).

In this paper, three different fusion applications in re-
mote sensing are presented:
• the synthetic aperture radar (SAR) interferometry

[1,8–10] is proposed as a data fusion method that,
by exploiting the data recorded by two different an-
tennas about the same scene, allows one to obtain
an elevation map of the area;

• multitemporal andmultisensor experiments [11,12] are
presented to describe a system that integrates informa-
tion from different sensors (SAR and LANDSAT) ac-
quired at different dates, by using neural networks;

• multifrequency, multipolarization and multiresolu-
tion fusion [13–15] is described for data acquired by
SAR sensors in different measuring contexts, based
on the discrete wavelet transform (DWT) and multi-
scale Kalman filter (MKF).

The paper is organized into five Sections. Section 2 de-
scribes the SAR interferometry study case; the multi-
sensor and multitemporal image fusion is presented in
Section 3; Section 4 describes a multipolarization, multi-
frequency and multiresolution image fusion example,
taking into account also the radiometric correction and
spatial registration of the images. Conclusions are
drawn in Section 5.

2. The SAR interferometry

A synthetic aperture radar (SAR) [1,8] is an active
coherent imaging system that, combining the signals

received by a moving radar antenna operating in the
microwave region of the spectrum, estimates the relative
reflectivity of a spatial distribution of scatterers. The
resulting imagery has various possible uses such as in
surveillance, oceanography, military applications and
agriculture, since the obtained images have a high res-
olution, independent of the weather conditions. Fur-
thermore, SAR data are used not only for monitoring
applications, but also to obtain elevation maps of the
observed scene [9,10]. An SAR gives an image of the
phase and amplitude of the reflected radiation as a
function of the azimuth and slant range coordinates,
that is, of the coordinates parallel and perpendicular to
the trajectory of the antenna. Observing a given scene
from two SAR antennas with distinct trajectories (not
necessarily at the same time) allows one to perform a
triangulation and, in principle, to determine the three-
dimensional position of the scattering points, that is, the
elevation map of the observed scene. If the two SAR
images are co-registered, i.e.: if the corresponding pixels
of the two SAR images pertain to the same points of the
observed scene, the phase difference of the signals
measured in the corresponding pixel of the two images is
a very sensitive measure of the length difference of the
paths traveled by the signals. From this difference and
from the knowledge of the distance of the observed
points from one of the SAR trajectories, the three-di-
mension position of the points is immediately calcu-
lated. Unfortunately, SAR interferometry fails when the
scenes imaged by the two SAR systems are not really
the same scene, due to a too large distance between the
trajectories of the two SAR antennas, or to a too large
time elapsed between the two surveys. In these cases, the
two images may not be sufficiently correlated: the phase
difference in the corresponding pixel of the two images is
not useful to determine the distance difference of the
scene from the SAR systems, and there is no coherence.
Other limitations are given by the occurrence of layover
and shadow phenomena. Layover takes place when
more than one point of the observed scene is at the same
distance from the trajectory of the SAR system; in this
case, the signal in the pixel of the SAR image is an
average of the signals corresponding to the different
points. Shadow occurs when a point of the observed
scene is not seen from the radar system because it is
covered by other points; that point does not contribute
to the measured signal.

2.1. Wrapped and unwrapped phases

Each of the two SAR images gives only a measure of
the phase of the received electro-magnetic radiation
modulo 2p. The phase difference modulo 2p can be
calculated from the two images, while it is necessary to
determine the whole phase difference of the signals in the
two images to determine the three-dimensional position
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of the corresponding points in the scene. Therefore, it is
important to unwrap the available phase difference, that
is, to reconstruct the available phase difference in the
corresponding pixel of the two images from the knowl-
edge of that difference modulo 2p. These two quantities
are referred to as unwrapped and wrapped interfero-
metric phases, respectively. In interferometric studies,
high resolution images are processed; it can be supposed
that the height difference between neighboring pixels is
small: this assumption fails when the topography
changes very rapidly in a restricted area. For this reason,
all methods assume that the unwrapped interferometric
phase in neighboring pixels differs by a quantity that is
almost always less than p in absolute value. This hy-
pothesis is used to estimate from the wrapped inter-
ferometric phase the neighboring pixel differences, that
is, the discrete gradient of the unwrapped interfero-
metric phase. The unwrapped interferometric phase is
then reconstructed, up to an additive constant, from the
estimate of its discrete gradient. The additive constant is
determined from a priori information on the scene, that
is, the knowledge of the elevation of one point in the
scene.

2.2. The unwrapping algorithm

The methods proposed differ in the way they over-
come the difficulty posed by the fact that the neighbor-
ing pixel differences of the unwrapped interferometric
phase may not be everywhere less than p. This can be
due to noise or to the fact that the observed scene be-
comes too steep, that is, nearly perpendicular to the view
direction. Further challenges are posed by the occur-
rence of layover, shadow, or lack of coherence phe-
nomena. The phase unwrapping algorithm in [10] is
based on the projection of a discrete vector field onto the

linear subspace defined by the ‘‘irrotational property’’ of
a discrete gradient vector field. A vector field is called
irrotational when the curl of this vector field is 0. The
projection onto the linear subspace characterized by the
‘‘irrotational property’’ of a discrete gradient vector field
is a local operation in the Fourier space. Therefore, only
OðN logNÞ elementary operations are required to pro-
ject discrete vector field of N pixel, which is the com-
putational complexity of the fast Fourier transform.
Based on the proposed projection algorithm, the phase
unwrapping can be obtained by projecting the estimated
discrete gradient field onto the ‘‘irrotational’’ subspace
and then ‘‘integrating’’ the resulting discrete gradient
vector field. The points belonging to steep and layover
regions are isolated by means of further information: a
simple correction is performed on the estimate of the
discrete gradient of the unwrapped interferometric
phase, to reduce the systematic errors in the estimated
unwrapped phase gradient. For greater details on the
exploited algorithm, the reader is referred to [10]. The
proposed phase unwrapping algorithm is tested on a
pair of ERS-1 and ERS-2 SAR images of the Etna’s
volcano (Fig. 1), acquired on September 1995. The ele-
vation obtained is in qualitative agreement with the el-
evation reported in geographic maps.

3. Fusion of multitemporal–multisensor remotely sensed

images

In several applications, the capability of SAR sensors
to acquire images during day and night and with all
weather conditions has proved to be precious. However,
depending on the kinds of terrain cover types, the in-
formation provided by the SAR data alone may be not
sufficient for a detailed analysis. A possible solution to

Fig. 1. Reconstructed elevation of the Etna’s volcano (courtesy of Dr. M. Costantini).
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this problem may be derived from the integration of
SAR data with optical data (or multisensor data) of the
same site acquired at a different time [11,12,16,17].
Several methodologies have been proposed, in the sci-
entific literature, for the purpose of multisensor fusion;
they are mainly based on statistical, symbolic (evidential
reasoning), and neural-network approaches. Among
statistical methods, the ‘‘stacked-vector’’ approach is the
simplest one [18]: each pixel is represented by a vector
that contains components from different sources. This
approach is not suitable when a common distribution
model cannot describe the various sources considered.
The Dempster–Shafer evidence theory [19] has been
applied to classify multisource data by taking into ac-
count the uncertainties related to the different data
sources involved [20–22]. Neural-network classifiers
[11,12] provide an effective integration of different types
of data. The non-parametric approach they implement
allows the aggregation of different data sources into a
stacked vector without the need for assuming a specific
probabilistic distribution of the data to be fused. Re-
sults, obtained by using different kinds of multisource
data, point out the effectiveness of neural-network ap-
proaches for the classification of multisource data.
Concerning the classification process in a multitemporal
environment, only a few papers can be found in the
remote sensing literature. Cascade classifiers [23] based
on the generalization of the Bayes optimal strategy to

the case of multiple observations have been proposed:
multitemporal information has been used assuming that
the behavior of these processes can be modeled by a
first-order Markov model. Methods based on contextual
classification that accounts for both spatial and tempo-
ral correlations of data have been developed [24]: the
feature vectors are modeled as resulting from a class-
dependent process plus a contaminating noise process;
the noise process is considered autocorrelated in both
space and time domains.

3.1. The ‘‘Compound’’ classification

The experiment summarized in this section has been
presented in [12], to which the reader is referred to for
further information. A multitemporal and multisensor
dataset (Fig. 2) has been considered for this experiment,
referring to an agricultural area in the basin of the Po
River, in northern Italy. Such a dataset consists of an
image acquired by the ERS-1 SAR sensor in April 1994
and a pair of images acquired in May 1994 by the
Landsat TM and the ERS-1 SAR sensors. These two
latter images have been registered at the ERS-1 SAR
April image. The LANDSAT thematic mapper (TM) is
an advanced optical sensor (multispectral scanner) de-
signed to achieve high spatial resolution ð30 m� 30 mÞ,
sharp spectral separation (images are acquired simulta-
neously in seven spectral bands, from the wavelength of

Fig. 2. Multitemporal and multisensor dataset consisting of: (a) SAR image (April 1994); (b) optical image (May 1994); (c) SAR image (May 1994).

(from [12])
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0.45–2:35 lm), high geometric fidelity, and good ra-
diometric accuracy and resolution. Typically, TM bands
4, 3, and 2 can be combined to make false-color com-
posite images where band 4 represents red, band 3,
green, and band 2, blue. This band combination makes
vegetation appear as shades of red, with brighter reds
indicating more vigorously growing vegetation. Soils
with no or sparse vegetation will range from white
(sands) to green or brown depending on moisture and
organic matter content. Water bodies will appear blue.
Deep, clear water will be dark blue to black in color,
while sediment-laden or shallow waters will appear
lighter in color. Urban areas will appear blue–gray in
color. Clouds and snow will be bright white; they are
usually distinguishable from each other by the shadows
associated with the clouds.

The approach presented in this section is based on
the application of the Bayes rule for minimum error to
the ‘‘compound’’ classification [25] of pairs of multi-
source images acquired at different dates. In particular,
two multisource image datasets I1 and I2, acquired at
two times t1 and t2, respectively, are analyzed to identify
the land-cover classes present in the geographical area
to which the data are referred. Each dataset may con-
tain images derived from different sources: in our case,
the SAR and LANDSAT TM sensors. The input images
are supposed to be co-registered and transformed into
the same spatial resolution; each pair of temporally
correlated pixels ðx1; x2Þ, x1 2 I1 and x2 2 I2, are de-
scribed by a pair of feature vectors ðX1;X2Þ. Let
X ¼ fx1; x2; . . . ;xM1g be the set of possible land-cover
classes at time t1, and let K ¼ fk1; k2; . . . ; kM2g be the set
of possible land-cover classes at time t2. The ‘‘com-
pound’’ classification of each pair of pixels ðx1; x2Þ is
aimed at finding the pair of classes ðxm; knÞ that have
the highest probability to be associated with them. It is
possible to prove that, under the simplifying hypothesis
of class-conditional independence in the time domain,
this task can be carried out according to the following
rule [12]:

max
xi;kj

fP ðxi=X1ÞP ðkj=X2ÞP ðxi; kjÞ=PðxiÞPðkjÞg: ð3:1Þ

The available ground truth can be used to generate two
training sets (one for each date) useful to estimate the a
priori and the posterior probabilities of classes. In par-
ticular, the a priori probabilities P ðxiÞ and PðkjÞ are
estimated by computing the occurrence frequency of
each class in the t1 and t2 training sets, respectively. The
posterior probabilities of classes P ðxijX1Þ and P ðkjjX2Þ
are estimated by applying two multilayer perceptron
neural networks, trained with the backpropagation al-
gorithm, to single-date multisource images. The joint
probabilities of classes Pðxi; kjÞ, which model the tem-
poral correlation between the two multisource images,
are estimated by using the EM algorithm [26]. In par-

ticular, it is possible to prove that the equation to be
used at the k þ 1 iteration for maximizing the likelihood
function is the following [12]:

Pkþ1ðxi; kjÞ

¼ 1

N 
M 
 P ðxiÞ 
 P ðkjÞ


XN 
M

q¼1

� Pkðxi; kjÞ 
 P ðxijXq
1 Þ 
 P ðkjjXq

2 ÞP
xn2X

P
km2K

Pkðxn;kmÞ
PkðxnÞ
PkðkmÞ 
 P ðxnjXq

1 Þ 
 PðkmjXq
2 Þ

;

ð3:2Þ
where N 
M is the total number of pixels to be classified
in each image and Xq

k is the qth pixel of the image Ik. It is
worth noting that in the initialization step equal prob-
abilities are assigned to each pair of classes. The algo-
rithm is iterated until convergence. At convergence, the
obtained joint probabilities are used in Eq. (3.1) to-
gether with the estimated a priori and posterior proba-
bilities of classes to derive the land-cover maps.

3.2. Experimental results

The four dominant land-cover types in April for the
study area have been considered, namely: wet rice fields,
bare soil, cereals and wood. In May, an additional cover
type (corn) has been included, increasing the size of the
set of possible classes to five. For the May dataset, 11
features have been considered: six intensity features
from the Landsat TM image (corresponding to all bands
but the infrared thermal one), one intensity feature from
the ERS-1 SAR (C band, VV polarization) image and
four texture features (entropy, difference entropy, cor-
relation and sum variance) computed from the ERS-1
SAR image using the gray-level co-occurrence matrix.
For the April image, only the above five features (one
intensity and four texture features) derived from the
ERS-1 SAR image have been utilized. For each date, a
feedforward MLP neural network has been trained in-
dependently (Fig. 3): an MLP to estimate the posterior
class probabilities of the pixels of the April image (from
single sensor data); a different MLP to estimate the
analogous probabilities for the May image (from multi-
sensor data). The number of input and output neurons
corresponded, respectively, to the number of features
and classes defined for each date; one hidden layer of
eight neurons has been considered in both cases. The
EM algorithm has been applied and reached the con-
vergence after six iterations to provide the estimate of
the joint class probabilities.

The classification results obtained for the April image
independently (without fusion) and with data fusion by
the proposed approach are illustrated in Table 1. They
are expressed in terms of percent average accuracy
(i.e. the mean value of the accuracy over the different
classes).
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A significant improvement of the average accuracy
(i.e. þ17%) has been obtained thanks to data fusion,
showing that classes which are poorly discriminated by
the SAR sensor alone at a given date can be recovered
by the use of the multisensor information related to
another date. In this case, the improvement is mainly
related to the class ‘‘cereals’’, with an increase of accu-
racy from 16.67% (without fusion) to 75.0% (with
fusion). The early growth of this plant in April makes
difficult its discrimination with the SAR sensor, only.
The multisensor information, extracted from the May
image, in which the discrimination of the class ‘‘cereals’’
is much easier (84.26% without temporal fusion), played
a valuable role to recover this class.

4. Fusion of multipolarization–multifrequency–

multiresolution SAR images

Data fusion systems have also been developed to fuse
information carried by multipolarization, multifre-
quency and multiresolution data acquired by the same
sensor [5,6,27–30]. In the case of active microwave and
radio sensors, the data consist of the reflection of the
scattering properties of the surface in the microwave
region [1,8,31]. A natural surface can be mathematically
described as a series of backscatterers that reflect the
wave produced by the sensor. The reflected wave de-
pends on three different aspects related to the local ge-
ometry and to the incident wave: incidence angle,
polarization and frequency. At small angles, the back-

scattered return is dependent on the angle of incidence,
and it provides information on the surface slopes dis-
tribution for topography at a scale significantly larger
than the wavelength. At wide angles, the return signal
provides information about the small-scale structure.
Thus, when images, acquired by the same sensor at
different incidence angles, are fused, since the received
backscattered radiation is strongly dependent on the
angle and, thus, on the topography, it is necessary to
apply radiometric corrections. This can be done by using
a digital elevation model (DEM); a correction of the
considered images can be exploited to obtain a real view
of the observed scene [9,32,33].

The backscatter cross-section of natural surfaces also
depends on the polarization of the incident wave; four
different modes are usually considered: HH, horizontally
polarized emitted, horizontally polarized received and
similarly for HV, VV and VH. It is possible to show that
the same scene has a different behavior at different po-
larizations: therefore, when data at different polarizations
about the same scene are available, the information
content about the observed region can be increased by
fusing the multipolarization information. The same ob-
servation can be addressed for multifrequency data;
particularly in this case, the operating frequency is a key
factor in the penetration depth [1]: an L-band (20 cm
wavelength) signal will penetrate about 10 times deeper
than a Ku band (2 cm wavelength) signal thus providing
access to a significant volumetric layer near the surface. In
addition, the behavior of the backscatterer, as a function
of frequency, changes on the basis of the surface types.
Therefore, if the images acquired in many regions of the
spectrum are fused, the output image will carry useful
information about specific backscatterers otherwise visi-
ble just in single frequencies. More specifically, when an
SAR sensor scans a scene, typically, data at many po-
larizations and at many frequencies are available; fur-
thermore, the same scene can be observed by SAR sensors
that are located on flying platforms at different heights,
and therefore, data at different resolutions are available.

Table 1

Accuracy obtained for the test set of the April 1994 image with and

without multitemporal–multisensor fusion (from [12])

Area Without fusion With fusion

Wet rice fields 98.54 99.46

Baresoil 93.11 97.18

Cereals 16.67 75.0

Wood 92.32 97.0

Average accuracy 75.16 92.16

Fig. 3. Block scheme of the ‘‘compound’’ classification technique. (from [12])

8 G. Simone et al. / Information Fusion 3 (2002) 3–15



4.1. Radiometric correction

An important operation to be accomplished, before
fusing the images, is the radiometric correction: this
step is used to reduce the effects of the acquisition
context on the recorded data; these effects are particu-
larly evident in the case of microwave and radiofre-
quency sensors, where the topography of the scene
significantly changes the reflection properties of the
backscatterers [9,32,33]. Previous studies have shown
that for SAR imagery from a non-flat terrain, the to-
pography must be taken into account in the radiometric
correction for the pixel scattering area. In the SAR
image, the pixel represents the intensity of the electro-
magnetic wave scattered by the observed surface:
therefore, it is necessary to take into account the action
of the topography on this scattered signal received by
the antenna. In other words, it is important to compute
for each pixel a normalization factor, depending on the
slant-range pixel spacing in the range direction dr, on
the slant-range pixel spacing in the azimuth direction
da, and on the local radar incidence angle in the range
direction gr (Fig. 4).

The radiometric correction consists of the computa-
tion of this normalization factor, that, in its expression,
contains the correction of the changes in the pixel in-
tensity due to changes in the topography. The SAR
image is acquired in a plane where the two axes are
called azimuth and range: the azimuth direction is the
line parallel to the flight line; the range direction is the
line perpendicular to the flight line. The dr factor is

the distance in the range direction between two points
on the surface which can still be separable; the da factor
corresponds to the two nearest separable points along
an azimuth line. It is possible to show that this nor-
malization factor is [32,33]:

A ¼ dr 
 da
sinðgrÞ

: ð4:1Þ

To compute this normalization factor A, the DEM –
of the area, that is a topographic representation of the
observed scene, and the flight path of the platform on
which the radar is located, are needed. Each pixel of
the input SAR image is multiplied by the factor A:
this operation corresponds to the normalization of the
backscattering area, and, therefore, to the correction
of the intensity of each pixel. Fig. 4 describes the
problem geometry in the range plane: the parameters
depicted in the figure are once used in the algorithm
to compute the normalization factor, and it gives an
explanation for the physical meaning of the symbols
dr, da and gr, described above. This algorithm, im-
plemented in Matlab� code, has been used to radio-
metrically correct the input data, and to obtain a real
view of the scene.

4.2. DWT and salience computation for multifrequency–
multipolarization image fusion

The next step is the fusion of the multipolarization
and multifrequency images that have been radiometri-
cally corrected. Simple procedures to perform image

Fig. 4. Imaging geometry in the range direction. (from [32])
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fusion are the IHS method [34] and the method of
principal components analysis (PCA) [27]. In the case of
PCA, each pixel in the fused image is the weighted sum
of the pixels in the input images, by using as weights the
eigenvectors corresponding to the maximum eigenvalue
of the covariance matrix. If there is a low correlation
between the detailed surface structures in the input im-
ages to be fused, the PCA method does not preserve the
fine details (similar problems arise also with the IHS
method). Therefore, techniques that integrate the fine
details of the input data into the fused image are pre-
ferred. This is the reason for which pyramidal methods
are popular [15,28–30,35–38]: a pyramid is firstly con-
structed transforming each source image into the pyra-
mid domain; then a fused pyramid is constructed,
selecting the coefficients from the single pyramids, and
the matched image is computed by an inverse pyramid
transform. The manner in which the pyramid domain is
constructed changes on the basis of the applied tech-
nique: when we fix the method to decompose the data,
the pyramid domain consists of the decomposed data,
that is, of the coefficients provided by the decomposing
technique; since the decomposition coefficients represent
the input data at different resolutions, and since the size
of the data decreases at higher resolution, the structure
of the transformed data can be represented by a pyra-
mid. We are interested in the information carried by the
full resolution data in the spatial domain: therefore,
after the fusion step in the pyramid domain, it is nec-
essary to transform the fused data in the original do-
main; this is accomplished by using an inverse
transformation, based on the technique applied to
transform data into the pyramid domain. The pyramid-
based fusion techniques typically differ in the pyramid
construction method, and in the technique used to select
the coefficients from the images to be fused. Popular
methods are based on Laplacian and gradient pyramids
[28], where the gradient technique guarantees improved
stability and noise immunity; recently, the wavelet
transform has been shown as a powerful method to
preserve the spectral characteristics of the multipolar-
ization and multifrequency images [15], allowing de-
composition of each image into channels based on their
local frequency content. After the construction of the
input pyramids, the coefficients can be fused on the basis
of specific pattern selective techniques: an information
measure extracts the information from the input pyra-
mids, and the match measure is used to fuse the ex-
tracted information. The simplest methods are based on
the selection of the higher value coefficients; other
methods are based on salience computation [28] that
estimates the evidence of a pattern related to the infor-
mation contained in the neighboring area. The tech-
nique, exploited throughout this paper, is based on the
use of a pyramidal method that uses the DWT [39,40]: it
consists of a decomposition of an image in sub-images

that represent the frequency contents of the original
image at different levels of resolution. Due to desirable
properties concerning approximation quality, redun-
dancy and numerical stability, the low pass and high
pass filters, used to compute the sub-images, have been
constructed on the basis of the Daubechies wavelet
family. The images acquired by the same sensor at dif-
ferent frequencies or polarizations have been fused, by
computing the wavelet pyramid and by linearly com-
bining the wavelet coefficients. In order to acquire the
information carried by each pyramid, the salience of
each pattern has been considered [28]: it can be defined
as the local energy of the incoming pattern within
neighborhood p

Sði; j; k; lÞ ¼
X
i0 ;j0

pði0; j0ÞDðiþ i0; jþ i0; k; lÞ2; ð4:2Þ

where:
– S is the salience measure,
– p is a window function with unitary value when
16 i0 6 r and 16 j0 6 q, and zero value elsewhere; this
function is used as a local window on the wavelet pyr-
amid around the considered pixel ði; jÞ; in the pre-
sented experiment, the value of parameters r and q
is 5; this value has been fixed by using a trial and
error technique, and they are related to the level of
detail in the images being considered;
– D is the pyramid, and ði; j; k; lÞ are the row and col-
umn sample position, level and orientation indexes
inside the pyramid structure. When the salience of
the coefficient ði; jÞ with level k and orientation l is
computed, the local window allows us to acquire
the neighboring coefficients present in a window
r � q pixels around the considered point.

The salience of a particular component pattern is high if
that pattern plays a role in representing important in-
formation in a scene; it is low if the pattern represents
unimportant information or if it represents corrupted
image data.

After this salience computation step, applied to the
single pyramids A and B, of two images to be fused, a
match measure has to be computed to combine the in-
formation carried by each pyramid; this match measure
is defined on the basis of the salience measure, as the
following [28]:

MABði;j;k;lÞ

¼
2 

P

i0 ;j0 pði0;j0Þ 
DAðiþ i0;jþj0;k;lÞ
DBðiþ i0;jþj0;k;lÞ
SAði;j;k;lÞ
SBði;j;k;lÞ

:

ð4:3Þ
The combined pyramid can be computed by using the
following expression:

DCði; j; k; lÞ ¼ wAði; j; k; lÞ 
DAði; j; k; lÞ
þ wBði; j; k; lÞ 
DBði; j; k; lÞ; ð4:4Þ
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and

If MABði; j; k; lÞ6 a ) wmin ¼ 0 and wmax ¼ 1; ð4:5Þ

if MABði; j; k; lÞ > a ) wMIN ¼ 1

2
 1

2

1MAB

1 a

� �
and

wmax ¼ 1 wmin; ð4:6Þ

if SAði; j; k; lÞPSBði; j; k; lÞ ) wAði; j; k; lÞ ¼ wmax and

wBði; j; k; lÞ ¼ wmin; ð4:7Þ

else if SAði; j; k; lÞ < SBði; j; k; lÞ ) wAði; j; k; lÞ ¼ wmin

and wBði; j; k; lÞ ¼ wmax; ð4:8Þ

where a is a threshold fixed by the operator. The final
step is to use the inverse discrete wavelet transform to
obtain the fused image.

The data used in this Section consist of airborne
and space borne images acquired over the San Francisco
Bay area, courtesy of JPL, (Jet Propulsion Laboratory,
CA, USA), (Figs. 5–8). The polarimetric (POLSAR)
dataset has been acquired in L-, C- and P- bands with
the bandwidths 40.00 and 20.00 MHz (CM5599
and CM5598 images) with different spatial resolutions

(6.662 m along range and 18.518 m along azimuth for
the CM5599 image; 13.324 m along range and 18.518 m
along azimuth for the CM5598 image). The inter-
ferometry dataset has been acquired in L- and C- bands,
with a spatial resolution of 10 m along range and 10 m
along azimuth (TS0711). These first two datasets have
been acquired during the JPL–AIRSAR Mission. The
space borne image has been acquired during the SIR-C/
X-SAR Mission, in L- and C- bands, with the HH and
HV polarizations, with a spatial resolution of 25 m
along range and 25 m along azimuth.

4.3. Spatial registration

The images, output of the multifrequency and multi-
polarization fusion process, will be the input of the
multiresolution fusion process. Since they are acquired
in different geometries, they have to be coregistered to
refer the data to a common regular grid; in this way,
each pixel of each image will correspond to the homo-
logous pixels of the remaining images [9]. For this rea-
son, an automatic technique has been implemented in
Matlab� code, and it matches two images to a common

Fig. 5. JPL–AIRSAR POLSAR CM5598 C-band image.

Fig. 6. JPL–AIRSAR POLSAR CM5599 C-band image.

Fig. 7. JPL–AIRSAR POLSAR TS0711 C-band image.

Fig. 8. SIR-C/X-SAR C-band HV-polarization image.
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grid. We have chosen the CM5599 image as reference
image, and we have matched the other images (CM5598,
TS0711 and SIR-C) to the CM5599 image. The algo-
rithm consists of the following steps:

– three points, that are homologous, identical or cor-
responding image points, have to be manually identi-
fied in the two images;
– a linear matching of the second image to the first
image, based on three corresponding points, is ap-
plied;
– to improve the registration performance, the tech-
nique can be iterated by using as reference points
more than three points.

Resampling operations are necessary when one of the
two images has a ‘‘small’’ size with respect to the second
one: in this case, when the ‘‘small’’ image has to be co-
registered to the ‘‘large’’ image, new pixels have to be
added to the ‘‘small’’ image; in our experiments, the
value of the added pixels has been computed by inter-
polating the values of the neighboring pixels. Obviously,
the information carried by the added pixels has no ra-
diometric fidelity, since the values reflect the radiometric
information carried by the neighboring pixels: if the
scene has no strong variations in the topography, then
the added values can be considered a good approxi-
mation of the real changes in the radiometric informa-
tion of the considered area. This algorithm has been
used to obtain images that have the same size: these
data will be processed by the following multiresolution
fusion step.

4.4. MKF algorithm for multiresolution image fusion

After the spatial registration, the images are ready for
the multiresolution fusion process. Also in this case the
pyramidal techniques can be utilized; other methods,
recently proposed, consist of the use of scale-recursive
models, based on multilevel trees (Fig. 9). The key to

this multiple scale filtering is to consider the scale as an
independent variable as time such that the description at
a particular scale captures the features of the process up
to those scales that are relevant for the prediction of
finer scale features; this algorithm is considered as an
extension of the Kalman filter to the scale variable, and
it is known as multiscale Kalman filtering [29,35–38]. An
image can be decomposed from the coarse to the fine
resolution: at the coarsest resolution, the signal will
consist of a single value. At the next resolution, there are
q ¼ 4 values, and, in general, at the m th resolution, we
obtain qm values. The values of the multiscale repre-
sentation can be described by the index set ðm; i; jÞ,
where m represents the resolution and ði; jÞ the location
index. To describe the model, an abstract index k is used
to specify the nodes on the decomposition tree; ck
specifies the parent node of k. The multiscale Kalman
filtering technique is used to obtain optimal estimates of
the state XðkÞ described by the multiple scale model
using observations YðkÞ at a hierarchy of scales. This
scheme proceeds in two steps: downward and upward
[32–35]. The multiple scale downward (coarse-to-fine
resolution) model is given by:

XðkÞ ¼ AðkÞ 
 XðckÞ þ BðkÞ 
WðkÞ; ð4:9Þ

YðkÞ ¼ CðkÞ 
 XðkÞ þ VðkÞ: ð4:10Þ
Since XðckÞ represents the state at a resolution coarser
than XðkÞ, AðkÞ 
 XðckÞ can be considered as a predic-
tion term for the finer level; BðkÞ 
WðkÞ is the new
knowledge that we add from one scale to the next. The
noisy measurements YðkÞ of the state XðkÞ, the mea-
surement Eq. (4.10), combined with the Eq. (4.9), form
the state estimation problem. The covariance matrices of
the state and of the measurements are computed by the
following equations:

PX ðkÞ � E½XðkÞ 
 XT ðkÞ�: ð4:11Þ
Corresponding to the above downward model, the up-
ward (fine-to-coarse resolution) model is:

Fig. 9. Multiscale signal representation by dyadic tree, where each level

of the tree corresponds to a single scale. Fig. 10. Full resolution fused image.
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XðckÞ ¼ FðkÞ 
 XðkÞ þWðkÞ; ð4:12Þ
where

FðkÞ ¼ PX ðckÞ 
 AT ðkÞ 
 P1
X ðkÞ: ð4:13Þ

4.5. Experimental results

To evaluate the system performance, and to evaluate
how the information flows from the input images to the
output images, two different tests have been carried out
on the considered datasets: a classification test and a

straight line detection test, as in typical automatic target
recognition (ATR) applications in remote sensing. The
classification test has been carried out by using a least
square classifier. Three different areas have been con-
sidered to be present on the considered scene: urban,
mountain and sea areas. The classifier has been applied
to the input image and to the high resolution image
(Fig. 10) produced by the scheme depicted in Fig. 11.

Table 2 shows the classification results in terms of:
best percent classification accuracy, obtained without
fusion, on the full resolution input images; percent
classification accuracy, obtained with fusion, on the full
resolution fused image. The results clearly show the
usefulness of the proposed fusion scheme.

The second test has been carried out from another
point of view: the Hough Transform (HT) has been
computed on the full resolution input image CM5599 L-
band, and on the full resolution fused image, to detect
straight lines possibly present. The HT is a two-dimen-
sion non-coherent operator which maps an image to a
parameter domain [41]. When the aim of the analysis is

Table 2

Percent classification accuracy for the non-fused and fused images

Area Without fusion With fusion

Urban area 86.43 93.12

Mountain area 76.48 85.58

Sea area 89.98 96.87

Average accuracy 84.29 91.85

Fig. 11. Block scheme of the fusion system.

Fig. 12. Hough transform of the CM5599 L-band image (the L-band is

the band where the airport is more visible).

Fig. 13. Hough transform of the full resolution fused image.
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to detect straight lines in an image, the parameter of
interest completely defines the straight lines. The equa-
tion:

q ¼ x 
 cos h þ y 
 sin h; ð4:14Þ

maps the point ðx; yÞ into the parameters ðq; hÞ, which
represent a straight line passing through ðx; yÞ. Each
pixel in the original image is transformed in a sinusoid in
the ðq; hÞ domain. The presence of a line is detected by
the location in the ðq; hÞ plane where more sinusoids
intersect: a constant false alarm rate (CFAR) detection
algorithm has been applied in the Hough plane, to de-
tect the correct peaks, and to reject the spurious peaks
produced by the noise effects. In this case, it is more
difficult to correctly evaluate the system performance,
since just the area near the airport (upper part of the
reference image CM5599) is characterized by the pres-
ence of straight lines. To overcome this problem, just the
area near the airport has been processed; we found that
in the fused image the regular structures can be detected
with a lower probability of false alarm (Figs. 12 and 13).
More specifically, the average probability of false alarm
requested to detect the straight lines present in the
considered areas varies from 0.3, in the input image, to
0.2 in the fused image.

5. Conclusions

The topic of fusing SAR images or/and images pro-
vided by dissimilar sensors is relevant from an applica-
tion viewpoint; it is also an arena to test existing signal
processing algorithms and to develop brand new ones.
In this paper, the problem of image fusion for remote
sensing applications has been presented in terms of three
study cases:

– the SAR interferometry has been presented as an
application where the joint use of images acquired
by two different antennas allows an elevation map
of the observed scene to be generated;
– a multitemporal and multisensor image fusion pro-
cessor has been described, by presenting an applica-
tion where multitemporal SAR images and a
LANDSAT image have been fused by using a neural
network architecture; furthermore, the usefulness of
the fusion technique has been evaluated by estimating
the percentage of correctly classified pixels for the
non-fused and the fused images;
– a multifrequency, multipolarization and multireso-
lution image fusion system has been presented; in this
case, the problems of the radiometric calibration and
of the spatial calibration have been considered; a
technique based on the two-dimensional discrete
wavelet transform and a technique based on the
MKF have been exploited to fuse, respectively, im-
ages acquired at different frequencies/polarizations

and resolutions; the usefulness of the developed ap-
proach has been demonstrated by fusing SAR im-
ages, and by evaluating the correct classification
percentages, as in multitemporal and multisensor
study case, and by evaluating the evidence of straight
lines in the fused image with respect to the input
image.

The described techniques are among the most advanced
methods in the data fusion field; they have been selected
to show, in quite different situations, the advantages that
can be derived from the application of a data fusion
approach. In the first study case, the fusion of two im-
ages provided by two different antennas is necessary to
obtain a DEM, which cannot be computed if just one
image is used. In the second and third study cases, the
usefulness of the presented image fusion technique, in
terms of improved accuracy, has been shown by ex-
ploiting the information flow from the input to the fused
images.
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